Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-10T09:53:45.652Z Has data issue: false hasContentIssue false

25 - Inborn Errors of Carbohydrate Metabolism

from SECTION IV - METABOLIC LIVER DISEASE

Published online by Cambridge University Press:  18 December 2009

Fayez K. Ghishan M.D.
Affiliation:
Professor and Head, Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona
Mona Zawaideh M.D.
Affiliation:
Assistant Professor, Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

This chapter deals with three inborn errors of carbohydrate metabolism that lead to hepatic dysfunction: galactosemia, hereditary fructose intolerance (HFI), and glycogen storage disease (GSD) types I, III, and IV. The clinical presentation of such patients includes varying degrees of hypoglycemia, acidosis, growth failure, and hepatic dysfunction. Appropriate steps in obtaining clinical history, physical examination, and laboratory evaluation support a definitive diagnosis. Advances in biochemistry and molecular biology, which have made significant contributions toward better understanding of the molecular defects underlying these disorders, are anticipated to result eventually in the development of newer treatment strategies. The newer information is highlighted in this chapter.

GALACTOSEMIA

The first detailed characterization of a galactose-intolerant individual was provided by Mason and Turner in 1935 [1]. Since then, three distinct disorders of galactose metabolism and several variant forms of the disease have been identified. These disorders are transmitted by autosomal recessive inheritance and are expressed as a cellular deficiency of one of three enzymes in the metabolic pathway through which galactose is converted to glucose: galactose-1-phosphate uridyl transferase, galactokinase, and uridine diphosphate (UDP) galactose-4-epimerase. The terms transferase deficiency galactosemia, galactokinase deficiency galactosemia, and epimerase deficiency galactosemia traditionally have been used to distinguish between the various forms of the disease. Until recently, the genetic basis of galactosemia was discerned primarily through quantification of red cell activity of these enzymes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mason, H H, Turner, M E. Chronic galactosemia. Am J Dis Child 1935;50:359–74.CrossRefGoogle Scholar
Segal, S. Galactosaemia today: the enigma and the challenge. J Inherit Metab Dis 1998;21:455–71.CrossRefGoogle ScholarPubMed
GALTdB (the Galactose-1-Phosphate Uridyl Transferase Mutation Analysis Database Home Page). (Accessed November 2, 2006 at http://www.ich.bris.ac.uk/galtdb/.)
Isselbacher, K J, Anderson, E P, KurahashiK, et al K, et al. Congenital galactosemia, a single enzymatic block in galactose metabolism. Science 1956;123:635–6.CrossRefGoogle ScholarPubMed
Steinmann, B, Gitzelmann, R, Zachmann, M. Hypogonadism and galactosaemia. N Engl J Med 1981;305:464–5.Google Scholar
Gitzelmann, R. Hereditary galactokinase deficiency, a newly recognized cause of juvenile cataracts. Pediatr Res 1967;1:14–23.CrossRefGoogle Scholar
Gitzelmann, R. Deficiency of uridine diphosphate galactose-4-epimerase in blood cells of an apparently healthy infant. Helv Paediatr Acta 1972;27:125–30.Google ScholarPubMed
Gitzelmann, R, Steinmann, B, Mitchell, B. Uridine diphosphate galactose-4-epimerase deficiency. IV. Report of eight cases in three families. Helv Paediatr Acta 1977;31:441–52.Google ScholarPubMed
Holton, J B, Gillett, M G, MacFaul, R. Galactosemia: a new severe variant due to uridine diphosphate galactose-4-epimerase deficiency. Arch Dis Child 1981;56:885–7.CrossRefGoogle ScholarPubMed
Henderson, M J, Holton, J B, MacFaul, R. Further observations in a case of uridine diphosphate galactose-4-epimerase deficiency with a severe clinical presentation. J Inherited Metab Dis 1983;6:17–20.CrossRefGoogle Scholar
Garibaldi, L R, Canine, S, Superti-Furga, A. Galactosemia caused by generalized uridine diphosphate galactose-4-epimerase deficiency. J Pediatr 1983;103:927–30.CrossRefGoogle ScholarPubMed
Bowling, F G, Fraser, D K, Clague, A E. A case of uridine diphosphate galactose-4-epimerase deficiency detected by neonatal screening for galactosemia. Med J Aust 1986;144:150–1.Google Scholar
Holten,, J B. Galactosaemia: pathogenesis and treatment. J Inherit Metab Dis 1996;19:3–7.CrossRefGoogle Scholar
Hopfer U. Membrane transport mechanisms for hexoses and amino acids in the small intestine. In: Johnson, L R, Christensen, J, Jackson, M J, eds. Physiology of the gastrointestinal tract. 2nd ed. New York: Raven Press, 1987:1499–526.Google Scholar
Sherman, J R, Adler, J. Galactokinase from E. coli.J Biol Chem 1963;238:873–8.Google Scholar
Heinrich, M R. The purification and properties of yeast galactokinase. J Biol Chem 1964;239:50–3.Google ScholarPubMed
Cardini, C E, Leloir, L F. Enzymatic phosphorylation of galactosamine and galactose. Arch Biochem Biophys 1953;45:55–64.CrossRefGoogle Scholar
Shin-Buehring, Y S, Beier, T, Tan, A. Galactokinase and galactose-1-phosphate uridyltransferase (transferase) and galactokinase in human fetal organs [abstract]. Pediatr Res 1977;11:1012.CrossRefGoogle Scholar
Tedesco, T A. Human galactose-1-phosphate uridyl transferase: purification, antibody production, and comparison of the wild type, Duarte variant, and galactosemic gene products. J Biol Chem 1972;247:6631–6.Google Scholar
Flach, J E, Reichardt, T K V, Elsas, L J. Sequence of a cDNA encoding human galactose-1-phosphate uridyl transferase. Mol Biol Med 1990;7:365–9.Google ScholarPubMed
Bergren, W R, Ng, W G, Donnell, G N. Uridine diphosphate galactose-4-epimerase in human and other mammalian hemolysates. Biochim Biophys Acta 1973;315:464–72.CrossRefGoogle Scholar
Knop, J, Hansen, R. Uridine diphosphate glucose pyrophosphorylase: IV. Crystallization and properties of the enzyme from human liver. J Biol Chem 1970;245:2499–504.Google ScholarPubMed
Clements, R, Weaver, J, Winegrad, A. The distribution of polyol: NADP oxidoreductase in mammalian tissues. Biochem Biophys Res Commun 1969;37:347–53.CrossRefGoogle ScholarPubMed
Wells, W, Pittman, T, Egan, T. The isolation and identification of galactitol from urine of patients with galactosemia. J Biol Chem 1964;239:3192–5.Google ScholarPubMed
Gitzelmann, R, Curtius, H C, Muller, M. Galactitol excretion in the urine of a galactokinase deficient man. Biochem Biophys Res Commun 1966;22:437–41.CrossRefGoogle Scholar
Bergren, W R, NG, W G, Donnell, G N. Galactonic acid in galactosemia: identification in the urine. Science 1972;176:683–4.CrossRefGoogle ScholarPubMed
Segal, S, Blair, A. Some observations on the metabolism of D-galactose in normal man. J Clin Invest 1961;40:2016–25.CrossRefGoogle Scholar
Tygstrup, N. Determination of the hepatic elimination capacity (LM) of galactose by single injection. Scand J Clin Lab Invest 1966;92 Suppl 18:118–25.Google Scholar
Lemaire, H G, Mueller-Hill, B. Nucleotide sequences of the galE gene and the galT gene of E. coli.Nucleic Acid Res 1986;14:7705–11.CrossRefGoogle Scholar
Tajima, J, Nogi, Y, Fukasawa, T. Primary structure of the Saccharomyces cerevisiae GAL7 gene. Yeast 1985;1:67–77.CrossRefGoogle ScholarPubMed
Reichardt, J K V, Woo, S L C. Molecular basis of galactosemia: mutations and polymorphisms in the gene encoding human galactose-1-phosphate uridyl transferase. Proc Natl Acad Sci U S A 1991;88:2633–7.CrossRefGoogle Scholar
Reichardt, J K V, Packman, S, Woo, S L C. Molecular characterization of two galactosemic mutations: correlation of mutations with highly conserved domains in galactose-1-phosphate uridyl transferase. Am J Hum Genet 1991;49:860–7.Google Scholar
Field, T L, Reznikoff, W S, Frey, P A. Galactose-1-phosphate uridyl transferase: identification of histidine-164 and histidine-166 as critical residues by site directed mutagenesis. Biochemistry 1989;28:2094–9.CrossRefGoogle ScholarPubMed
Wang, B, Xu, Y, Ng, W G. Molecular and biochemical basis of galactosemia. Mole Geneti Metab 1998;63:263–9.CrossRefGoogle ScholarPubMed
Reichardt, J K, Levy, H L, Woo, S L. Molecular characterizations of two galactosemic mutations and one polymorphorism: implications for structure-function analysis of human galactose-1-phosphate uridyl transferase. Biochemistry 1992;311:5430–3.CrossRefGoogle Scholar
Williams JC, Howell RR. Nutrition in inborn errors of carbohydrate metabolism. In: Grand, R J, Sutphen, J L, Dietz, W H, eds. Pediatric nutrition: theory and practice. Boston: Butterworths. 1987:665–70.
Hsia, D Y Y, Walker, F A. Variability in the clinical manifestations of galactosemia. J Pediatr 1961;59:872–83.CrossRefGoogle ScholarPubMed
Donnell, G N, Collado, M, Koch, R. Growth and development of children with galactosemia. J Pediatr 1961;58:836–44.CrossRefGoogle ScholarPubMed
Donnell GN, Koch R, Bergren WR. Observations on results of management of galactosemic patients. In: Hsia, D Y Y. Galactosemia. Springfield, IL: Charles C Thomas, 1969:247–68.Google Scholar
Nadler HL, Inouye T, Hsia DYY. Clinical galactosemia: a study of fifty-five cases. In: Hsia, D Y Y. Galactosemia. Springfield, IL: Charles C. Thomas, 1969:127.Google Scholar
Fishler, K, Koch, R, Donnell, G N. Developmental aspects of galactosemia from infancy to childhood. Clin Pediatr 1980;19:38–44.CrossRefGoogle ScholarPubMed
Komrower, G M, Lee, D H. Long-term follow-up of galactosemia. Arch Dis Child 1970;45:367–73.CrossRefGoogle Scholar
Komrower, G M. Galactosaemia: thirty years on the experience of a generation. J Inherit Metab Dis 1982;5:96.CrossRefGoogle Scholar
Waggoner, D D, Buist, N R M, Donnell, G H. Long-term prognosis in galactosaemia: results of a survey of 350 cases. J Inherit Metab Dis 1990;13:802–18.CrossRefGoogle ScholarPubMed
Belman, A L, Moshe, S L, Zimmerman, R D. Computered tomographic demonstration of cerebral edema in a child with galactosemia. Pediatrics 1986;78:606–9.Google Scholar
Levy, H L, Sepe, S J, Shih, V E. Sepsis due to Escherichia coli in neonates with galactosemia. N Engl J Med 1977;297:823–5.CrossRefGoogle ScholarPubMed
Litchfield, W J, Wells, W W. Effects of galactose on free radical reactions of polymorphonuclear leukocytes. Arch Biochem Biophys 1978;188:26–30.CrossRefGoogle ScholarPubMed
Segal, S, Blair, A, Roth, H. The metabolism of galactose by patients with congenital galactosemia. Am J Med 1965;38:62–70.CrossRefGoogle Scholar
Segal S. Disorders of galactose metabolism. In: Stanbury, J B, Wyngaarden, J B, Frederickson, D S. The metabolic basis of inherited disease. 4th ed. New York: McGraw-Hill, 1978:160–81.Google Scholar
Segal S. Disorders of galactose metabolism. In: Stanbury, J B, Wyngaarden, J B, Frederickson, D S. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989:453–80.Google Scholar
Komrower, G M, Schwarz, V, Holzel, A. A clinical and biochemical study of galactosemia. Arch Dis Child 1956;31:254–64.CrossRefGoogle Scholar
Holzel, A, Komrower, G M, Schwarz, V. Galactosemia. Am J Med 1957;22:703–11.CrossRefGoogle ScholarPubMed
Holzel, A, Komrower, G M, Wilson, V K. Amino-aciduria in galatosemia. Br Med J 1952;1:194–5.CrossRefGoogle Scholar
Cusworth, D C, Dent, C E, Flynn, F V. The amino-aciduria in galactosemia. Arch Dis Child 1955;30:150–4.CrossRefGoogle Scholar
Keppler, D, Decker, K. Studies on the mechanisms of galactosamine hepatitis: accumulation of galactosamine-1-phosphate and its inhibition of UDP-glucose pyrophosphorylase. Eur J Biochem 1969;10:219–25.CrossRefGoogle Scholar
Quan-Ma, R, Wells, W. The distribution of galactitol in tissues of rats fed galactose. Biochem Biophys Res Commun 1965;20:486–90.CrossRefGoogle ScholarPubMed
Schwarz, V. The value of galactose phosphate determinations in the treatment of galactosemia. Arch Dis Child 1960;35:428–32.CrossRefGoogle Scholar
Quan-Ma, R, Wells, H, Wells, W. Galactitol in the tissues of a galactosemic child. Am J Dis Child 1966;112:477–8.Google ScholarPubMed
Thier, S, Fox, M, Rosenberg, L. Hexose inhibition of amino acid uptake in the rat kidney cortex slice. Biochim Biophys Acta 1964;93:106–15.CrossRefGoogle ScholarPubMed
Saunders, S, Isselbacher, K J. Inhibition of intestinal amino acid transport by hexoses. Biochim Biophys Acta 1965;102:397–409.CrossRefGoogle ScholarPubMed
Fox, M, Thier, S, Rosenberg, L. Impaired renal tubular function induced by sugar infusion in man. J Clin Endocrinol 1964;24:1318–27.CrossRefGoogle ScholarPubMed
Rosenberg, L, Weinberg, A, Segal, S. The effect of high galactose diets on urinary excretion of amino acids in the rat. Biochim Biophys Acta 1961;48:500–5.CrossRefGoogle ScholarPubMed
Heyningen, R. Formation of polyols by the lens of the rat with “sugar” cataract. Nature 1959;184:194–5.CrossRefGoogle Scholar
Kinoshita, J H, Dvornik, D, Krami, M. The effect of aldose reductase inhibitor on the galactose-exposed rabbit lens. Biochim Biophys Acta 1968;158:472–5.CrossRefGoogle ScholarPubMed
Kinoshita, J H, Barber, G W, Merola, L O. Changes in levels of free amino acids and myoinositol in the galactose-exposed lens. Invest Ophthalmol 1969;8:625–32.Google ScholarPubMed
Heffley, J D, Williams, R J. The nutritional teamwork approach: prevention and regression of cataracts in rats. Proc Natl Acad Sci U S A 1974;71:4164–8.CrossRefGoogle ScholarPubMed
Dische, Z, Zelmenis, G, Youlous, J. Studies on protein and protein synthesis during the development of galactose cataract. Am J Ophthalmol 1957;44:332–40.CrossRefGoogle Scholar
Sippel, T O. Enzymes of carbohydrate metabolism in developing galactose cataracts of rats. Invest Ophthalmol 1967;6:59–63.Google ScholarPubMed
Korc, I. Biochemical studies on cataracts in galactose-fed rats. Arch Biochem 1961;94:196–200.CrossRefGoogle Scholar
Sipple, T O. Energy metabolism in the lens during development of galactose cataract in rats. Invest Ophthalmol 1966;5:576–82.Google Scholar
Kinoshita, J H, Merola, L O, Tung, B. Changes in cation permeability in the galactose-exposed rabbit lens. Exp Eye Res 1968;7:80–90.CrossRefGoogle ScholarPubMed
Wells, W, Pittman, T, Wells, H. The isolation and identification of galactitol from the brains of galactosemia patients. J Biol Chem 1965;240:1002–4.Google ScholarPubMed
Wells, H J, Gordon, M, Segal, S. Galactose toxicity in the chick: oxidation of radioactive galactose. Biochim Biophys Acta 1970;222:327–32.CrossRefGoogle ScholarPubMed
Granett, S E, Kozak, L P, McIntyre, J P. Studies on cerebral energy metabolism during the course of galactose neurotoxicity in chicks. J Neurochem 1972;19:1659–70.CrossRefGoogle ScholarPubMed
Knull, H R, Lobert, P F, Wells, W W. Galactose neurotoxicity in chicks: effects on fast axoplasmic transport. Brain Res 1974;79:524–7.CrossRefGoogle ScholarPubMed
Malone, J, Wells, H, Segal, S. Decreased uptake of glucose by brain of the galactose toxic chick. Brain Res 1972;43:700–4.CrossRefGoogle ScholarPubMed
Malone, J I, Wells, H J, Segal, S. Galactose toxicity in the chick: hyperosmolality. Science 1971;174:952–4.CrossRefGoogle ScholarPubMed
Woolley, D W, Gommi, B W. Serotonin receptors, IV: specific deficiency of receptors in galactose poisoning and its possible relationship to the idiocy of galactosemia. Proc Natl Acad Sci U S A 1964;52:14–19.CrossRefGoogle ScholarPubMed
Knull, H R, Wells, W W. Recovery from galactose-induced neurotoxicity in the chick by the administration of glucose. J Neurochem 1973;20:415–22.CrossRefGoogle ScholarPubMed
Tsakiris, S, Karagiorgiou, H, Schulpis, K H. The protective effect of L-Cystine and Glutathione on the adult and aged rat brain (Na+, K+)-ATPase and Mg2+-ATPase activities in galactosemia in vitro. Metab Brain Dis 2005;20:87–95.CrossRefGoogle Scholar
Kaufman, F R, Kogut, M D, DonnellGN, et al GN, et al. Hypergonadotropic hypogonadism in female patients with galactosemia. N Engl J Med 1981;304:994–8.CrossRefGoogle ScholarPubMed
Fraser, I S, Russell, P, Greco, S. Resistant ovary syndrome and premature ovarian failure in young women with galactosemia. Clin Reprod Fertil 1986;4:133–8.Google Scholar
Levy, H L, Driscoll, S G, Porensky, R S. Ovarian failure in galactosemia. N Engl J Med 1984;310:50.Google ScholarPubMed
Roe, T F, Hallat, J G, Donnell, G N. Childbearing by a galactosemic woman. J Pediatr 1971;78:1026–30.CrossRefGoogle ScholarPubMed
Schwarz, V, Goldberg, L, Komrower, G M. Some disturbances of erythrocyte metabolism in galactosemia. Biochem J 1956;62:34–40.CrossRefGoogle Scholar
Miller, L R, Gordon, G B, Bensch, K G. Cytologic alterations in hereditary metabolic disorders: I. The effects of galactose on galactosemia fibroblasts in vitro. Lab Invest 1968;19:428–36.Google Scholar
Kurahashi, K, Wahba, A J. Interference with growth of certain E. coli mutants by galactose. Biochim Biophys Acta 1958;30:298–302.CrossRefGoogle Scholar
Yarmolinsky, M B, Wiesmeyer, H, Kalckar, H M. Hereditary defects in galactose metabolism in E. coli mutants: II. Galactose-induced sensitivity. Proc Natl Acad Sci U S A 1959;45:1786–91.CrossRefGoogle Scholar
Xu, Y K, Kaufman, F R, Donnell, G N. Radiochemical assay of minute quantities of galactose-1-phosphage uridyl transferase activity in erythrocytes and leukocytes of galactosemia patients. Clin Chim Acta 1995;235:125–36.CrossRefGoogle Scholar
Koch R, Donnell GN, Fishler K, et al. Galactosemia. In: Kelley, V C. Practice of pediatrics. Hagerstown, MD: Harper and Row, 1979:1–14.Google Scholar
Brandt, M J. Frequency of heterozygotes for hereditary galactosemia in a normal population. Acta Genet (Basel) 1967;17:289–98.Google Scholar
Tedesco, T A, Miller, K L, Rawnsley, B E. Human erythrocyte galactokinase and galactose-1-phosphate uridylyltransferase: a population survey. Am J Hum Genet 1975;27:737–47.Google ScholarPubMed
Kliegman, R M, Sparks, J W. Perinatal galactose metabolism. J Pediatr 1985;107:831–41.CrossRefGoogle ScholarPubMed
Scriver, C R. Population screening: report of a workshop. Prog Clin Biol Res 1985;163B:89–152.Google ScholarPubMed
Robbins SL, Cotran RS. Diseases of infancy and childhood. In: Robbins, S L, Cotran, R S. Pathologic basis of disease. 2nd ed. Philadelphia: WB Saunders, 1979:561–92.Google Scholar
Smetana, H F, Olen, E. Hereditary galactose disease. Am J Clin Pathol 1962;38:3–25.CrossRefGoogle ScholarPubMed
Walker, F A, Hsia, D Y Y, Slatis, H M. Galactosemia: a study of 27 kindreds in North America. Ann Hum Genet 1962;25:287–311.CrossRefGoogle Scholar
Kirkman, H N, Bynum, E. Enzymic evidence of a galactosemic trait in parents of galactosemic children. Ann Hum Genet 1959;23:117–26.CrossRefGoogle ScholarPubMed
Mellman, W J, Tedesco, T A, Feigl, P. Estimation of the gene frequency of the Duarte variant of galactose-1-phosphate uridyl transferase. Ann Hum Genet 1968;32:1–8.CrossRefGoogle Scholar
Ng, W G, Xu, Y K, Kaufman, F R. Deficit of uridine diphosphate galactose in galactosaemia. J Inherit Metab Dis 1989;12:257–66.CrossRefGoogle ScholarPubMed
Manis, F R, Cohn, L B, McBride-Chang, C. A longitudinal study of cognitive functioning in patients with classical galactosaemia, including a cohort treated with oral uridine. J Inherit Metab Dis 1997;20:549–55.CrossRefGoogle ScholarPubMed
Berry, G T. The role of polyols in the pathophysiology of galactosemia. Eur J Pediatr 1995;154 Suppl 2:40–4.Google Scholar
Pomeranz, Y. Interaction between glycolipids and wheat flour macromolecules in bread making. Adv Food Res 1973;20:153–88.CrossRefGoogle Scholar
Gross, K C, Sams, C E. Changes in cell wall neutral sugar composition during fruit ripening: a species survey. Phytochemistry 1984;23:2457–61.CrossRefGoogle Scholar
Jermyn, M A, Isherwood, F A. Changes in the cell wall of the pear during ripening. Biochem J 1956;64:123–32.CrossRefGoogle Scholar
Shallenberger, R S, Moyer, J C. Relationship between changes in glucose, fructose, galactose, sucrose and stachyose and the formation of starch in peas. Agri Food Chem 1961;8:137–40.CrossRefGoogle Scholar
Weier, T E, Benson, A A. The molecular organization of chloroplast membranes. Am J Bot 1967;54:389–402.CrossRefGoogle Scholar
Wood, P J, Siddiqui, I R. Isolation and structural studies of a water-soluble galactan from potato (solanum tuberosum) tubers. Carbohydr Res 1972;22:212–20.CrossRefGoogle Scholar
Fry, S C. Phenolic components of the primary cell wall: feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide. Biochem J 1982;203:493–504.CrossRefGoogle ScholarPubMed
Gross, K C. Changes in free galactose, myo-inositol and other monosaccharides in normal and non-ripening mutant tomatoes. Phytochemistry 1983;22:1137–9.CrossRefGoogle Scholar
Walter, J H, Collins, J E, Leonard, J V. Recommendations for the management of galactosaemia: UK Galactosaemia Steering Group. Arch Dis Child 1999;80:93–6.CrossRefGoogle ScholarPubMed
Gross, K C, Acosta, P B. Fruits and vegetables are a source of galactose: implications in planning the diets of patients with galactosemia. J Inherit Metab Dis 1991;14:253–8.CrossRefGoogle Scholar
Gitzelmann, R, Auricchio, S. The handling of soya alpha-galactosides by a normal and a galactosemic child. Pediatrics 1965;36:231–5.Google Scholar
Gitzelmann, R. Formation of galactose-1-phosphate from uridine diphosphate galactose in erythrocytes from patients and galactosemics. Pediatr Res 1969;3:279–86.CrossRefGoogle Scholar
Gitzelmann, R, Hansen, R G. Galactose biogenesis and disposal in galactosemics. Biochim Biophys Acta 1974;372:374–8.CrossRefGoogle Scholar
Berry, G T, Nissim, I, Lin, Z. Endogenous synthesis of galactose in normal man and patients with hereditary galactosaemia. Lancet 1995;346:1073–4.CrossRefGoogle ScholarPubMed
Berry, G T, Palmieri, M J, Gross, K C. The effects of dietary fruits and vegetables on urinary galactitol excretion in galactose-1-phosphate uridyltransferase deficiency. J Inherit Metab Dis 1993;16:91–100.CrossRefGoogle Scholar
Bower, B D, Smallpiece, V. Lactose-free diet in galactosemia. Lancet 1955;ii:873.CrossRefGoogle Scholar
Segal, S, Cuatrecasas, P. The oxidation of 14C galactose by patients with congenital galactosemia: evidence for a direct oxidative pathway. Am J Med 1968;44:340–7.CrossRefGoogle Scholar
Waisbren, S E, Norman, R T, Schnell, R R. Speech and language deficits in early treated children with galactosemia. J Pediatr 1983;102:75–7.CrossRefGoogle ScholarPubMed
Haberland, C, Perou, M, Brunngraber, E G. The neuropathology of galactosemia: a histopathological and biochemical study. J Neuropathol Exp Neurol 1971;30:431–47.CrossRefGoogle ScholarPubMed
Crome, L. A case of galactosemia with the pathological and neuropathological findings. Arch Dis Child 1962;37:415–21.CrossRefGoogle ScholarPubMed
Jan, J E, Wilson, R A. Unusual late neurological sequelae in galactosemia. Dev Med Child Neurol 1973;15:72–4.CrossRefGoogle Scholar
Lo, W, Packman, S, Nash, S. Curious neurologic sequelae in galactosemia. Pediatrics 1984;73:309–12.Google ScholarPubMed
Kaufman, F R, Donnell, G N, Roe, T F. Gonadal function in patients with galactosaemia. J Inherited Metab Dis 1986;9:140–6.CrossRefGoogle ScholarPubMed
Robinson, A C R, Dockeray, C J, Cullen, M J. Hypergonadotrophic hypogonadism in classical galactosemia: evidence for defective oogenesis. Br J Obstet Gynaecol 1984;91:199–200.CrossRefGoogle ScholarPubMed
Tedesco, T A, Morrow, G, Mellman, W J. Normal pregnancy and childbirth in a galactosemic woman. J Pediatr 1972;81:1159–61.CrossRefGoogle Scholar
Fraser, I S, Shearman, R P, Wilcken, B. Failure to identify heterozygotes for galactosaemia in women with premature ovarian failure. Lancet 1987;ii:566.CrossRefGoogle Scholar
Kaufman, F R, Loro, M L, Azen, C. Effect of hypogonadism and deficient calcium intake on bone density in patients with galactosemia. J Pediatr 1993;123:365–70.CrossRefGoogle Scholar
Renner, C, Razeghi, S, Uberall, M A. Hormone replacement therapy in galactosaemic twins with ovarian failure and severe osteoporosis. J Inherit Metab Dis 1999;22:194–5.CrossRefGoogle ScholarPubMed
Chacko, C M, McCrone, L, Nadler, H L. A study of galactokinase and glucose-4-epimerase from normal and galactosemic skin fibroblasts. Biochim Biophys Acta 1972;284:552–5.CrossRefGoogle ScholarPubMed
Dahlqvist, A, Gamstorp, I, Madsen, H. A patient with hereditary galactokinase deficiency. Acta Pediatr Scand 1970;59:669–75.CrossRefGoogle ScholarPubMed
Gitzelmann, R, Haigis, E. Appearance of active UPD-galactose-4-epimerase in cells cultured from epimerase-deficient persons. J Inherit Metab Dis 1978;i:41.CrossRefGoogle Scholar
Ravich, W J, Bayless, T M, Thomas, M. Fructose: incomplete intestinal absorption in humans. Gastroenterology 1983;84:26–9.Google ScholarPubMed
Steinmann B. Personal communication.
Kneepkens, C M F, Vonk, R J, Fernandes, J. Incomplete intestinal absorption of fructose. Arch Dis Child 1984;59:735–8.CrossRefGoogle ScholarPubMed
Khachadurian, A K. Nonalimentary fructosuria. Pediatrics 1963;32:455–7.Google ScholarPubMed
Taunton, O D, Greene, H L, Stifel, F B. Fructose-1,6-diphosphatase deficiency, hypoglycemia, and response to folate therapy in a mother and her daughter. Biochem Med 1978;19:260–76.CrossRefGoogle Scholar
Sigrist-Nelson, K, Hopfer, U. A distinct D-fructose transport system in isolated brush border membrane. Biochim Biophys Acta 1974;367:247–54.CrossRefGoogle ScholarPubMed
Thorens, B. Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes. Am J Physiol 1996;270:G541–53.Google ScholarPubMed
Tsutsumi, K, Tsunehiro, M, Hidaka, S. Rat aldolase isozyme gene: cloning and characterization of cDNA for aldolase B messenger RNA. J Biol Chem 1983;258:6537–42.Google Scholar
Besmond, C, Dreyfus, J-C, Gregori, C. Nucleotide sequence of a cDNA clone for human aldolase B. Biochem Biophys Res Commun 1983;117:601–9.CrossRefGoogle ScholarPubMed
Rottmann, W H, Tolan, D R, Penhoet, E E. Complete amino acid sequence for human aldolase B derived from cDNA and genomic clones. Proc Natl Acad Sci U S A 1984;81:2738–42.CrossRefGoogle ScholarPubMed
Lench, N J, Telford, E A, Andersen, S E. An EST and STS-based YAC contig map of human chromosome 9q22.3. Genomics 1996;38:199–205.CrossRefGoogle ScholarPubMed
Chambers, R A, Pratt, R T C. Idiosyncrasy to fructose. Lancet 1956;ii:340.CrossRefGoogle Scholar
Froesch, V E R, Prader, A, Labhart, A. Die hereditare Fructoseintoleranz, eine bisher nicht bekannte kongenitale Stoffwechselstorung. Schweiz Med Wochenschr 1957;87:1168–71.Google Scholar
Hers, H G, Joassin, G. Anomaly of hepatic adolase in intolerance to fructose. Enzymol Biol Clin 1961;1:4–14.CrossRefGoogle Scholar
Penhoet, E E, Kochman, M, Rutter, W J. Isolation of fructose diphosphate aldolases A, B and C. Biochemistry 1969;8:4391–5.CrossRefGoogle ScholarPubMed
Mukai, T, Yatsuki, H, Arai, Y. Human aldolase B gene: characterization of the genomic aldolase B gene and analysis of sequences required for multiple polyadenylations. J Biochem 1987;102:1043–51.CrossRefGoogle ScholarPubMed
Tolan, D R, Penhoet, E E. Characterization of the human aldolase B gene. Mol Biol Med 1986;3:245–64.Google ScholarPubMed
Cross, N C P, Tolan, D R, Cox, T M. Catalytic deficiency of human aldolase B in hereditary fructose intolerance caused by a common missense mutation. Cell 1988;53:881–5.CrossRefGoogle ScholarPubMed
Cross, N C P, Franchis, R D, Sebastio, G. Molecular analysis of aldolase B genes in hereditary fructose intolerance. Lancet 1990;335:306–9.CrossRefGoogle ScholarPubMed
Ali, M, Rellos, P, Cox, T M. Hereditary fructose intolerance. J Med Genet 1998;35:353–65.CrossRefGoogle ScholarPubMed
Tolan, D R, Brooks, C C. Molecular analysis of common aldolase B alleles for hereditary fructose intolerance in North Americans. Biochem Med Metabol Biol 1992;48:19–25.CrossRefGoogle ScholarPubMed
Lau, J, Tolan, D R. Screening for hereditary fructose intolerance mutations by reverse dot-blot. Mol Cell Probes 1999;13:35–40.CrossRefGoogle ScholarPubMed
Steinmann, B, Gitzelmann, R. The diagnosis of hereditary fructose intolerance. Helv Paediatr Acta 1981;36:297–316.Google Scholar
Baerlocher, K, Gitzelmann, R, Steinmann, B. Hereditary fructose intolerance in early childhood: a major diagnostic challenge. Survey of 20 symptomatic cases. Helv Paediatr Acta 1978;33:465–87.Google Scholar
Odievre, M, Gentil, C, Gautier, M. Hereditary fructose intolerance in childhood. Am J Dis Child 1978;132:605–8.CrossRefGoogle ScholarPubMed
Bell, L, Sherwood, W G. Current practices and improved recommendations for treating hereditary fructose intolerance. J Am Diet Assoc 1987;87:721–30.Google ScholarPubMed
Baker, L, Winegrad, A I. Fasting hypoglycaemia and metabolic acidosis associated with deficiency of hepatic fructose-1,6-diphosphatase activity. Lancet 1970;ii:13–16.CrossRefGoogle Scholar
Levin, B, Snodgrass, GJAI, Oberholzer, V G. Fructosaemia. Observations on seven cases. Am J Med 1968;45:826–38.CrossRefGoogle ScholarPubMed
Cornblath, M, Rosenthal, I M, Reisner, S H. Hereditary fructose intolerance. N Engl J Med 1963;269:1271–8.CrossRefGoogle ScholarPubMed
Froesch, E R, Wolf, H P, Baitsch, H. Hereditary fructose intolerance: an inborn defect of hepatic fructose-1-phosphate splitting aldolase. Am J Med 1963;34:151–67.CrossRefGoogle ScholarPubMed
Perheentupa, J, Raivio, K O, Nikkila, E A. Hereditary fructose intolerance. Acta Med Scand 1972;542 Suppl:65–75.Google Scholar
Fox, I H, Kelley, W N. Studies on the mechanism of fructose-induced hyperuricemia in man. Metabolism 1972;21:713–21.CrossRefGoogle ScholarPubMed
Narins, R G, Weisberg, J S, Myers, A R. Effects of carbohydrates on uric acid metabolism. Metabolism 1974;23:455–65.CrossRefGoogle ScholarPubMed
Heuckenkamp, P-U, Zollner, N. Fructose-induced hyperuricaemia. Lancet 1971;ii:808–9.CrossRefGoogle Scholar
Sahebjami, H, Scalettar, R. Effects of fructose infusion on lactate and uric acid metabolism. Lancet 1971;i:366–9.CrossRefGoogle Scholar
Berghe, G, BronfmanM, Vanneste R, et al M, Vanneste R, et al. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose: a kinetic study of liver adenylate deaminase. Biochem J 1977;162:601–9.CrossRefGoogle ScholarPubMed
Bode, J C, Zelder, O, Rumpelt, H J. Depletion of liver adenosine phosphate and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat. Eur J Clin Invest 1973;3:436–41.CrossRefGoogle ScholarPubMed
Maenpaa, P H, Raivio, K O, Kekomaki, M P. Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis. Science 1968;161:1253–4.CrossRefGoogle ScholarPubMed
Oberhaensli, R D, Rajagopalan, B, Taylor, D J. Study of hereditary fructose intolerance by use of 31P magnetic resonance spectroscopy. Lancet 1987;ii:931–7.CrossRefGoogle Scholar
Morris, R C. Fructose induced disruption of renal acidification in patients with hereditary fructose intolerance. J Clin Invest 1965;44:1076–7.Google Scholar
Morris, R C. Evidence for an acidification defect of the proximal renal tubule in experimental and clinical renal disease. J Clin Invest 1966;45:1048–52.Google Scholar
Swales, J D, Smith, A D M. Adult fructose intolerance. Q J Med 1966;35:455–73.Google Scholar
Black, J A, Simpson, K. Fructose intolerance. Br Med J 1967;4:138–41.CrossRefGoogle Scholar
Burton, B K, Chacko, C M, Nadler, H L. Aldolase in cultivated human fibroblasts. Proc Soc Exp Biol Med 1974;146:605–7.CrossRefGoogle ScholarPubMed
Izzo, P, Costanzo, P, Lupo, A. A new human species of aldolase A mRNA from fibroblasts. Eur J Biochem 1987;164:9–13.CrossRefGoogle ScholarPubMed
Gliksman, R, Ghosh, N R, Cox, R P. Comparison of aldolase Iisozymes in placenta, HeLa cells, and human fibroblast cultures. Enzyme 1977;22:416–19.CrossRefGoogle ScholarPubMed
Shin, Y S, Rimbock, H, Endres, W. Fructose-1-phosphate aldolase activity in human fetal and adult tissues as well as leukocytes and cultured fibroblasts in hereditary fructose intolerance. J Inherit Metab Dis 1982;5 Suppl:45.CrossRefGoogle Scholar
Anderson, T A. Recent trends in carbohydrate consumption. Annu Rev Nutr 1982;2:113–32.CrossRefGoogle ScholarPubMed
Yudkin, J. Sugar and health. Lancet 1987;i:918.Google Scholar
Gitzelmann R, Steinmann B, Van den Berghe G. Disorders of fructose metabolism. In: Stanbury, J B, Wyngaarden, J B, Fredrickson, D S. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989:399–424.Google Scholar
Mock, D M, Perman, J A, Thaler, M M. Chronic fructose intoxication after infancy in children with hereditary fructose intolerance: a cause of growth retardation. N Engl J Med 1983;309:764–70.CrossRefGoogle ScholarPubMed
Shallenberger RS. Occurrence of various sugars in foods. In: Sipple, H L, McNutt, K W. Sugars in nutrition. New York: Academic Press, 1974:67–80.Google Scholar
Hardinge, M G, Swarner, J B, Crooks, H. Carbohydrates in foods. J Am Diet Assoc 1965;46:197–204.Google ScholarPubMed
Somogyi, J C, Trautner, K. Der Glukose-, Fructose- und Saccharosegehalt verschiedener Gemusearten. Schweiz Med Wochenschr 1974;104:177–82.Google Scholar
Wyke, R J, Rajkovic, I A, Eddleston, A L. Defective opsonization and complement deficiency in serum from patients with fulminant hepatic failure. Gut 1980;21:643–9.CrossRefGoogle Scholar
Brauman, J, Kentos, P, Frisque, P. Intolerance hereditaire au fructose chez une femme de 83 ans. Acta Clin Belg 1971;26:65–77.CrossRefGoogle Scholar
Gitzelmann, R, Steinmann, B, Muller-Wiefel, D E. Infusionslosungen. Dtsch Med Wochenschr 1983;108:1656.Google Scholar
Nordlie, R C. Fine tuning of blood glucose concentrations. Trends Biochem Sci 1985;10:70–5.CrossRefGoogle Scholar
Arion, W J, Lange, A J, Walls, H E. Evidence for the participation of independent translocation for phosphate and glucose-6-phosphate in the microsomal glucose-6-phosphatase system: interactions of the system with orthophosphate, inorganic pyrophosphate, and carbonyl phosphate. J Biol Chem 1980;255:10396–406.Google Scholar
Burchell, A. Molecular pathology of glucose-6-phosphatase. FASEB J 1990;4:2978–88.CrossRefGoogle ScholarPubMed
Schulze, H U, Nolte, B, Kannler, R. Evidence for changes in the conformational status of rat liver microsomal glucose-6-phosphate: phosphohydrolase during detergent-dependent membrane modification. Effect of p-mercuribenzoate and organomercurial agarose gel on glucose-6-phosphatase of native and detergent-modified microsomes. J Biol Chem 1986;261:16571–8.Google ScholarPubMed
Hers, H G. The control of glycogen metabolism in the liver. Ann Rev Biochem 1976;45:167–89.CrossRefGoogle ScholarPubMed
Gierke, E. Hepato-nephromegalia glykogenica (Glykogenspeicherkrankheit der Leber und Nieren). Beitr Pathol Anat 1929;82:497–513.Google Scholar
Cori, G T, Cori, C F. Glucose-6-phosphatase of the liver in glycogen storage disease. J Biol Chem 1952;199:661–7.Google ScholarPubMed
Cori, G T. Glycogen structure and enzyme deficiencies in glycogen storage disease. Harvey Lect 1953;48:145–71.Google Scholar
Burchell, A, Jung, R T, Lang, C C. Diagnosis of type Ia and Ic glycogen storage diseases in adults. Lancet 1987;i:1059–62.CrossRefGoogle Scholar
Waddell, I D, Lindsay, J D, Burchell, A. The identification of T2: the phosphate/pyrophosphate transport protein of the hepatic microsomal glucose-6-phosphatase system. FEBS Lett 1988;229:179–82.CrossRefGoogle ScholarPubMed
Burchell, A, Waddell, I D, Stewart, L. Perinatal diagnosis of Type Ic glycogen storage disease. J Inherit Metab Dis 1989;12:315–17.CrossRefGoogle Scholar
Nordlie, R C, Sukalski, K, Munoz, J M. Type Ic, a novel glycogenosis. J Biol Chem 1983;258:9139–744.Google ScholarPubMed
Waddell, I D, Burchell, A. The microsomal glucose-6-phosphatase enzyme of pancreatic islets. Biochem J 1988;255:471–6.CrossRefGoogle ScholarPubMed
Veiga-da-Cunha, M, Gerin, I, Chen, Y T. The putative glucose 6-phosphate translocase gene is mutated in essentially all cases of glycogen storage disease type I non-a. Eur J Hum Genet 1999;7:717–23.CrossRefGoogle ScholarPubMed
Brody, L C, Abel, K J, Castilla, L H. Construction of a transcription map surrounding the BRCA1 locus of human chromosome 17. Genomics 1995;25:238–47.CrossRefGoogle ScholarPubMed
Lei, K J, Shelly, L L, Pan, C J. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 1993;262:580–3.CrossRefGoogle ScholarPubMed
Lei, K J, Pan, C J, Shelly, L L. Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Clin Invest 1994;93:1994–9.CrossRefGoogle ScholarPubMed
Pan, C F, Lei, K J, Annabi, B. Transmembrane topology of glucose-6-phosphatase. J Biol Chem 1998;273:6144–8.CrossRefGoogle ScholarPubMed
Stroppiano, M, Regis, S, DiRocco, M. Mutations in the glucose-6-phosphatase gene of 53 Italian patients with glycogen storage disease type Ia. J Inherit Metab Dis 1999;22:43–9.CrossRefGoogle ScholarPubMed
Hiraiwa, H, Pan, C J, Lin, B. Inactivation of the glucose 6-phosphate transporter causes glycogen storage disease type 1b. J Biol Chem 1999;274:5532–6.CrossRefGoogle ScholarPubMed
Hershkovitz, E, Mandel, H, Fryman, M. The gene for glycogen-storage disease type 1b maps to chromosome 11q23. Am J Hum Genet 1998;62:400–5.Google Scholar
Gerin, I, Veiga-de-Cunha, M, Achouri, Y. Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type 1b. FEBS Lett 1997;419:235–8.CrossRefGoogle Scholar
Hers H, Van Hoof F, de Barsy T. glycogen storage disease. In: Stanbury, J B, Wyngaarden, J B, Frederickson, D S. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989:425–52.Google Scholar
Ghishan FK, Greene HL. Inborn errors of metabolism that cause permanent injury to the liver. In: Zakim, D, Boyer, T. Hepatology: a textbook of liver disease. 2nd ed. Philadelphia: WB Saunders, 1990:49:1300–48.Google Scholar
Fernandes, J, Berger, R, Smit, G P A. Lactate as a cerebral metabolic fuel for glucose-6-phosphatase deficient children. Pediatr Res 1984;18:335–9.CrossRefGoogle ScholarPubMed
Howell, R R, Stevenson, R E, Ben-Menachen, Y. Hepatic adenomata with type I glycogen storage disease. JAMA 1976;236:1481–4.CrossRefGoogle Scholar
Coire, C I, Qizilbash, A H, Castelli, M F. Hepatic adenomata in type Ia glycogen storage disease. Arch Pathol Lab Med 1987;111:166–9.Google ScholarPubMed
Levine, G, Mierau, G, Favara, B E. Hepatic glycogenosis, renal glomerular cysts and hepatocarcinoma. Am J Pathol 1976;82:PPC-37.Google Scholar
Chen, Y-T, Coleman, R A, Sheinman, J I. Renal disease in type I glycogen storage disease. N Engl J Med 1988;318:7–11.CrossRefGoogle ScholarPubMed
Slonim, A E, Lacy, W W, Terry, A B. Nocturnal intragastric therapy in type I glycogen storage disease: effect on hormonal and amino acid metabolism. Metabolism 1979;28:707–2.CrossRefGoogle ScholarPubMed
Sadeghi-Nejad, A, Presente, E, Binkiewicz, A. Studies in Type I glycogenosis of the liver: the genesis and deposition of lactate. J Pediatr 1974;85:49–55.CrossRefGoogle Scholar
Fine, R N, Strauss, J, Connel, G N. Hyperuricemia in glycogen storage disease, type I. Am J Dis Child 1966;1125:572–5.Google Scholar
Howell, R R. The interrelationship of glycogen storage disease and gout. Arthritis Rheum 1965;8:780–4.CrossRefGoogle ScholarPubMed
Howell, R R, Ashton, D M, Wyngaarden, J B. Glucose-6-phos-phatase deficiency glycogen storage disease: studies on the interrelationships of carbohydrates, lipid and purine abnormalities. Pediatrics 1962;29:553–9.Google ScholarPubMed
Howell, R R. Hyperuricemia in childhood. Fed Proc 1968;27:1078–84.Google ScholarPubMed
Greene, H L, Wilson, F A, Hefferan, S. ATP depletion, a possible role in the pathogenesis of hyperuricemia in glycogen storage disease, type I. J Clin Invest 1978;62:321–8.CrossRefGoogle Scholar
Corby, D G, Putnam, C W, Greene, H L. Impaired platelet function in glucose-6-phosphate deficiency. J Pediatr 1974;85:71–6.CrossRefGoogle Scholar
Hutton, R A, Macnab, A J, Rivers, P A. Defects of platelet function associated with chronic hypoglycemia. Arch Dis Child 1976;51:49–55.CrossRefGoogle Scholar
Bashan, N, Hagai, R, Potashnik, R. Impaired carbohydrate metabolism of polymorphonuclear leukocytes in glycogen storage disease, Ib. J Clin Invest 1988;81:1317–22.CrossRefGoogle ScholarPubMed
McCawley, L J, Korchak, H M, Douglas, S D. In vitro and in vivo effects of granulocyte colony-stimulating factor on neutrophils in glycogen storage disease type 1B: granulocyte colony-stimulating factor therapy corrects the neutropenia and the defects in respiratory burst activity and Ca2+ mobilization. Pediatr Res 1994;35:84–90.CrossRefGoogle ScholarPubMed
Parker, P H, Burr, I, Slonim, A E. Regression of hepatic adenomas in type Ia glycogen storage disease with dietary therapy. Gastroenterology 1987;81:534–6.Google Scholar
Limmer, J, Feig, W E, Leupold, D. Hepatocellular carcinoma in type I glycogen storage disease. Hepatology 1988;8:531–7.CrossRefGoogle ScholarPubMed
Edelstein, G, Hirschman, C A. Hyperthermia and ketoacidosis during anesthesia in a child with glycogen storage disease. Anesthesiology 1980;52:90–2.CrossRefGoogle Scholar
Schwartz, R, Ashmore, J, Renold, A E. Galactose tolerance in glycogen storage disease. Pediatrics 1957;19:585–94.Google ScholarPubMed
Fernandes, J, Huijing, F, Kamer, J H. A screening method for liver glycogen diseases. Arch Dis Child 1969;44:311–17.CrossRefGoogle ScholarPubMed
Folkman, J, Philippart, A, Tze, W J. Portacaval shunt for glycogen storage disease: value of prolonged intravenous hyperalimentation before surgery. Surgery 1972;72:306–14.Google ScholarPubMed
Boley, S J, Cohen, M I, Gliedman, M L. Surgical therapy of glycogen storage disease. Pediatrics 1970;46:929–32.Google ScholarPubMed
Starzl, T E, Putnam, C W, Porter, K A. Portal diversion for the treatment of glycogen storage disease in humans. Ann Surg 1973;178:525–39.CrossRefGoogle ScholarPubMed
Borowitz, S M, Greene, H L, Gay, J C. Case report: Comparison of dietary therapy and portacaval shunt in the management of a patient with type Ib glycogen storage disease. J Pediatr Gastroenterol Nutr 1987;6:635–9.CrossRefGoogle ScholarPubMed
Greene, H L, Slonim, A E, O'Neil, Jr JA. Continuous nocturnal intragastric feeding for management of type I glycogen-storage disease. N Engl J Med 1976;294:423–5.CrossRefGoogle Scholar
Schwenk, W F, Haymond, M W. Optimal rate of enteral glucose administration in children with glycogen storage disease type I. N Engl J Med 1986;314:682–5.CrossRefGoogle ScholarPubMed
Chen, Y-T, Cornblath, M, Sidbury, J B. Cornstarch therapy in type I glycogen storage disease. N Engl J Med 1984;310:171–5.CrossRefGoogle ScholarPubMed
Moses, S W. Pathophysiology and dietary treatment of the glycogen storage diseases. J Pediatr Gastroenterol Nutr 1990;11:155–74.CrossRefGoogle ScholarPubMed
Folk, C C, Greene, H L. Dietary management of type Ia glycogen storage disease. J Am Diet Assoc 1984;84:293–301.Google Scholar
Fernandes, J, Leonard, J V, Moses, S W. glycogen storage disease: recommendations for treatment. Eur J Pediatr 1988;147:226–8.CrossRefGoogle Scholar
Emmett, M, Narins, R G. Renal transplantation in type I glycogenosis: failure to improve glucose metabolism. JAMA 1978;239:1642–6.CrossRefGoogle ScholarPubMed
Matern, D, Seydewitz, H H, Bali, D. Glycogen storage disease type I: diagnosis and phenotype/genotype correlation. Eur J Pediatr 2002;161 Suppl 1:S10–19.CrossRefGoogle ScholarPubMed
Rake, J P, Visser, G, Labrune, P. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr 2002;161 Suppl 1:S20–34.CrossRefGoogle Scholar
Faivre, L, Houssin, D, Valayer, J. Long-term outcome of liver transplantation in patients with glycogen storage disease type Ia. J Inherit Metab Dis 1999;22:723–32.CrossRefGoogle ScholarPubMed
Matern, D, Starzl, T E, Arnaout, W. Liver transplantation for glycogen storage disease types I, III, and IV. Eur J Pediatr 1999;158 Suppl 2:S43–8.CrossRefGoogle Scholar
Panaro, F, Andorno, E, Basile, G. Simultaneous liver-kidney transplantation for glycogen storage disease type IA (von Gierke's disease). Transplant Proc 2004;36:1483–4.CrossRefGoogle Scholar
Malatack, J J, Finegold, D N, Iwatsuki, S. Liver transplantation in type I glycogen storage disease. Lancet 1983;i:1073–4.CrossRefGoogle Scholar
Anderson, D C, Mace, M L, Brinkley, B R. Recurrent infection in glycogenosis Type IB: abnormal neutrophil motility related to impaired redistribution of adhesion sites. J Infect Dis 1981;143:447–59.CrossRefGoogle ScholarPubMed
Beaudet, A L, Anderson, D C, Michels, V V. Neutropenia and impaired neutrophil migration in type IB glycogen storage disease. J Pediatr 1980;97:906–10.CrossRefGoogle ScholarPubMed
Seger, R, Steinmann, B, Tiefenauer, L. Glycogenosis Ib: neutrophil microbicidal defects due to impaired hexose monophosphate shunt. Pediatr Res 1984;18:297–9.CrossRefGoogle ScholarPubMed
Arion, W J, Wallin, B K, Lange, A J. On the involvement of a glucose-6-phosphate transport system in the function of microsomal glucose-6-phosphatase. Mol Cell Biochem 1975;6:75–83.CrossRefGoogle ScholarPubMed
Ambruso, D R, McCabe, E R B, Anderson, D. Infectious and bleeding complications in patients with glycogenosis Ib. Am J Dis Child 1985;139:691–7.Google ScholarPubMed
Greene, H L, Slonim, A E, Burr, I M. Type I glycogen storage disease: a metabolic basis for advances in treatment. Adv Pediatr 1979;26:63–92.Google ScholarPubMed
Kalhan, S C, Gilfillan, C, Tserng, K Y. Glucose production in type I glycogen storage disease. J Pediatr 1982;101:159–60.CrossRefGoogle ScholarPubMed
Sidbury, J B. The genetics of the glycogen storage diseases. Prog Med Genet 1965;4:32–58.Google ScholarPubMed
Farber, M, Knuppel, R A, Binkiewicz, A. Pregnancy and von Gierke's disease. Obstet Gynecol 1976;47:226–8.Google ScholarPubMed
Michels, V V, Beaudet, A L. Hemorrhagic pancreatitis in a patient with glycogen storage disease type I. Clin Genet 1980;17:220–2.CrossRefGoogle Scholar
Hug, G. Glycogen storage diseases. Birth Defects 1976;12:145–75.Google ScholarPubMed
Howell RR. The glycogen storage diseases. In: Stanbury, J B, Wyngaarden, J B, Fredrickson, D S. The metabolic basis of inherited disease. 4th ed. New York: McGraw-Hill, 1978:137–59.Google Scholar
Senior, B, Sadeghi-Nejad, A. The glycogenoses and other inherited disorders of carbohydrate metabolism. Clin Perinatol 1976;3:79–98.CrossRefGoogle ScholarPubMed
Coleman JE. Metabolic interrelationships between carbohydrates, lipids, and proteins. In: Bondy, P K, Rosenberg, L E. Diseases of metabolism. 7th ed. Philadelphia: WB Saunders, 1974:107–220.Google Scholar
Greene, H L, Slonim, A E, Burr, I M. Type I glycogen storage disease: five years of management with nocturnal intragastric feeding. J Pediatr 1980;96:590–5.CrossRefGoogle ScholarPubMed
Forbes, G B. Glycogen storage disease: report of a case with abnormal glycogen structure in liver and skeletal muscle. J Pediatr 1953;42:645–53.CrossRefGoogle ScholarPubMed
Illingworth, B, Cori, G T. Structure of glycogens and amylopectins: III. Normal and abnormal human glycogen. J Biol Chem 1952;199:653–60.Google ScholarPubMed
Illingworth, B, Cori, G T, Cori, C F. Amylo-1,6-glucosidase in muscle tissue in generalized glycogen storage disease. J Biol Chem 1956;218:123–9.Google ScholarPubMed
Bates, E J, Heaton, G M, Taylor, C. Debranching enzyme from rabbit skeletal muscle: evidence for the location of two active centres on a single polypeptide chain. FEBS Lett 1975;58:181–5.CrossRefGoogle ScholarPubMed
Gillard, B K, Nelson, T E. Amylo-1,6-glucosidase/4-β-glucano-transferase: use of reversible substrate model inhibitors to study the binding and active sites of rabbit muscle debranching enzyme. Biochemistry 1977;16:3978–87.CrossRefGoogle Scholar
Chen, Y-T, He, J-K, Ding, J-H. Glycogen debranching enzyme: purification, antibody characterization, and immunoblot analyses of type III glycogen storage disease. Am J Hum Genet 1987;41:1002–15.Google ScholarPubMed
Hoof, F, Hers, H G. The subgroups of type III glycogenosis. Eur J Biochem 1967;2:265–70.CrossRefGoogle Scholar
Ding, J-H, Barsy, T, Brown, B I. Immunoblot analyses of glycogen debranching enzyme in different subtypes of glycogen storage disease type III. J Pediatr 1990;116:95–100.CrossRefGoogle ScholarPubMed
Brown BI. Diagnosis of glycogen storage disease. In: Wanir, R A. Congenital metabolic diseases. Basel: Dekker, 1985:227–50.Google Scholar
Bao, Y, Dawson, T L, Chen, Y T. Human glycogen debranching enzyme gene (AGL): complete structural organization and characterization of the 5' flanking region. Genomics 1996;38:155–65.CrossRefGoogle ScholarPubMed
Yang-Feng, T L, Zheng, K, Yu, J. Assignment of the human glycogen debrancher gene to chromosome 1p21. Genomics 1992;13:931–4.CrossRefGoogle ScholarPubMed
Bao, Y, Yang, B Z, Dawson, T L. Isolation and nucleotide sequence of human liver glycogen debranching enzyme mRNA: identification of multiple tissue-specific isoforms. Gene 1997;197:389–98.CrossRefGoogle ScholarPubMed
Okubo, M, Kanda, F, Horinishi, A. Glycogen storage disease type IIIa: first report of a causative missense mutation (G1448R) of the glycogen debranching enzyme gene found in a homozygous patient. Hum Mutat 1999;14:542–3.3.0.CO;2-0>CrossRefGoogle Scholar
Shen, J, Bao, Y, Liu, H M. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J Clin Invest 1996;98:352–7.CrossRefGoogle Scholar
Levin, S, Moses, Sw, Chayoth, R. Glycogen storage disease in Israel: a clinical, biochemical and genetic study. Isr J Med Sci 1967;3:397–410.Google ScholarPubMed
Brandt, I K, DeLuca, V A. Type III glycogenosis: a family with an unusual tissue distribution of the enzyme lesion. Am J Med 1966;40:779–84.CrossRefGoogle Scholar
Brown B, Brown DH. The glycogen storage diseases: types I, III, IV, V, VII, and unclassified glycogenoses. In: Dickens, F, Randle, P J, Whelan, W J. Carbohydrate metabolism and its disorders. New York: Academic Press, 1968:123–50.Google Scholar
Murase, T, Ikeda, H, Muro, T. Myopathy associated with Type III glycogenosis. J Neurol Sci 1973;20:287–95.CrossRefGoogle Scholar
Creveld, S, Huijing, F. Glycogen storage disease: biochemical and clinical data in sixteen cases. Am J Med 1965;38:554–61.CrossRefGoogle Scholar
Ugawa, Y, Inoue, K, Takemura, T. Accumulation of glycogen in peripheral nerve axons in adult-onset type III glycogenosis. Ann Neurol 1986;19:294–7.CrossRefGoogle ScholarPubMed
Miller, C G, Alleyne, G A, Brooks, S E H. Case report: gross cardiac involvement in glycogen storage disease type III. Br Heart J 1972;34:862–4.CrossRefGoogle Scholar
Bost, M. La myocardiopathie de la glycogenose type III. Arch Fr Pediatr 1979;36:303–9.Google Scholar
Alagille D, Odievre M. Inborn errors of metabolism. In: Alagille, D, Odievre, M. Liver and biliary tract disease in children. New York: John Wiley, 1979:196–242.Google Scholar
Hug, G, Krill, C E, Perrin, E V. Cori's disease (amylo-1,6-glucosidase deficiency): report of a case in a Negro child. N Engl J Med 1963;268:113–20.CrossRefGoogle Scholar
Borowitz, S M, Greene, H L. Case report: cornstarch therapy in a patient with type III glycogen storage disease. J Pediatr Gastroenterol Nutr 1987;6:631–4.CrossRefGoogle Scholar
Slonim, A E, Terry, A B, Moran, R. Differing food consumption for nocturnal intragastric therapy in Types I and III glycogen storage disease. Pediatr Res 1978;12:512.CrossRefGoogle Scholar
Andersen, D H. Familial cirrhosis of the liver with storage of abnormal glycogen. Lab Invest 1956;5:11–20.Google ScholarPubMed
Brown, B I, Brown, D H. Lack of an α-1,4-glucan: α-1,4-glucan 6-glycosyl transferase in a case of type IV glycogenosis. Proc Natl Acad Sci U S A 1966;56:725–9.CrossRefGoogle Scholar
Fernandes, J, Huijing, F. Branching enzyme-deficiency glyco-genosis: studies in therapy. Arch Dis Child 1968;43:347–52.CrossRefGoogle ScholarPubMed
Thon, V J, Khalil, M, Cannon, J F. Isolation of human glycogen branching enzyme cDNAs by screening complementation in yeast. J Biol Chem 1993;268:7509–13.Google Scholar
Bao, Y, Kishnani, P, Wu, J-Y. Hepatic and neuromuscular forms of glycogen storage disease type IV caused by mutations in the same glycogen-branching enzyme gene. J Clin Invest 1996;97:941–8.CrossRefGoogle ScholarPubMed
Shen, J, Liu, H M, McConkie-Rosell, A. Prenatal diagnosis of glycogen storage disease type IV using PCR-based DNA mutation analysis. Prenat Diagn 1999;9:837–9.3.0.CO;2-G>CrossRefGoogle Scholar
Maruyama, K, Suzuki, T, Koizumi, T. Congenital form of glycogen storage disease type IV: a case report and a review of the literature. Pediatr Int 2004;46:474–7.CrossRefGoogle Scholar
Ishihara, T, Uchino, F, Adachi, H. Type IV glycogenosis: a study of two cases. Acta Pathol Jpn 1975;25:613–33.Google ScholarPubMed
McMaster, K R, Powers, J M, Hennigar, G R. Nervous system involvement in type IV glycogenosis. Arch Pathol Lab Med 1979;103:105–11.Google ScholarPubMed
Schochet, S S, McCormick, W F, Zellweger, H. Type IV glycogenosis (amylopectinosis): light and electron microscopic observations. Arch Pathol 1970;90:354–63.Google ScholarPubMed
Howell, R R, Kaback, M M, Brown, B I. Type IV glycogen storage disease: branching enzyme deficiency in skin fibroblasts and possible heterozygote detection. J Pediatr 1971;78:638–42.CrossRefGoogle ScholarPubMed
Ferguson, I T, Mahon, M, Cumming, W J K. An adult case of Andersen's disease: type IV glycogenosis. J Neurol Sci 1983;60:337–51.CrossRefGoogle ScholarPubMed
Holmes, J M, Houghton, C R, Woolf, A L. A myopathy presenting in adult life with features suggestive of glycogen storage disease. J Neurol Neurosurg Psychiatr 1960;23:302–11.CrossRefGoogle ScholarPubMed
Torvik, A, Dietrichson, P, Svaar, H. Myopathy with tremor and dementia: a metabolic disorder? Case report with post mortem study. J Neurol Sci 1974;21:181–90.CrossRefGoogle Scholar
Blanchardiere, A, Vayssier, C, Duboc, D. Severe cardiomyopathy revealing amylopectinosis. Two cases in adolescents from the same family. Presse Med 1994;23:1124–7.Google Scholar
Das, B B, Narkevicz, M R, Sokol, R J. Amylopectinosis disease isolated to the heart with normal glycogen branching enzyme activity and gene sequence. Pediatr Transplant 2005;9:261–5.CrossRefGoogle ScholarPubMed
Lossos, A, Barash, V, SofferZ, et al Z, et al. Hereditary branching enzyme dysfunction in adult polyglucosan body disease: a possible metabolic cause in two patients. Ann Neurol 1991;30:655–62.CrossRefGoogle ScholarPubMed
Bruno, C, Servidei, S, Shanske, G. Glycogen branching enzyme deficiency in adult polyglucosan body disease. Ann Neurol 1993;33:88–93.CrossRefGoogle ScholarPubMed
Greene, H L, Ghishan, F K, Brown, B. Hypoglycemia in type IV glycogenosis: hepatic improvement in two patients with nutritional management. J Pediatr 1988;112:55–8.CrossRefGoogle ScholarPubMed
Reed, G B, Dixon, J F P, Neustein, H B. Type IV glycogenosis: patient with absence of a branching enzyme α-1,4-glucan: α-1,4-glucan 6-glycosyl transferase. Lab Invest 1968;19:546–57.Google ScholarPubMed
Levin, B, Burgess, E A, Mortimer, P E. Glycogen storage disease type IV, amylopectinosis. Arch Dis Child 1968;43:548–55.CrossRefGoogle ScholarPubMed
Holleman, L W J, Haar, J A, Vann, G A M. Type IV glycogenosis. Lab Invest 1966;15:357–67.Google ScholarPubMed
Motoi, M, Sonobe, H, Ogawa, K. Two autopsy cases of glycogen storage disease: cirrhotic type. Acta Pathol Jpn 1973;23:211–23.Google ScholarPubMed
Brass, K. Zur histologischen Diagnose der glykogenose Type IV (Amylopektinose). Z Kinderheilkd 1974;117:187–203.CrossRefGoogle Scholar
Servidei, S, Riepe, R E, Langston, C. Severe cardiopathy in branching enzyme deficiency. J Pediatr 1987;111:51–6.CrossRefGoogle ScholarPubMed
Greene, H L, Brown, B I, McClenathan, D T. A new variant of type IV glycogenosis: deficiency of branching enzyme activity without apparent progressive liver disease. Hepatology 1988;8:302–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×