Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-02T21:21:38.551Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  09 September 2022

Jeffrey Shallit
Affiliation:
University of Waterloo, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Logical Approach to Automatic Sequences
Exploring Combinatorics on Words with Walnut
, pp. 330 - 349
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M. H. and Linton, S.. A practical algorithm for reducing non-deterministic finite state automata. Technical Report OUCS-2004-11, University of Otago, 2004.Google Scholar
Allouche, G., Allouche, J.-P., and Shallit, J.. Kolams indiens, dessins sur le sable aux iles Vanuatu, courbe de Sierpinski, et morphismes de mono'ide. Ann. Inst. Fourier (Grenoble) 56 (2006), 2115–2130.Google Scholar
Allouche, J.-P.. Automates finis en theorie des nombres. Exposition. Math. 5 (1987), 239–266.Google Scholar
Allouche, J.-P.. The number of factors in a paperfolding sequence. Bull. Austral. Math. Soc. 46 (1992), 23–32.Google Scholar
Allouche, J.-P., Astoorian, D., Randall, J., and Shallit, J.. Morphisms, squarefree strings, and the Tower of Hanoi puzzle. Amer. Math. Monthly 101 (1994), 651658.Google Scholar
Allouche, J.-P., Baake, M., Cassaigne, J., and Damanik, D.. Palindrome complexity. Theoret. Comput. Sci. 292 (2003), 9–31.Google Scholar
Allouche, J.-P., Betrema, J., and Shallit, J.. Sur des points fixes de morphismes du mono'ide libre. RAIRO Inform. Theor. App. 23 (1989), 235–249.Google Scholar
Allouche, J.-P. and Bousquet-Melou, M.. Canonical positions for the factors in the paperfolding sequences. Theoret. Comput. Sci. 129 (1994), 263–278.Google Scholar
Allouche, J.-P. and Bousquet-Melou, M.. Facteurs des suites de Rudin-Shapiro generalisees. Bull. Belgian Math. Soc. 1 (1994), 145–164.Google Scholar
Allouche, J.-P., Currie, J., and Shallit, J.. Extremal infinite overlap-free binary words. Electron. J. Combin. 5 (1998), R27.CrossRefGoogle Scholar
Allouche, J.-P., Rampersad, N., and Shallit, J.. On integer sequences whose first iterates are linear. Aequationes Math. 69 (2005), 114–127.Google Scholar
Allouche, J.-P., Rampersad, N., and Shallit, J.. Periodicity, repetitions, and orbits of an automatic sequence. Theoret. Comput. Sci. 410 (2009), 2795–2803.CrossRefGoogle Scholar
Allouche, J.-P. and Sapir, A.. Restricted Towers of Hanoi and morphisms. In De Felice, C. and Restivo, A., editors, DLT 2005, Vol. 3572 of Lecture Notes in Computer Science, pp. 1–10. Springer-Verlag, 2005.Google Scholar
Allouche, J.-P. and Shallit, J. O.. The ring of fc-regular sequences. Theoret. Comput. Sci. 98 (1992), 163–197.Google Scholar
Allouche, J.-P. and Shallit, J.. The ubiquitous Prouhet-Thue-Morse sequence. In Ding, C., Helleseth, T., and Niederreiter, H., editors, Sequences and Their Applications, Proceedings of SETA '98, pp. 1–16. Springer-Verlag, 1999.Google Scholar
Allouche, J.-P. and Shallit, J.. Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, 2003.Google Scholar
Allouche, J.-P. and Shallit, J. O.. The ring of k-regular sequences, II. Theoret. Comput. Sci. 307 (2003), 3–29.Google Scholar
Allouche, J.-P., Shallit, J., and Yassawi, R.. How to prove that a sequence is not automatic. Arxiv preprint arXiv:2104.13072 [math.NT], available at arxiv.org/abs/2104.13072, 2021.Google Scholar
Apostolico, A. and Brimkov, V. E.. Fibonacci arrays and their two-dimensional repetitions. Theoret. Comput. Sci. 237 (2000), 263–273.Google Scholar
Ardila, F.. The coefficients of a Fibonacci power series. Fibonacci Quart. 42 (2004), 202–204.Google Scholar
Arnoux, P. and Rauzy, G.. Representation geometrique de suites de complexite 2n + 1. Bull. Soc. Math. France 119 (1991), 199–215.Google Scholar
Au, Y. H., Drexler-Lemire, C., and Shallit, J.. Notes and note pairs in N0rgard's infinity series. J. Math. Music 11 (2017), 1–19.Google Scholar
Avgustinovich, S., Karhumaki, J., and Puzynina, S.. On abelian versions of critical factorization theorem. RAIRO Inform. Theor. App. 46 (2012), 3–15.Google Scholar
Badkobeh, G., Fici, G., and Liptak, Z.. On the number of closed factors in a word. In Dediu, A.-H., Formenti, E., Martin-Vide, C., and Truthe, B., editors, Language and Automata Theory and Applications, LATA 2015, Vol. 8977 of Lecture Notes in Computer Science, pp. 381–390. Springer-Verlag, 2015.Google Scholar
Badkobeh, G. and Ochem, P.. Avoiding conjugacy classes on the 5-letter alphabet. RAIRO Inform. Theor. App. 54 (2020), Paper 2.Google Scholar
Balister, P. and Gerke, S.. The asymptotic number of prefix normal words. Theoret. Comput. Sci. 784 (2019), 75–80.Google Scholar
Baranwal, A. R.. Decision algorithms for Ostrowski-automatic sequences. Master's thesis, University of Waterloo, School of Computer Science, 2020.Google Scholar
Baranwal, A. R., Schaeffer, L., and Shallit, J.. Ostrowski-automatic sequences: theory and applications. Theoret. Comput. Sci. 858 (2021), 122–142.Google Scholar
Baranwal, A. R. and Shallit, J.. Critical exponent of infinite balanced words via the Pell number system. In Merca§, R. and Reidenbach, D., editors, WORDS 2019, Vol. 11682 of Lecture Notes in Computer Science, pp. 80–92. Springer-Verlag, 2019.Google Scholar
Bateman, P. T., Jockusch, C. G., and Woods, A. R.. Decidability and undecidability of theories with a predicate for the primes. J. Symbolic Logic 58 (1993), 672687.CrossRefGoogle Scholar
Baum, L. E. and Sweet, M. M.. Continued fractions of algebraic power series in characteristic 2. Ann. Math. 103 (1976), 593–610.Google Scholar
Beatty, S.. Problem 3173. Amer. Math. Monthly 33 (1926), 159. Solution, 34 (1927), 159–160.Google Scholar
Bell, J., Charlier, E., Fraenkel, A., and Rigo, M.. A decision problem for ultimately periodic sets in non-standard numeration systems. Internat. J. Algebra Comput. 19 (2009), 809–839.Google Scholar
Bell, J. P., Coons, M., and Hare, K. G.. The minimal growth of a fc-regular sequence. Bull. Austral. Math. Soc. 90 (2014), 195–203.Google Scholar
Bell, J., Hare, K., and Shallit, J.. When is an automatic set an additive basis? Proc. Amer. Math. Soc. Ser. B 5 (2018), 50–63.Google Scholar
Bell, J., Lidbetter, T. F., and Shallit, J.. Additive number theory via approximation by regular languages. In Hoshi, M. and Seki, S., editors, DLT2018, Vol. 11088 of Lecture Notes in Computer Science, pp. 121–132. Springer-Verlag, 2018.Google Scholar
Bell, J., Lidbetter, T. F., and Shallit, J.. Additive number theory via approximation by regular languages. Internat. J. Found. Comp. Sci. 31 (2020), 667–687.Google Scholar
Bell, J. P. and Madill, B. W.. Iterative algebras. Algebr. Represent. Theory 18 (2015), 1533–1546.Google Scholar
Bell, J. P. and Shallit, J.. Lie complexity of words. Arxiv preprint arXiv:2102.03821 [cs.FL], available at arxiv.org/abs/2102.0 3821, 2021.Google Scholar
Bellissard, J., Bovier, A., and Ghez, J.-M.. Spectral properties of a tight binding Hamiltonian with period doubling potential. Commun. Math. Phys. 135 (1991), 379–399.Google Scholar
Berlekamp, E. R., Conway, J. H., and Guy, R. K.. Winning Ways for Your Mathematical Plays, Vol. 1. Academic Press, 1982.Google Scholar
Berstel, J.. Sur les mots sans carre definis par un morphisme. In Maurer, H. A., editor, Proc. 6th Int'l Conf. on Automata, Languages, and Programming (ICALP), Vol. 71 of Lecture Notes in Computer Science, pp. 16–25. Springer-Verlag, 1979.Google Scholar
Berstel, J.. Mots de Fibonacci. Seminaire d'Informatique Theorique, LITP 6–7 (1980-81), 57–78.Google Scholar
Berstel, J.. Fibonacci words—a survey. In Rozenberg, G. and Salomaa, A., editors, The Book ofL, pp. 13–27. Springer-Verlag, 1986.Google Scholar
Berstel, J.. Axel Thue's work on repetitions in words. In Leroux, P. and Reutenauer, C., editors, Series Formelles et Combinatoire Algebrique, Vol. 11 of Publications du LaCim, pp. 65-80. Universite du Quebec a Montreal, 1992.Google Scholar
Berstel, J., Lauve, A., Reutenauer, C., and Saliola, F. V.. Combinatorics on Words: Christoffel Words and Repetitions in Words, Vol. 27 of CRM Monograph Series. Amer. Math. Soc., 2009.Google Scholar
Berstel, J. and Reutenauer, C.. Noncommutative Rational Series With Applications, Vol. 137 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2011.Google Scholar
Bes, A.. A survey of arithmetical definability. Bull. Belgian Math. Soc. (2001), 1-54. Supplementary volume, M. Crabbe, F. Point, and C. Michaux, eds., A Tribute to Maurice Boffa.Google Scholar
Blondel, V. D., Theys, J., and Vladimirov, A. A.. An elementary counterexample to the finiteness conjecture. SIAMJ. Matrix Anal. Appl. 24 (2003), 963–970.Google Scholar
Blondin Masse, A., Brlek, S., Garon, A., and Labbe, S.. Combinatorial properties of f -palindromes in the Thue-Morse sequence. Pure Math. Appl. 19(2-3) (2008), 39–52.Google Scholar
Blondin Masse, A., de Carufel, J., Goupil, A., Lapointe, M., Nadeau, E., and Van-domme, E.. Leaf realization problem, caterpillar graphs and prefix normal words. Theoret. Comput. Sci. 732 (2018), 1–13.Google Scholar
Borchert, A. and Rampersad, N.. Words with many palindrome pair factors. Electron. J. Combin. 22 (2015), #P4.23 (electronic). Available at tinyurl.com/2p8 7wsrz.Google Scholar
Brlek, S.. Enumeration of factors in the Thue-Morse word. Disc. Appl. Math. 24 (1989), 83–96.Google Scholar
Brown, S., Rampersad, N., Shallit, J., and Vasiga, T.. Squares and overlaps in the Thue-Morse sequence and some variants. RAIRO Inform. Theor. App. 40 (2006), 473–484.Google Scholar
Bruyere, V. and Hansel, G.. Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181 (1997), 17–43.Google Scholar
Bruyere, V., Hansel, G., Michaux, C., and Villemaire, R.. Logic and p-recognizable sets of integers. Bull. Belgian Math. Soc. 1 (1994), 191–238.Google ScholarGoogle Scholar
Bucci, M., de Luca, A., and De Luca, A.. Rich and periodic-like words. In Diekert, V. and Nowotka, D., editors, Developments in Language Theory, DLT 2009, Vol. 5583 of Lecture Notes in Computer Science, pp. 145–155. Springer-Verlag, 2009.Google Scholar
Bucci, M., De Luca, A., and Fici, G.. Enumeration and structure of trapezoidal words. Theoret. Comput. Sci. 468 (2013), 12–22.Google Scholar
Bucci, M., De Luca, A., Glen, A., and Zamboni, L. Q.. A new characteristic property of rich words. Theoret. Comput. Sci. 410 (2009), 2860–2863.Google Scholar
Bucci, M., De Luca, A., and Zamboni, L. Q.. Reversible Christoffel factorizations. Theoret. Comput. Sci. 495 (2013), 17–24.Google Scholar
Buchi, J. R.. Weak secord-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960), 66-92. Reprinted in S. Mac Lane and D. Siefkes, eds., The Collected Works of J. Richard Buchi, Springer-Verlag, 1990, pp. 398424.Google Scholar
Buchi, J. R.. On a decision method in restricted second order arithmetic. In Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pp. 1–11. Stanford University Press, 1962.Google Scholar
Bugeaud, Y. and Kim, D. H.. A new complexity function, repetitions in Sturmian words, and irrationality exponents of Sturmian numbers. Trans. Amer. Math. Soc. 371 (2019), 3281–3308.Google Scholar
Bugeaud, Y., Krieger, D., and Shallit, J.. Morphic and automatic words: maximal blocks and diophantine approximation. ActaArith. 149 (2011), 181–199.Google Scholar
Burcsi, P., Fici, G., Liptak, Z., Ruskey, F., and Sawada, J.. On prefix normal words and prefix normal forms. Theoret. Comput. Sci. 659 (2017), 1–13.Google Scholar
Carlitz, L.. Fibonacci representations. Fibonacci Quart. 6 (1968), 193–220.Google Scholar
Carlitz, L., Scoville, R., and Hoggatt, V. E. Jr. Fibonacci representations. Fibonacci Quart. 10 (1972), 1-28. Addendum, 10 (1972), 527–530.Google Scholar
Carlitz, L., Scoville, R., and Hoggatt, V. E. Jr. Fibonacci representations of higher order. Fibonacci Quart. 10 (1972), 43-69,94.Google Scholar
Carpi, A. and D'Alonzo, V.. On the repetitivity index of infinite words. Internat. J. Algebra Comput. 19 (2009), 145–158.Google Scholar
Carpi, A. and Maggi, C.. On synchronized sequences and their separators. RAIRO Inform. Theor. App. 35 (2001), 513–524.Google Scholar
Cassaigne, J.. Special factors of sequences with linear subword complexity. In Dassow, J., Rozenberg, G., and Salomaa, A., editors, Developments in Language Theory II, pp. 25–34. World Scientific, 1996.Google Scholar
Cassaigne, J.. Sequences with grouped factors. In Developments in Language Theory III, pp. 211–222. Aristotle University of Thessaloniki, 1998.Google Scholar
Cerny, A.. Lyndon factorization of generalized words of Thue. Discrete Math. & Theoret. Comput. Sci. 5 (2002), 17–46.CrossRefGoogle Scholar
Charlier, E.. First-order logic and numeration systems. In Berthe, V. and Rigo, M., editors, Sequences, Groups, and Number Theory, pp. 89–141. Birkhauser, 2018.Google Scholar
Charlier, E., Massuir, A., Rigo, M., and Rowland, E.. Ultimate periodicity problem for linear numeration systems. Arxiv preprint arXiv:2007.08147 [cs.DM], available at arxiv.org/abs/2007.08147, 2020.Google Scholar
Charlier, E., Rampersad, N., Rigo, M., and Waxweiler, L.. The minimal automaton recognizing mN in a linear numeration system. INTEGERS—Elect. J. Comb. Numb. Theory 11B (2011), #A4 (electronic).Google Scholar
Charlier, E., Rampersad, N., and Shallit, J.. Enumeration and decidable properties of automatic sequences. In Mauri, G. and Leporati, A., editors, Developments in Language Theory, 15th International Conference, DLT 2011, Vol. 6795 of Lecture Notes in Computer Science, pp. 165–179. Springer-Verlag, 2011.Google Scholar
Charlier, E., Rampersad, N., and Shallit, J.. Enumeration and decidable properties of automatic sequences. Internat. J. Found. Comp. Sci. 23 (2012), 1035–1066.Google Scholar
Chase, Z.. A new upper bound for separating words. Arxiv preprint arXiv:2007.12097 [math.CO], available at arxiv.org/abs/2007.12097, 2020.Google Scholar
Chase, Z.. Separating words and trace reconstruction. In STOC 2021, pp. 21-31. ACM, 2021.Google Scholar
Chekhova, N., Hubert, P., and Messaoudi, A.. Proprietes combinatoires, er- godiques et arithmetiques de la substitution de Tribonacci. J. Theorie Nombres Bordeaux 13 (2001), 371–394.Google Scholar
Chen, Y.-G. and Wang, B.. On additive properties of two special sequences. Acta Arith. 110 (2003), 299–303.Google Scholar
Chen, J. and Wen, Z.-X.. On the abelian complexity of generalized Thue-Morse sequences. Theoret. Comput. Sci. 780 (2019), 66–73.Google Scholar
Choffrut, C., Malcher, A., Mereghetti, C., and Palano, B.. First-order logics: some characterizations and closure properties. Acta Inform. 49 (2012), 225–248.Google Scholar
Chow, S. and Slattery, T.. On Fibonacci partitions. J. Number Theory 225 (2021), 310–326.Google Scholar
Christodoulakis, M. and Christou, M.. Abelian concepts in strings: a review. In Holub, J., Watson, B. W., and Zd'arek, J., editors, Festschriftfor BorivojMelichar, pp. 19–45. Czech Technical University, 2012.Google Scholar
Christou, M., Crochemore, M., and Iliopoulos, C. S.. Quasiperiodicities in Fibonacci strings. Ars Combin. 129 (2016), 211–225.Google Scholar
Chuan, W.-F.. Symmetric Fibonacci words. Fibonacci Quart. 31 (1993), 251255.Google Scholar
Church, A.. An unsolvable problem of elementary number theory. Amer. J. Math. 58 (1936), 345–363.Google Scholar
Cicalese, F., Liptak, Z., and Rossi, M.. On infinite prefix normal words. Theoret. Comput. Sci. 859 (2021), 134–148.Google Scholar
Cobham, A.. Uniform tag sequences. Math. Systems Theory 6 (1972), 164–192.Google Scholar
Condon, A.. The complexity of the max word problem and the power of one-way interactive proof systems. Comput. Complexity 3 (1993), 292–305.Google Scholar
Coons, M.. Regular sequences and the joint spectral radius. Internat. J. Found. Comp. Sci. 28 (2017), 135–140.Google Scholar
Coons, M. and Spiegelhofer, L.. Number theoretic aspects of regular sequences. In Berthe, V. and Rigo, M., editors, Sequences, Groups, and Number Theory, Trends in Mathematics, pp. 37–87. Springer-Verlag, 2018.Google Scholar
Coven, E. M. and Hedlund, G. A.. Sequences with minimal block growth. Math. Systems Theory 7 (1973), 138–153.Google Scholar
Crochemore, M.. An optimal algorithm for computing the repetitions in a word. Inform. Process. Lett. 12 (1981), 244–250.Google Scholar
Crochemore, M., Mignosi, F., and Restivo, A.. Automata and forbidden words. Inform. Process. Lett. 67 (1998), 111–117.Google Scholar
Cummings, L. J., Moore, D., and Karhumaki, J.. Borders of Fibonacci strings. J. Combin. Math. Combin. Comput. 20 (1996), 81–87.Google Scholar
Cummings, L. J. and Smyth, W. F.. Weak repetitions in strings. J. Combin. Math. Combin. Comput. 24 (1997), 33–48.Google Scholar
Cummings, R., Shallit, J., and Staadecker, P.. Mesosome avoidance. Arxiv preprint arXiv:2107.13813 [cs.DM], available at arxiv.org/abs/210 7.13813, 2021.Google Scholar
Currie, J.. Lexicographically least words in the orbit closure of the Rudin-Shapiro word. Theoret. Comput. Sci. 41 (2011), 4742–4746.Google Scholar
Currie, J., Harju, T., Ochem, P., and Rampersad, N.. Some further results on square- free arithmetic progressions in infinite words. Theoret. Comput. Sci. 799 (2019), 140–148.Google Scholar
Currie, J. D. and Johnson, J. T.. There are level ternary circular square-free words of length n for n + 5,7,9,10,14,17. Arxiv preprint arXiv:2005.06235 [math.CO], available at arxiv.org/abs/2005.0 6235, 2020.Google Scholar
Currie, J., Rampersad, N., and Shallit, J.. Binary words containing infinitely many overlaps. Electron. J. Combin. 13 (2006), #R82 (electronic).Google Scholar
Currie, J. D. and Saari, K.. Least periods of factors of infinite words. RAIRO Inform. Theor. App. 43 (2009), 165–178.Google Scholar
Currie, J. and Visentin, T.. On abelian 2-avoidable binary patterns. Acta Inform. 43 (2007), 521–533.Google Scholar
D'Alessandro, F.. A combinatorial problem on trapezoidal words. Theoret. Comput. Sci. 273 (2002), 11–33.Google Scholar
Damanik, D.. Local symmetries in the period-doubling sequence. Disc. Appl. Math. 100 (2000), 115–121.Google Scholar
Damanik, D. and Lenz, D.. Substitution dynamical systems: Characterization of linear repetitivity and applications. J. Math. Anal. Appl. 321 (2006), 766–780.Google Scholar
Davies, S.. State complexity of reversals of deterministic finite automata with output. In Campeanu, C., editor, CIAA 2018, Vol. 10977 of Lecture Notes in Computer Science, pp. 133–145. Springer-Verlag, 2018.Google Scholar
Davis, M.. A computer program for Presburger's algorithm. In Summaries of Talks Presented at the Summer Institute for Symbolic Logic, pp. 215-233. Institute for Defense Analysis, Princeton, NJ, 1957. Reprinted in J. Siemann and G. Wrightson, eds., Automation of Reasoning—Classical Papers on Computational Logic 1957-1966, Vol. 1, Springer, 1983, pp. 41–48.Google Scholar
Davis, C. and Knuth, D. E.. Number representations and dragon curves-I, II. J. Recreational Math.. 3 (1970), 66-81, 133–149.Google Scholar
Dean, R. A.. A sequence without repeats on x, x-1, y, y-1. Amer. Math. Monthly 72 (1965), 383–385.Google Scholar
de Bruijn, N. G.. On bases for the set of integers. Publ. Math. (Debrecen) 1 (1950), 232–242.Google Scholar
de Bruijn, N. G.. Some direct decompositions of the set of integers. Math. Comp. 18 (1964), 537–546.Google Scholar
Defant, C.. Anti-power prefixes of the Thue-Morse word. Electron. J. Combin. 24(1) (2017), #P1.32 (electronic). Available at tinyurl.com/mvv2zxpv.Google Scholar
Dejean, F.. Sur un theoreme de Thue. J. Combin. Theory. Ser. A 13 (1972), 90–99.Google Scholar
Dekking, F. M.. The Frobenius problem for homomorphic embeddings of languages into the integers. Theoret. Comput. Sci. 732 (2018), 73–79.Google Scholar
Dekking, F. M., Mendes France, M., and van der Poorten, A. J.. Folds! Math. Intelligencer 4 (1982), 130-138, 173-181, 190-195. Erratum, 5 (1983), 5.Google Scholar
Dekking, F. M., Shallit, J., and Sloane, N. J. A.. Queens in exile: non-attacking queens on infinite chess boards. Electron. J. Combin. 27 (2020), #P1.52 (electronic).Google Scholar
Demaine, E. D., Eisenstat, S., Shallit, J., and Wilson, D. A.. Remarks on separating words. In Holzer, M., Kutrib, M., and Pighizzini, G., editors, Descriptional Complexity of Formal Systems, 13th International Workshop, DCFS 2011, Vol. 6808 of Lecture Notes in Computer Science, pp. 147–157. Springer-Verlag, 2011.Google Scholar
Dombi, G.. Additive properties of certain sets. ActaArith. 103 (2002), 137–146.Google Scholar
Droubay, X.. Palindromes in the Fibonacci word. Inform. Process. Lett. 55 (1995), 217–221.Google Scholar
Droubay, X., Justin, J., and Pirillo, G.. Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255 (2001), 539–553.Google Scholar
Duchene, E. and Rigo, M.. A morphic approach to combinatorial games: the Tribonacci case. RAIRO Inform. Theor. App. 42 (2008), 375–393.Google Scholar
Du, C. F., Mousavi, H., Rowland, E., Schaeffer, L., and Shallit, J.. Decision algorithms for Fibonacci-automatic words, II: Related sequences and avoidability. Theoret. Comput. Sci. 657 (2017), 146–162.Google Scholar
Du, C. F., Mousavi, H., Schaeffer, L., and Shallit, J.. Decision algorithms for Fibonacci-automatic words III: Enumeration and abelian properties. Internat. J. Found. Comp. Sci. 27 (2016), 943–963.CrossRefGoogle Scholar
Durand-Gasselin, A. and Habermehl, P.. On the use of non-deterministic automata for Presburger arithmetic. In Gastin, P. and Laroussinie, F., editors, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, pp. 373–387. Springer- Verlag, 2010.Google Scholar
Durand, F.. A characterization of substitutive sequences using return words. Discrete Math. 179 (1998), 89–101.CrossRefGoogle Scholar
Durand, F.. Decidability of uniform recurrence of morphic sequences. Internat. J. Found. Comp. Sci. 24 (2013), 123–146.Google Scholar
Durand, F.. Decidability of the HD0L ultimate periodicity problem. RAIRO Inform. Theor. App. 47 (2013), 201–214.Google Scholar
Duval, J. P.. Factorizing words over an ordered alphabet. J. Algorithms 4 (1983), 363–381.Google Scholar
Eilenberg, S.. Automata, Languages, and Machines, Vol. A. Academic Press, 1974.Google Scholar
Elgot, C. C.. Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98 (1961), 21–51.Google Scholar
Endrullis, J., Grabmayer, C., Hendriks, D., and Zantema, H.. The degree of squares is an atom. In Manea, F. and Nowotka, D., editors, Proc. WORDS 2015, Vol. 9304 of Lecture Notes in Computer Science, pp. 109–121. Springer-Verlag, 2015.Google Scholar
Endrullis, J., Hendriks, D., and Klop, J. W.. Degrees of streams. INTEGERS— Elect. J. Comb. Numb. Theory 11B (2011), A6 (electronic).Google Scholar
Endrullis, J., Hendriks, D., and Klop, J. W.. Streams are forever. Bull. European Assoc. Theor. Comput. Sci., No. 109, (2013), 70–106.Google Scholar
Endrullis, J., Klop, J. W., Saarela, A., and Whiteland, M.. Degrees of transducibil- ity. In Manea, F. and Nowotka, D., editors, Proc. WORDS 2015, Vol. 9304 of Lecture Notes in Computer Science, pp. 1–13. Springer-Verlag, 2015.Google Scholar
Erdos, P.. Some unsolved problems. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 6 (1961), 221–254.Google Scholar
Euwe, M.. Mengentheoretische Betrachtungen uber das Schachspiel. Proc. Konin. Akad. Wetenschappen, Amsterdam 32 (1929), 633–642.Google Scholar
Everest, G., van der Poorten, A., Shparlinski, I., and Ward, T.. Recurrence Sequences, Vol. 104 of Mathematical Surveys and Monographs. Amer. Math. Soc., 2003.Google Scholar
Fagnot, I.. Sur les facteurs des mots automatiques. Theoret. Comput. Sci. 172 (1997), 67–89.Google Scholar
Ferrante, J. and Rackoff, C. W.. A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4 (1975), 69–76.Google Scholar
Ferrante, J. and Rackoff, C. W.. The Computational Complexity of Logical Theories, Vol. 718 of Lecture Notes in Mathematics. Springer-Verlag, 1979.Google Scholar
Fici, G., Langiu, A., Lecroq, T., Lefebvre, A., Mignosi, F., Peltomaki, J., and Prieur-Gaston, E.. Abelian powers and repetitions in Sturmian words. Theoret. Comput. Sci. 635 (2016), 16–34.Google Scholar
Fici, G., Postic, M., and Silva, M.. Abelian antipowers in infinite words. Adv. in Appl. Math. 108 (2019), 67–78.Google Scholar
Fici, G., Restivo, A., Silva, M., and Zamboni, L. Q.. Anti-powers in infinite words. Arxiv preprint arXiv:1606.02868 [cs.DM], available at arxiv.org/abs/1606.02868, 2016.Google Scholar
Fici, G., Restivo, A., Silva, M., and Zamboni, L. Q.. Anti-powers in infinite words. J. Combin. Theory. Ser. A 157 (2018), 109–119.Google Scholar
Fici, G. and Shallit, J.. Properties of a class of Toeplitz words. Arxiv preprint arXiv:2112.12125 [cs.FL], available at arxiv.org/abs/2112.1212 5, 2021.Google Scholar
Fici, G. and Zamboni, L. Q.. On the least number of palindromes contained in an infinite word. Theoret. Comput. Sci. 481 (2013), 1–8.Google Scholar
Fischer, M. J. and Rabin, M. O.. Super-exponential complexity of Presburger arithmetic. In Karp, R. M., editor, Complexity of Computation, Vol. 7 of SIAM- AMS Proceedings, pp. 27-42. Amer. Math. Soc., 1974.Google Scholar
Fleischer, L. and Shallit, J.. Words avoiding reversed factors, revisited. Arxiv preprint arXiv:1911.11704 [cs.FL], available at arxiv.org/abs/1911.117 0 4, 2019.Google Scholar
Fleischer, L. and Shallit, J.. Automata, palindromes, and reversed subwords. J. Automata, Languages, and Combinatorics 26 (2021), 221–253.Google Scholar
Forsyth, M., Jayakumar, A., Peltomaki, J., and Shallit, J.. Remarks on privileged words. Internat. J. Found. Comp. Sci. 27 (2016), 431–442.CrossRefGoogle Scholar
Fraenkel, A. S.. Systems of numeration. Amer. Math. Monthly 92 (1985), 105114.Google Scholar
Fraenkel, A. S. and Simpson, J.. The exact number of squares in Fibonacci words. Theoret. Comput. Sci. 218 (1999), 95-106. Corrigendum, 547 (2014), 122.Google Scholar
Frougny, C.. Representations of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60.Google Scholar
Frougny, C. and Solomyak, B.. On representation of integers in linear numeration systems. In Pollicott, M. and Schmidt, K., editors, Ergodic Theory of Zd Actions (Warwick, 1993-1994), Vol. 228 of London Mathematical Society Lecture Note Series, pp. 345-368. Cambridge University Press, 1996.Google Scholar
Gabric, D., Shallit, J., and Zhong, X. F.. Avoidance of split overlaps. Discrete Math. 344 (2021), 112176.Google Scholar
Gamard, G., Ochem, P., Richomme, G., and Seebold, P.. Avoidability of circular formulas. Theoret. Comput. Sci. 726 (2018), 1–4.Google Scholar
Garel, E.. Separateurs dans les mots infinis engendres par morphismes. Theoret. Comput. Sci. 180 (1997), 81–113.Google Scholar
Gawrychowski, P., Krieger, D., Rampersad, N., and Shallit, J.. Finding the growth rate of a regular or context-free language in polynomial time. Internat. J. Found. Comp. Sci. 21 (2010), 597–618.Google Scholar
Geldenhuys, J., van der Merwe, B., and van Zijl, L.. Reducing nondeterministic finite automata with SAT solvers. In Yli-Jyra, A., Kornai, A., Sakarovitch, J., and Watson, B., editors, FSMNLP: International Workshop on Finite-State Methods and Natural Language Processing, 8th International Workshop, Vol. 6062 of Lecture Notes in Artificial Intelligence, pp. 81–92. Springer-Verlag, 2010.Google Scholar
Gilbert, E.. Gray codes and paths on the n-cube. Bell System Tech. J. 37 (1958), 815–826.Google Scholar
Glen, A.. Powers in a class of a-strict episturmian words. Theoret. Comput. Sci. 380 (2007), 330–354.Google Scholar
Glen, A., Justin, J., Widmer, S., and Zamboni, L. Q.. Palindromic richness. European J. Combin. 30 (2009), 510–531.Google Scholar
Glen, A., Leve, F., and Richomme, G.. Quasiperiodic and Lyndon episturmian words. Theoret. Comput. Sci. 409 (2008), 578–600.Google Scholar
Goc, D., Henshall, D., and Shallit, J.. Automatic theorem-proving in combinatorics on words. In Moreira, N. and Reis, R., editors, Implementation and Application of Automata—17th International Conference, CIAA 2012, Vol. 7381 of Lecture Notes in Computer Science, pp. 180–191. Springer-Verlag, 2012.Google Scholar
Goc, D., Henshall, D., and Shallit, J.. Automatic theorem-proving in combinatorics on words. Internat. J. Found. Comp. Sci. 24 (2013), 781–798.Google Scholar
Goc, D., Mousavi, H., Schaeffer, L., and Shallit, J.. A new approach to the pa- perfolding sequences. In Beckmann, A. et al., editors, Computability in Europe, CIE 2015, Vol. 9136 of Lecture Notes in Computer Science, pp. 34–43. Springer- Verlag, 2015.Google Scholar
Goc, D., Mousavi, H., and Shallit, J.. On the number of unbordered factors. In Dediu, A. H., Martin-Vide, C., and Truthe, B., editors, Languages and Automata Theory and Applications—7th International Conference, LATA 2013, Vol. 7810 of Lecture Notes in Computer Science, pp. 299–310. Springer-Verlag, 2013.Google Scholar
Goc, D., Rampersad, N., Rigo, M., and Salimov, P.. On the number of abelian bordered words (with an example of automatic theorem-proving). Internat. J. Found. Comp. Sci. 25 (2014), 1097–1110.Google Scholar
Goc, D., Saari, K., and Shallit, J.. Primitive words and Lyndon words in automatic and linearly recurrent sequences. In Dediu, A. H., Martin-Vide, C., and Truthe, B., editors, Languages and Automata Theory and Applications—7th International Conference, LATA 2013, Vol. 7810 of Lecture Notes in Computer Science, pp. 311–322. Springer-Verlag, 2013.Google Scholar
Goc, D., Schaeffer, L., and Shallit, J.. Subword complexity and k-synchronization. In Beal, M.-P. and Carton, O., editors, DLT2013, Vol. 7907 of Lecture Notes in Computer Science, pp. 252–263. Springer-Verlag, 2013.Google Scholar
Goc, D. and Shallit, J.. Least periods of k-automatic sequences. Arxiv preprint arXiv:1207.5450 [cs.FL], available at arxiv.org/abs/1207.5450, 2012.Google Scholar
Golay, M. J. E.. Multi-slit spectrometry. J. Optical Soc. Amer. 39 (1949), 437444.Google Scholar
Golay, M. J. E.. Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Optical Soc. Amer. 41 (1951), 468–472.Google Scholar
Goralcik, P. and Koubek, V.. On discerning words by automata. In Kott, L., editor, Proc. 13th Int'l Conf. on Automata, Languages, and Programming (ICALP), Vol. 226 of Lecture Notes in Computer Science, pp. 116–122. Springer-Verlag, 1986.Google Scholar
Graham, R. L.. Covering the positive integers by disjoint sets of the form {[na + p] : n = 1,2,...}. J. Combin. Theory. Ser. A 15 (1973), 354–358.Google Scholar
Gries, D.. Describing an algorithm by Hopcroft. Acta Inform. 2 (1973), 97–109.Google Scholar
Guckenheimer, J.. On the bifurcation of maps of the interval. Inventiones Math. 39 (1977), 165–178.Google Scholar
Guepin, F., Haase, C., and Worrell, J.. On the existential theories of Buchi arithmetic and linear p-adic fields. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–10. IEEE Computer Society, 2019.Google Scholar
Haase, C.. A survival guide to Presburger arithmetic. ACM SIGLOG News 5(3) (2018), 67–82.Google Scholar
Haase, C.. Approaching arithmetic theories with finite-state automata. In Lep-orati, A. et al., editors, LATA 2020, Vol. 12038 of Lecture Notes in Computer Science, pp. 33–43. Springer-Verlag, 2020.Google Scholar
Haase, C. and Rozycki, J.. On the expressiveness of Buchi arithmetic. In Kiefer, S. and Tasson, C., editors, Foundations ofSoftware Science and Computation Structures, FOSSACS 2021, Vol. 12650 of Lecture Notes in Computer Science, pp. 310–323. Springer-Verlag, 2021.Google Scholar
Hales, T. C.. Formal proof. Notices Amer. Math. Soc. 55(11) (2008), 1370–1380.Google Scholar
Haque, S. and Shallit, J.. Discriminators and k-regular sequences. INTEGERS— Elect. J. Comb. Numb. Theory 16 (2016), #A76 (electronic). Available at tinyurl.com/4 2 7 7ph9 6.Google Scholar
Hardy, G. H. and Wright, E. M.. An Introduction to the Theory of Numbers. Oxford University Press, 5th edition, 1985.Google Scholar
Harju, T.. Disposability in square-free words. Theoret. Comput. Sci. 862 (2021), 155–159.Google Scholar
Harju, T.. Avoiding square-free words on free groups. Arxiv preprint arXiv:2104.06837 [math.CO], available at arxiv.org/abs/2104.06837, 2021.Google Scholar
Harju, T. and Karki, T.. On the number of frames of binary words. Theoret. Comput. Sci. 412 (2011), 5276–5284.Google Scholar
Harju, T. and Linna, M.. On the periodicity of morphisms on free monoids. RAIRO Inform. Theor. App. 20 (1986), 47–54.Google Scholar
Heule, M. J. H. and Kullmann, O.. The science of brute force. Comm. ACM 60(8) (2017), 70–79.Google Scholar
Hieronymi, P., Ma, D., Oei Ma, R., Schaeffer, L., Schulz, C., and Shallit, J.. Decidability for Sturmian words. Arxiv preprint arXiv:2102.08207 [cs.LO], available at arxiv.org/abs/2102.082 07, 2021.Google Scholar
Hieronymi, P. and Terry, A. Jr. Ostrowski numeration systems, addition, and finite automata. Notre Dame J. Formal Logic 59 (2018), 215–232.Google Scholar
Hilbert, D.. Uber die stetige Abbildung einer Linie auf ein Flachenstuck. Math. Annalen 38 (1891), 459–460.Google Scholar
Hinz, A. M., Klavzar, S., Milutinovic, U., and Petr, C.. The Tower ofHanoi—Myths and Maths. Birkhauser, 2013.Google Scholar
Hodgson, B.. Decidabilite par automate fini. Ann. Sci. Math. Quebec 7 (1983), 39–57.Google Scholar
H0holdt, T., Jensen, H. E., and Justesen, J.. Aperiodic correlations and the merit factor of a class of binary sequences. IEEE Trans. Inform. Theory 31 (1985), 549–552.Google Scholar
Honkala, J.. A decision method for the recognizability of sets defined by number systems. RAIRO Inform. Theor. App. 20 (1986), 395–403.Google Scholar
Honkala, J.. Quasi-universal k-regular sequences. Theoret. Comput. Sci. 891 (2021), 84–89.Google Scholar
Hopcroft, J. E.. An n log n algorithm for minimizing the states in a finite automaton. In Kohavi, Z., editor, The Theory of Machines and Computation, pp. 189–196. Academic Press, New York, 1971.Google Scholar
Hopcroft, J. E. and Ullman, J. D.. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.Google Scholar
Huang, Y.-k. and Wen, Z.-y.. The number of fractional powers in the Fibonacci word. Arxiv preprint arXiv:1811.11444 [math.DS], available at arxiv.org/abs/1811.114 4 4, 2018.Google Scholar
Hubert, P.. Suites equilibrees. Theoret. Comput. Sci. 242 (2000), 91–108.Google Scholar
I, T., Inenaga, S., Bannai, H., and Takeda, M.. Counting and verifying maximal palindromes. In Chavez, E. and Lonardi, S., editors, String Processing and Information Retrieval - 17th International Symposium, SPIRE 2010, Vol. 6393 of Lecture Notes in Computer Science, pp. 135–146. Springer-Verlag, 2010.Google Scholar
Ido, A. and Melancon, G.. Lyndon factorization of the Thue-Morse word and its relatives. Discrete Math. & Theoret. Comput. Sci. 1 (1997), 43–52.Google Scholar
Ilie, L. and Yu, S.. Reducing NFAs by invariant equivalences. Theoret. Comput. Sci. 306 (2003), 373–390.Google Scholar
Ilie, L., Novarro, G., and Yu, S.. On NFA reductions. In Karhumaki, J., Maurer, H., Paun, G., and Rozenberg, G., editors, Theory is Forever, Vol. 3113 of Lecture Notes in Computer Science, pp. 112–124. Springer-Verlag, 2004.Google Scholar
Iliopoulos, C. S., Moore, D., and Smyth, W. F.. A characterization of the squares in a Fibonacci string. Theoret. Comput. Sci. 172 (1997), 281–291.Google Scholar
Jacob, G.. Decidabilite de la finitude des demi-groupes de matrices. In Theoretical Computer Science, Vol. 48 of Lecture Notes in Computer Science, pp. 259–269. Springer-Verlag, 1977.Google Scholar
Jacob, G.. Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices. Theoret. Comput. Sci. 5 (1977/78), 183–204.Google Scholar
Jacob, G.. La finitude des representations lineaires des semi-groupes est decidable. J. Algebra 52 (1978), 437–459.Google Scholar
Jacobs, K.. Invitation to Mathematics. Princeton University Press, 1992.Google Scholar
Jiang, T. and Ravikumar, B.. NFA minimization problems are hard. SIAM J. Comput. 22 (1993), 1117–1141.Google Scholar
Kabore, I. and Kientega, B.. Abelian complexity of Thue-Morse word over a ternary alphabet. In Brlek, S., Dolce, F., Reutenauer, C., and Vandomme, E., editors, WORDS 2017, Vol. 10432 of Lecture Notes in Computer Science, pp. 132143. Springer-Verlag, 2017.Google Scholar
Kao, J.-Y., Rampersad, N., Shallit, J., and Silva, M.. Words avoiding repetitions in arithmetic progressions. Theoret. Comput. Sci. 391 (2008), 126–137.Google Scholar
Kaplan, C. S. and Shallit, J.. A frameless 2-coloring of the plane lattice. Math. Mag. 94 (2021), 353–360.Google Scholar
Karhumaki, J.. On cube-free w-words generated by binary morphisms. Disc. Appl. Math. 5 (1983), 279–297.Google Scholar
Kawsumarng, S., Khemaratchatakumthorn, T., Noppakaew, P., and Pongsriiam, P.. Sumsets associated with Wythoff sequences and Fibonacci numbers. Period. Math. Hung. 82 (2021), 98–113.Google Scholar
Kellendonk, J., Lenz, D., and Savinien, J.. A characterization of subshifts with bounded powers. Discrete Math. 313 (2013), 2881–2894.Google Scholar
Kempa, D. and Prezza, N.. At the roots of dictionary compression: string attrac- tors. In STOC'18 Proceedings, pp. 827–840. ACM Press, 2018.Google Scholar
Klaedtke, F.. Bounds on the automata size for Presburger arithmetic. ACM Trans. Comput. Logic 9(2) (2008), Article 11.Google Scholar
Klavzar, S. and Shpectorov, S.. Asymptotic number of isometric generalized Fibonacci cubes. European J. Combin. 33 (2012), 220–226.Google Scholar
Knuth, D. E., Morris, J., and Pratt, V.. Fast pattern matching in strings. SIAM J. Comput. 6 (1977), 323–350.Google Scholar
Knuutila, T.. Re-describing an algorithm by Hopcroft. Theoret. Comput. Sci. 250 (2001), 333–363.Google Scholar
Kociumaka, T., Navarro, G., and Prezza, N.. Towards a definitive measure of repetitiveness. In Kohayakawa, Y. and Miyazawa, F. K., editors, LATIN 2020, Vol. 12118 of Lecture Notes in Computer Science, pp. 207–219. Springer-Verlag, 2020.Google Scholar
Konev, B. and Lisitsa, A.. A SAT attack on the Erdos discrepancy problem. Arxiv preprint arXiv:1402.2184 [cs.DM], available at arxiv.org/abs/14 02.218 4, 2014.Google Scholar
Krawchuk, C. and Rampersad, N.. Cyclic complexity of some infinite words and generalizations. INTEGERS—Elect. J. Comb. Numb. Theory 18A (2018), #A12 (electronic). Available at tinyurl.com/mr2k2cbw.Google Scholar
Krebs, T. J. P.. A more reasonable proof of Cobham's theorem. Internat. J. Found. Comp. Sci. 32 (2021), 203–207.Google Scholar
Krenn, D. and Shallit, J.. Decidability and k-regular sequences. Theoret. Comput. Sci. 907 (2022), 34–44.Google Scholar
Kutsukake, K., Matsumoto, T., Nakashima, Y., Inenaga, S., Bannai, H., and Takeda, M.. On repetitiveness measures of Thue-Morse words. In Boucher, C. and Thankachan, S. V., editors, SPIRE 2020, Vol. 12303 of Lecture Notes in Computer Science, pp. 213–220. Springer-Verlag, 2020.Google Scholar
Lambek, J. and Moser, L.. On some two way classifications of integers. Canad. Math. Bull. 2 (1959), 85–89.Google Scholar
Landman, B. M. and Robertson, A.. Ramsey Theory on the Integers, Vol. 73 of Student Mathematical Library. Amer. Math. Soc., 2015.Google Scholar
Lando, B.. Periodicity and ultimate periodicity of D0L systems. Theoret. Comput. Sci. 82 (1991), 19–33.Google Scholar
Leech, J.. A problem on strings of beads. Math. Gazette 41 (1957), 277–278.Google Scholar
Lehr, S.. Sums and rational multiples of q-automatic sequences are q-automatic. Theoret. Comput. Sci. 108 (1993), 385–391.Google Scholar
Lekkerkerker, C. G.. Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci. Simon Stevin 29 (1952), 190–195.Google Scholar
Leroux, J.. A polynomial time Presburger criterion and synthesis for number decision diagrams. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 147–156. IEEE Press, 2005.Google Scholar
Lev, V. F.. Reconstructing integer sets from their representation functions. Electron. J. Combin. 11(1) (2004), #R78.Google Scholar
Leve, F. and Richomme, G.. Quasiperiodic infinite words: some answers. Bull. European Assoc. Theor. Comput. Sci., No. 84, (2004), 128–138.Google Scholar
Leve, F. and Richomme, G.. Quasiperiodic Sturmian words and morphisms. Theoret. Comput. Sci. 372 (2007), 15–25.Google Scholar
Leve, F. and Richomme, G.. On quasiperiodic morphisms. In Karhumaki, J., Lepisto, A., and Zamboni, L., editors, Proc. WORDS 2013, Vol. 8079 of Lecture Notes in Computer Science, pp. 181–192. Springer-Verlag, 2013.Google Scholar
Linna, M.. On periodic ^-sequences obtained by iterating morphisms. Ann. Univ. Turku. Ser. A 1 186 (1984), 64–71.Google Scholar
Lothaire, M.. Combinatorics on Words, Vol. 17 of Encyclopedia ofMathematics and Its Applications. Addison-Wesley, 1983.Google Scholar
Lothaire, M.. Algebraic Combinatorics on Words, Vol. 90 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2002.Google Scholar
de Luca, A.. On the combinatorics of finite words. Theoret. Comput. Sci. 218 (1999), 13–39.Google Scholar
de Luca, A., Glen, A., and Zamboni, L. Q.. Rich, Sturmian, and trapezoidal words. Theoret. Comput. Sci. 407 (2008), 569–573.Google Scholar
de Luca, A. and Mione, L.. On bispecial factors of the Thue-Morse word. Inform. Process. Lett. 49 (1994), 179–183.Google Scholar
de Luca, A. and Varricchio, S.. Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups. Theoret. Comput. Sci. 63 (1989), 333348.Google Scholar
Luchinin, S. and Puzynina, S.. Symmetry groups of infinite words. In Mor-eira, N. and Reis, R., editors, DLT 2021, Vol. 12811 of Lecture Notes in Computer Science, pp. 267–278. Springer-Verlag, 2021.Google Scholar
Lyndon, R. C. and Schutzenberger, M. P.. The equation aM = bNcP in a free group. Michigan Math. J. 9 (1962), 289–298.Google Scholar
Malitz, J.. Introduction to Mathematical Logic. Springer-Verlag, 1979.Google Scholar
Mandel, A. and Simon, I.. On finite semigroups of matrices. Theoret. Comput. Sci. 5 (1977/78), 101–111.Google Scholar
Mantaci, S., Restivo, A., Romana, G., Rosone, G., and Sciortino, M.. String attractors and combinatorics on words. In ICTCS 2019, Vol. 2504 of CEUR Workshop Proceedings, pp. 57-71, 2019. Available at ceur-ws.org/Vol-250 4/paper8.pdf.Google Scholar
Mantaci, S., Restivo, A., Romana, G., Rosone, G., and Sciortino, M.. A combinatorial view on string attractors. Theoret. Comput. Sci. 850 (2021), 236–248.Google Scholar
Marcus, S.. Symmetry phenomena in infinite words, with biological, philosophical and aesthetic relevance. Symmetry: Culture and Science 14/15 (2003-2004), 477–487.Google Scholar
Marsault, V. and Sakarovitch, J.. Ultimate periodicity of b-recognisable sets: A quasilinear procedure. In Beal, M. P. and Carton, O., editors, Developments in Language Theory, 17th International Conference, DLT 2013, Vol. 7907 of Lecture Notes in Computer Science, pp. 362–373. Springer-Verlag, 2013.Google Scholar
Matiyasevich, Y. V.. Hilbert's Tenth Problem. The MIT Press, 1993.Google Scholar
Melancon, G.. Lyndon factorization of infinite words. In Puech, C. and Reis-chuk, R., editors, STACS 96, 13th Annual Symposium on Theoretical Aspects of Computer Science, Vol. 1046 of Lecture Notes in Computer Science, pp. 147154. Springer-Verlag, 1996.Google Scholar
Melancon, G.. Lyndon word. In Hazewinkel, M., editor, Encyclopedia of Mathematics. Springer-Verlag, 2001.Google Scholar
Merca§, R., Ochem, P., Samsonov, A. V., and Shur, A. M.. Binary patterns in binary cube-free words: avoidability and growth. RAIRO Inform. Theor. App. 48 (2014), 369–389.Google Scholar
Mignosi, F. and Pirillo, G.. Repetitions in the Fibonacci infinite word. RAIRO Inform. Theor. App. 26 (1992), 199–204.Google Scholar
Mignosi, F. and Restivo, A.. Characteristic Sturmian words are extremal for the critical factorization theorem. Theoret. Comput. Sci. 454 (2012), 199–205.Google Scholar
Mignosi, F., Restivo, A., and Salemi, S.. Periodicity and the golden ratio. Theoret. Comput. Sci. 204 (1998), 153–167.Google Scholar
Mignosi, F., Restivo, A., and Sciortino, M.. Words and forbidden factors. Theoret. Comput. Sci. 273 (2002), 99–117.Google Scholar
Milosevic, M. and Rampersad, N.. Squarefree words with interior disposable factors. Theoret. Comput. Sci. 863 (2021), 120–126.Google Scholar
Mitrofanov, I.. On uniform recurrence of HD0L systems. Arxiv preprint arXiv:1111.1999 [math.CO], available at arxiv.org/abs/1111.1999, 2011.Google Scholar
Mitrofanov, I.. A proof for the decidability of HD0L ultimate periodicity. Arxiv preprint arXiv:1110.4780 [math.CO], available at arxiv.org/abs/1110.4780, 2011.Google Scholar
Mitrofanov, I.. On uniform recurrence of morphic sequences. Arxiv preprint arXiv:1412.5066 [math.CO], available at arxiv.org/abs/1412.5066, 2014.Google Scholar
Mitrofanov, I.. Periodicity of morphic words. J. Math. Sci. 206 (2015), 679–687.Google Scholar
Mitrofanov, I.. On almost periodicity of morphic sequences. Doklady Math. 93 (2016), 207–210.Google Scholar
Mol, L. and Rampersad, N.. Lengths of extremal square-free ternary words. Arxiv preprint arXiv:2001.11763 [math.CO], available at arxiv.org/abs/2001.117 63, 2020.Google Scholar
Mol, L., Rampersad, N., and Shallit, J.. Extremal overlap-free and extremal yS- free binary words. Arxiv preprint arXiv:2006.10152 [math.CO], available at arxiv.org/abs/200 6.10152,2020.Google Scholar
Morse, M.. Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc. 22 (1921), 84–100.Google Scholar
Morse, M. and Hedlund, G. A.. Symbolic dynamics. Amer. J. Math. 60 (1938), 815–866.Google Scholar
Morse, M. and Hedlund, G. A.. Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940), 1–42.Google Scholar
Mousavi, H.. Automatic theorem proving in Walnut. Arxiv preprint arXiv:1603.06017 [cs.FL], available at arxiv.org/abs/1603.0 6017, 2016.Google Scholar
Mousavi, H., Schaeffer, L., and Shallit, J.. Decision algorithms for Fibonacci- automatic words, I: basic results. RAIRO Inform. Theor. App. 50 (2016), 39–66.Google Scholar
Mousavi, H. and Shallit, J.. Mechanical proofs of properties of the Tribonacci word. In Manea, F. and Nowotka, D., editors, Proc. WORDS 2015, Vol. 9304 of Lecture Notes in Computer Science, pp. 1–21. Springer-Verlag, 2015.Google Scholar
Narayanan, S.. Functions on antipower prefix lengths of the Thue-Morse word. Discrete Math. 343 (2020), 111675.Google Scholar
Nathanson, M. B.. Additive Number Theory: The Classical Bases. Springer- Verlag, 1996.Google Scholar
Nicholson, J. and Rampersad, N.. Non-repetitive complexity of infinite words. Disc. Appl. Math. 208 (2016), 114–122.Google Scholar
Nicolas, F. and Pritykin, Yu.. On uniformly recurrent morphic sequences. Internal J. Found. Comp. Sci. 20 (2009), 919–940.Google Scholar
Reyes Noche, J.. On Stewart's choral sequence. Gibon 8(1) (2008), 1–5.Google Scholar
Reyes Noche, J.. Generalized choral sequences. Matimyas Matematika 31 (2008), 25–28.Google Scholar
Reyes Noche, J.. On generalized choral sequences. Gibon 9 (2011), 51–69.Google Scholar
Ochem, P., Rampersad, N., and Shallit, J.. Avoiding approximate squares. Internat. J. Found. Comp. Sci. 19 (2008), 633–648.Google Scholar
Oei, R., Ma, D., Schulz, C., and Hieronymi, P.. Pecan: An automated theorem prover for automatic sequences using Buchi automata. Arxiv preprint arXiv:2102.01727 [cs.LO], available at arxiv.org/abs/2102.01727, 2021.Google Scholar
Ostrowski, A.. Bemerkungen zur Theorie der Diophantischen Approximationen. Abh. Math. Sem. Hamburg 1 (1922), 77-98,250-251. Reprinted in Collected Mathematical Papers, Vol. 3, pp. 57–80.Google Scholar
Pandey, H., Singh, V. K., and Pandey, A.. A new NFA reduction algorithm for state minimization problem. Internat. J. Appl. Info. Sys. 8 (2015), 27–30.Google Scholar
Pansiot, J.-J.. A propos d'une conjecture de F. Dejean sur les repetitions dans les mots. Disc. Appl. Math. 7 (1984), 297–311.Google Scholar
Pansiot, J.-J.. Decidability of periodicity for infinite words. RAIRO Inform. Theor. App. 20 (1986), 43–46.Google Scholar
Parker, E. and Chatterjee, S.. An automata-theoretic algorithm for counting solutions to Presburger formulas. In Duesterwald, E., editor, CC 2004, Vol. 2985 of Lecture Notes in Computer Science, pp. 104–119. Springer-Verlag, 2004.Google Scholar
Peltomaki, J.. Introducing privileged words: privileged complexity of Sturmian words. Theoret. Comput. Sci. 500 (2013), 57–67.Google Scholar
Peltomaki, J.. Privileged factors in the Thue-Morse word—a comparison of privileged words and palindromes. Disc. Appl. Math. 193 (2015), 187–199.Google Scholar
Perrin, D. and Pin, J.-E.. Infinite Words: Automata, Semigroups, Logic and Games, Vol. 141 of Pure and Applied Mathematics. Elsevier, 2004.Google Scholar
Petkovsek, M., Wilf, H. S., and Zeilberger, D.. A = B. A. K. Peters, 1996.Google Scholar
van der Poorten, A. J. and Shallit, J. O.. Folded continued fractions. J. Number Theory 40 (1992), 237–250.Google Scholar
Presburger, M.. Uber die Volstandigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Sparawozdanie z I Kongresu Matematykow Krajow Slowianskich, pp. 92-101, 395. Sklad Glowny, Warsaw, 1929.Google Scholar
Presburger, M.. On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation. Hist. Phil. Logic 12 (1991), 225–233.Google Scholar
Prodinger, H. and Urbanek, F. J.. Infinite 0-1-sequences without long adjacent identical blocks. Discrete Math. 28 (1979), 277–289.Google Scholar
Prouhet, E.. Memoire sur quelques relations entre les puissances des nombres. C. R. Acad. Sci. Paris 33 (1851), 225.Google Scholar
Przybocki, B. P.. Lengths of irreducible and delicate words. Arxiv preprint arXiv:2108.06646 [math.CO], available at arxiv.org/abs/2108.0 664 6, 2021.Google Scholar
Puzynina, S.. Abelian properties of words. In Merca§, R. and Reidenbach, D., editors, WORDS 2019, Vol. 11682 of Lecture Notes in Computer Science, pp. 28–45. Springer-Verlag, 2019.Google Scholar
Puzynina, S. and Zamboni, L. Q.. Abelian returns in Sturmian words. J. Combin. Theory. Ser. A 120 (2013), 390–408.Google Scholar
Rajasekaran, A., Rampersad, N., and Shallit, J.. Overpals, underlaps, and under- pals. In Brlek, S., Dolce, F., Reutenauer, C., and Vandomme, E., editors, WORDS 2017, Vol. 10432 of Lecture Notes in Computer Science, pp. 17–29. Springer-Verlag, 2017.Google Scholar
Rajasekaran, A., Shallit, J., and Smith, T.. Additive number theory via automata theory. Theoret. Comput. Sci. 64 (2020), 542–567.Google Scholar
Ramlrez-Alfonsln, J. L.. The Diophantine Frobenius Problem. Oxford University Press, 2005.Google Scholar
Rampersad, N.. The periodic complexity function of the Thue-Morse word, the Rudin-Shapiro word, and the period-doubling word. Arxiv preprint arXiv:2112.04416 [math.CO], available at arxiv.org/abs/2112.04416, 2021.Google Scholar
Rampersad, N., Rigo, M., and Salimov, P.. A note on abelian returns in rotation words. Theoret. Comput. Sci. 528 (2014), 101–107.Google Scholar
Rampersad, N., Shallit, J., and Vandomme, E.. Critical exponents of balanced words. Theoret. Comput. Sci. 777 (2019), 454–463.Google Scholar
Rampersad, N., Shallit, J., and Wang, M.-w.. Avoiding large squares in infinite binary words. Theoret. Comput. Sci. 339 (2005), 19–34.Google Scholar
Reble, D.. Zeckendorf vs. Wythoff representations: comments on A007895. Manuscript available at oeis.org/A0 078 95/a0078 95.pdf, 2008.Google Scholar
Riasat, S.. Powers and anti-powers in binary words. Master's thesis, University of Waterloo, Waterloo, Ontario, Canada, 2019. Available at tinyurl.com/2pbzumf6.Google Scholar
Richomme, G., Saari, K., and Zamboni, L. Q.. Abelian complexity in minimal subshifts. J. LondonMath. Soc. 83 (2011), 79–95.Google Scholar
Rigo, M.. Formal Languages, Automata and Numeration Systems 1: Introduction to Combinatorics on Words. Wiley, 2014.Google Scholar
Rigo, M.. Formal Languages, Automata and Numeration Systems 2: Applications to Recognizability and Decidability. Wiley, 2014.Google Scholar
Rigo, M., Salimov, P., and Vandomme, E.. Some properties of abelian return words. J. Integer Sequences 16 (2013), Article 13.2.5 (electronic). Available at cs.uwaterloo.ca/journals/JIS/VOL16/Rigo/rigo3.html.Google Scholar
Rigo, M. and Waxweiler, L..A note on syndeticity, recognizable sets and Cob- ham's theorem. Bull. European Assoc. Theor. Comput. Sci., No. 88, (2006), 169–173.Google Scholar
Robbins, N.. Fibonacci partitions. Fibonacci Quart. 34 (1996), 306–313.Google Scholar
Robson, J. M.. Separating strings with small automata. Inform. Process. Lett. 30 (1989), 209–214.Google Scholar
Robson, J. M.. Separating words with machines and groups. RAIRO Inform. Theor. App. 30 (1996), 81–86.Google Scholar
Rowland, E. and Shallit, J.. k-automatic sets of rational numbers. In Dediu, A. H. and Martin-Vide, C., editors, Languages and Automata Theory and Applications—6th International Conference, LATA 2012, Vol. 7183 of Lecture Notes in Computer Science, pp. 490–501. Springer-Verlag, 2012.Google Scholar
Rowland, E. and Shallit, J.. Automatic sets of rational numbers. Internat. J. Found. Comp. Sci. 26 (2015), 343–365.Google Scholar
Roy, A. and Straubing, H.. Definability of languages by generalized first-order formulas over (N, +). SIAM J. Comput. 37 (2007), 502–521.Google Scholar
Rudin, W.. Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10 (1959), 855–859.Google Scholar
Saari, K.. Periods of factors of the Fibonacci word. In WORDS 07, 2007.Google Scholar
Salon, O.. Suites automatiques a multi-indices. In Seminaire de Theorie des Nombres de Bordeaux, pp. 4.01-4.27, 1986–1987.Google Scholar
Salon, O.. Suites automatiques a multi-indices et algebricite. C. R. Acad. Sci. Paris 305 (1987), 501–504.Google Scholar
Salon, O.. Quelles tuiles! (pavages aperiodiques du plan et automates bidimen- sionnels). Seminaire de Theorie des Nombres de Bordeaux 1 (1989), 1–25.Google Scholar
Salon, O.. Proprietes arithmetiques des automates multidimensionnels. PhD thesis, Universite Bordeaux I, 1989.Google Scholar
Sandor, C.. Partitions of natural numbers and their representation functions. INTEGERS—Elect. J. Comb. Numb. Theory 4 (2004), #A18.Google Scholar
Schaeffer, L.. Deciding properties of automatic sequences. Master's thesis, School of Computer Science, University of Waterloo, 2013.Google Scholar
Schaeffer, L. and Shallit, J.. The critical exponent is computable for automatic sequences. Internat. J. Found. Comp. Sci. 23 (2012), 1611–1626.Google Scholar
Schaeffer, L. and Shallit, J.. Closed, palindromic, rich, privileged, trapezoidal, and balanced words in automatic sequences. Electron. J. Combin. 23(1) (2016), #P1.25 (electronic).Google Scholar
Schaeffer, L. and Shallit, J.. String attractors for automatic sequences. Arxiv preprint arXiv:2012.06840 [cs.FL], available at arxiv.org/abs/2012.06840, 2021.Google Scholar
Schlage-Puchta, J.-C.. A criterion for non-automaticity of sequences. J. Integer Sequences 6 (2003), Article 03.3.8 (electronic). Available at tinyurl.com/5ppysyct.Google Scholar
Schmitz, S.. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory 8(1) (2016), Article 3.Google Scholar
Schule, T.. Verification of Infinite State Systems Using Presburger Arithmetic. PhD thesis, Fachbereich Informatik, Technischen Universitat Kaiserslautern, 2007.Google Scholar
Schweikardt, N.. Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Logic 6 (2005), 634–671.Google Scholar
Seebold, P.. Proprietes combinatoires des mots infinis engendres par certains morphismes (These de 3e cycle). PhD thesis, Universite P. et M. Curie, Institut de Programmation, Paris, 1985.Google Scholar
Seebold, P.. Lyndon factorization of the Prouhet words. Theoret. Comput. Sci. 307 (2003), 179–197.Google Scholar
Shallit, J. O.. Simple continued fractions for some irrational numbers. J. Number Theory 11 (1979), 209–217.Google Scholar
Shallit, J. O.. Numeration systems, linear recurrences, and regular sets. Inform. Comput. 113 (1994), 331–347.Google Scholar
Shallit, J.. A Second Course in Formal Languages and Automata Theory. Cambridge University Press, 2009.Google Scholar
Shallit, J.. The critical exponent is computable for automatic sequences. In P. Ambroz, S. Holub, and Z. Masakova, editors, WORDS 2011, 8th International Conference, pp. 231-239. Elect. Proc. Theor. Comput. Sci., 2011. Revised version, with L. Schaeffer, available at arxiv.org/abs/1104.2303v2.Google Scholar
Shallit, J.. Enumeration and automatic sequences. Pure Math. Appl. 25 (2015), 96–106.Google Scholar
Shallit, J.. Subword complexity of the Fibonacci-Thue-Morse sequence: the proof of Dekking's conjecture. Indag. Math. 32 (2021), 729–735.Google Scholar
Shallit, J.. Frobenius numbers and automatic sequences. Arxiv preprint arXiv:2103.10904 [math.NT], available at arxiv.org/abs/2103.10 904, 2021.Google Scholar
Shallit, J.. Hilbert's spacefilling curve described by automatic, regular, and synchronized sequences. Arxiv preprint arXiv:2106.01062 [cs.FL], available at arxiv.org/abs/210 6.010 62, 2021.Google Scholar
Shallit, J.. Robbins and Ardila meet Berstel. Inform. Process. Lett. 167 (2021), 106081.Google Scholar
Shallit, J.. Abelian complexity and synchronization. INTEGERS—Elect. J. Comb. Numb. Theory 21 (2021), #A36 (electronic). Available at tinyurl.com/3 6ba7eza.Google Scholar
Shallit, J.. Additive number theory via automata and logic. Arxiv preprint arXiv:2112.13627 [math.NT], available at arxiv.org/abs/2112.13627, 2021.Google Scholar
Shallit, J.. Synchronized sequences. In Lecroq, T. and Puzynina, S., editors, WORDS 2021, Vol. 12847 of Lecture Notes in Computer Science, pp. 1–19. Springer-Verlag, 2021.Google Scholar
Shallit, J.. Sumsets of Wythoff sequences, Fibonacci representation, and beyond. Period. Math. Hung. 84 (2022), 37–46.Google Scholar
Shallit, J.. Note on a Fibonacci parity sequence. Arxiv preprint arXiv:2203.10504 [cs.FL]. Available at arxiv.org/abs/2203.10504, 2022.Google Scholar
Shallit, J. O. and Wang, M.-w.. Weakly self-avoiding words and a construction of Friedman. Electron. J. Combin. 8(1) (2001), N2 (electronic), tinyurl.com/bmhsns5 6Google Scholar
Shallit, J. and Zarifi, R.. Circular critical exponents for Thue-Morse factors. RAIRO Inform. Theor. App. 53 (2019), 37–49.Google Scholar
Shapiro, H.S.. Extremal problems for polynomials and power series. Master's thesis, MIT, 1952.Google Scholar
Shur, A. M.. Combinatorial complexity of rational languages. Diskretn. Anal. Issled. Oper, Ser. 1 12(2) (2005), 78–99. In Russian.Google Scholar
Shur, A.. Growth properties of power-free languages. Comput. Sci. Rev. 6 (2012), 187–208.Google Scholar
Sipser, M.. Introduction to the Theory of Computation. Cengage Learning, 3rd edition, 2013.Google Scholar
Siromoney, R., Mathew, L., Dare, V., and Subramanian, K.. Infinite Lyndon words. Inform. Process. Lett. 50 (1994), 101–104.Google Scholar
Sloane, N. J. A. et al. The On-Line Encyclopedia of Integer Sequences, 2022. Available at oeis.org.Google Scholar
Sprunger, D., Tune, W., Endrullis, J., and Moss, L. S.. Eigenvalues and transduction of morphic sequences. In Shur, A. M. and Volkov, M. V., editors, Developments in Language Theory, 18th International Conference, DLT 2014, Vol. 8633 of Lecture Notes in Computer Science, pp. 239–251. Springer-Verlag, 2014.Google Scholar
Stewart, I.. How to Cut a Cake: And Other Mathematical Conundrums. Cambridge University Press, 2006.Google Scholar
Subrahmonian Moothatu, T. K.. Eulerian entropy and non-repetitive subword complexity. Theoret. Comput. Sci. 420 (2012), 80–88.Google Scholar
Sun, Z. and Winterhof, A.. On the maximum order complexity of the Thue-Morse and Rudin-Shapiro sequence. Uniform. Distrib. Theory 14 (2019), 33–42.Google Scholar
Szilard, A., Yu, S., Zhang, K., and Shallit, J. O.. Characterizing regular languages with polynomial densities. In Havel, I. M. and Koubek, V., editors, Proc. 17th Symposium, Mathematical Foundations of Computer Science 1992, Vol. 629 of Lecture Notes in Computer Science, pp. 494–503. Springer-Verlag, 1992.Google Scholar
Tang, M.. Partitions of the set of natural numbers and their representation functions. Discrete Math. 308 (2008), 2614–2616.Google Scholar
Tan, B. and Wen, Z.-Y.. Some properties of the Tribonacci sequence. European J. Combin. 28 (2007), 1703–1719.Google Scholar
Thue, A.. Uber unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906), 1-22. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 139–158.Google Scholar
Thue, A.. Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1-67. Reprinted in Selected Mathematical Papers ofAxel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478.Google Scholar
Turek, O.. Abelian complexity function of the Tribonacci word. J. Integer Sequences 18 (2015), Article 15.3.4 (electronic). Available at tinyurl.com/mr2xuv3p.Google Scholar
Vajda, S.. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. Dover, 2007.Google Scholar
Valmari, A.. Fast brief practical DFA minimization. Inform. Process. Lett. 112 (2012), 213–217.Google Scholar
Wah, A. and Picciotto, H.. Algebra: Themes, Tools, Concepts. Creative Publications, Mountain View, CA, 1994. Available at tinyurl.com/bdpbt6m6.Google Scholar
White, T.. On the coefficients of a recursion relation for the Fibonacci partition function. Fibonacci Quart. 24 (1986), 133–137.Google Scholar
Widmer, S.. Permutation complexity of the Thue-Morse word. Adv. in Appl. Math. 47 (2011), 309–329.Google Scholar
Wilf, H.. What is an answer? Amer. Math. Monthly 89 (1982), 289–292.Google Scholar
Wythoff, W. A.. A modification of the game of nim. Nieuw Archiefvoor Wiskunde 7 (1907), 199–202.Google Scholar
Zeckendorf, E.. Representation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liege 41 (1972), 179–182.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Jeffrey Shallit, University of Waterloo, Ontario
  • Book: The Logical Approach to Automatic Sequences
  • Online publication: 09 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108775267.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Jeffrey Shallit, University of Waterloo, Ontario
  • Book: The Logical Approach to Automatic Sequences
  • Online publication: 09 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108775267.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Jeffrey Shallit, University of Waterloo, Ontario
  • Book: The Logical Approach to Automatic Sequences
  • Online publication: 09 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108775267.016
Available formats
×