Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-14T23:38:28.866Z Has data issue: false hasContentIssue false

14 - Implications of cold-tolerance for pest management

from PART III - PRACTICAL APPLICATIONS

Published online by Cambridge University Press:  04 May 2010

David L. Denlinger
Affiliation:
Ohio State University
Richard E. Lee, Jr
Affiliation:
Miami University
Get access

Summary

Introduction

In a global context “pest management” usually refers to the control of invertebrate organisms, the great majority of which are insects, with some important examples among the mites and nematodes. Also, whilst these pests are primarily associated with agricultural and horticultural crops and forestry, the impact of arthropod disease vectors on human and animal populations can be devastating.

As a proportion of the Class Insecta as a whole (>1 million species so far described), there are relatively few pest species, mainly because most insects have a range of natural enemies (including diseases, other insects and higher animals) that collectively suppress their numbers below the level at which they would become categorized as pests. The situations under which previously innocuous species or minor pests achieve a much higher or widespread pest status are numerous, but include, for example: (a) global cultivation of a crop, such as potato, which is attacked by the Colorado beetle, Leptinotarsa decemlineata, across different continents; (b) transfer of pest species to new environments without their natural enemies e.g. cottony-cushion scale, Iceryae purchasi, from Australia to citrus crops in the US; (c) introduction of new crop species into agroecosystems e.g. increased cultivation of oil seed rape (canola) in Europe over the last 40 years; (d) extensive annual monocultures that favor pests rather than natural enemies e.g. maize and other cereals; (e) removal of refugia and sources of alternative prey e.g. widescale destruction of hedgerows in the UK; and (f) application of a pesticide against a “problem pest” that kills the natural enemies of a “minor pest” that then escalates in importance.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babendreier, D., Bigler, F. and Kuhlmann, U. (2005). Methods used to assess non-target effects of invertebrate biological control agents of arthropod pests. BioControl 50, 821–870.CrossRefGoogle Scholar
Bale, J. S., Harrington, R. and Clough, M. S. (1988). Low temperature mortality of the peach potato aphid Myzus persicae. Ecological Entomology 13, 121–129.CrossRefGoogle Scholar
Bale, J. S. (2005). Effects of temperature on the establishment of non-native biocontrol agents: the predictive power of laboratory data. Second International Symposium on Biological Control of Arthropods (IBSCA) Vol. II, 593–602.Google Scholar
Bale, J. S. and Walters, K. F. A. (2001). Overwintering biology as a guide to the establishment potential of non-native arthropods in the UK. In Environment and Animal Development: Genes, Life Histories and Plasticity, ed. Atkinson, D. A. and Thorndyke, M.. Oxford, UK: Bios, pp. 343–354.Google Scholar
Bale, J. S., Masters, G. J, Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J. E. L., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. and Whittaker, J. B. (2002). Herbivory in global climate change research: direct effects of rising temperatures on insect herbivores. Global Change Biology 8, 1–16.CrossRefGoogle Scholar
Bale, J. S., Lenteren, J. C. and Bigler, F. (2008) Biological control. In Sustainable Agriculture, special issue of Philosophical Transactions of the Royal Society 363, 761–776.Google ScholarPubMed
Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A. and Larsson, S. (2005). Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications 15, 2084–2096.CrossRefGoogle Scholar
Battisti, A., Stastny, M., Buffo, E. and Larsson, S. (2006). A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology 12, 662–671.CrossRefGoogle Scholar
Bentz, B. J. and Mullins, D. E. (1999). Ecology of mountain pine beetle (Coleoptera: Scolytidae) cold hardening in the intermountain West. Environmental Entomology 28, 577–587.CrossRefGoogle Scholar
Bentz, B. J., Logan, J. A. and Amman, G. D. (1991). Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. Canadian Entomologist 123, 1083–1094.CrossRefGoogle Scholar
Bigler, F. (1986). Mass production of Trichogramma maidis Pint. Et Voeg. and its field application against Ostrinia nubilalis Hbn in Switzerland. Journal of Applied Entomology 101, 23–29.CrossRefGoogle Scholar
Bigler, F., Bale, J. S., Cock, M. J. W., Dreyer, H., Greatrex, R., Kuhlmann, U., Loomans, A. J. M. and Lenteren, J. C. (2005). Guidelines on information requirements for import and release of invertebrate biological control agents in European countries. Biocontrol News and Information 26, 115–123.Google Scholar
Bigler, F., Babendreier, D. and Kuhlmann, U. (eds.) (2006). Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment, Wallingford, UK: CABI.CrossRef
Brown, P. M. J., Adriaens, T., Bathon, H., Cuppen, J., Goldarazena, A., Hagg, T., Kenis, M., Klausnitzer, B. E. M., Kovar, I., Loomans, A. J. M., Majerus, M. E. N., Nedved, O., Pedersen, J., Rabitsch, W., Roy, H. E., Ternois, V., Zacharov, I. A. and Roy, D. B. (2008). Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid. BioControl 53, 5–21.CrossRefGoogle Scholar
Buffo, E., Battisti, A., Stastny, M. and Larsson, S. (2007). Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agricultural and Forest Entomology 9, 65–72.CrossRefGoogle Scholar
Cannon, R. J. C. (1998). The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biology 4, 785–796.CrossRefGoogle Scholar
Carroll, A. L., Régnière, J., Logan, J. A., Taylor, S. W., Bentz, B. J. and Powell, J. A. (2006). Impacts of climate change on range expansion by mountain pine beetle. Mountain Pine Beetle Initiative Working Paper2006–14 ISBN 0-662-44349-7 Cat. No. Fo143–3/2006–14E.Google Scholar
Chapman, J. W., Reynolds, D. R., Smith, A. D., Riley, J. R., Pedgley, D. E. and Woiwod, I. P. (2002). High-altitude migration of the diamondback moth Plutella xylostella to the UK: a study using radar, aerial netting and ground trapping. Ecological Entomology 27, 641–650.CrossRefGoogle Scholar
Chapman, J. W., Reynolds, D. R., Mouritsen, H., Hill, J. K., Riley, J. R., Sivell, D., Smith, A. D. and Woiwod, I. P. (2008). Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Current Biology 18, 514–518.CrossRefGoogle Scholar
Clough, M. S., Bale, J. S. and Harrington, R. (1990). Differential cold hardiness in adults and nymphs of the peach-potato aphid Myzus persicae. Annals of Applied Biology 116, 1–9.CrossRefGoogle Scholar
Cole, W. A. (1981). Some risks and causes of mortality in mountain pine beetle populations: a long-term analysis. Researches in Populations Ecology 23, 116–144.CrossRefGoogle Scholar
Collier, R. H. and Finch, S. (1983a). Completion of diapause in field populations of the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata 34, 186−192.CrossRefGoogle Scholar
Collier, R. H. and Finch, S. (1983b). Effects of intensity and duration of low temperatures in regulating diapause development of the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata 34, 193−200.CrossRefGoogle Scholar
Collier, R. H. and Finch, S. (1986). Accumulated temperatures for predicting cabbage root fly, Delia radicum (L.), (Diptera: Anthomyiidae) emergence in the spring. Bulletin of Entomological Research 75, 395−404.CrossRefGoogle Scholar
Collier, R. H. and Finch, S. (1988). Thermal requirements for cabbage root fly, Delia radicum, development. In Progress on Pest Management in Field Vegetables, ed. Cavalloro, R, Pelerents, C. and Rotondo, P. P. – D. G. XIII – Luxembourg No. EUR 10514. Rotterdam: Balkema, pp. 21−26.Google Scholar
Collier, R. H., Finch, S. and Anderson, M. (1989). Laboratory studies on late emergence in the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata 50, 233−240.CrossRefGoogle Scholar
Collier, R. H., Finch, S., Phelps, K. and Thompson, A. R. (1991). Possible impact of global warming on cabbage root fly (Delia radicum) activity in the UK. Annals of Applied Biology 118, 261–271.CrossRefGoogle Scholar
Coulson, S. J. (2000). A review of the terrestrial and freshwater invertebrate fauna of the High Arctic archipelago of Svalbard. Norwegian Journal of Entomology 47, 41–63.Google Scholar
DeBach, P. and Rosen, D. (1991). Biological Control by Natural Enemies, 2nd edn., Cambridge: Cambridge University Press.Google Scholar
Draper, N. R. and Smith, H. (1981). Applied Regression Analysis. 2nd edn., New York: J. Wiley & Sons, Inc.Google Scholar
Finch, S. and Collier, R. H. (1985). Laboratory studies on aestivation in the cabbage root fly (Delia radicum). Entomologia Experimentalis et Applicata 38, 137−143.CrossRefGoogle Scholar
Foster, S. P., Harrington, R., Devonshire, A. L., Denholm, I., Devine, G. J., Kenward, M. G. and Bale, J. S. (1996). Overwintering success of insecticide-susceptible and resistant peach-potato aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae)Bulletin of Entomological Research 86, 17–27.CrossRefGoogle Scholar
Foster, S. P., Harrington, R., Devonshire, A. L., Denholm, I., Clark, S. J. and Mugglestone, M. A. (1997) Evidence for a possible fitness trade-off between insecticide resistance and low temperature movement that is essential for survival of UK populations of Myzus persicae (Hemiptera:Aphididae). Bulletin of Entomological Research 87, 573–579.CrossRefGoogle Scholar
Foster, S. P., Harrington, R., Dewar, A. M., Denholm, I. and Devonshire, A. L. (2002). Temporal and spatial dynamics of insecticide resistance in Myzus persicae (Sulzer). Pest Management Science 58, 895–907.CrossRefGoogle Scholar
Foster, S. P., Devine, G. J. and Devonshire, A. L. (2007). Insecticide resistance. In Aphids as Crop Pests, ed. Emden, H. F. and Harrington, R.. Wallingford, UK: CABI Publishing.Google Scholar
Greathead, D. J. (1976). A Review of Biological Control in Western and Southern Europe. Technical Communication No. 7. Commonwealth Institute of Biological Control, Farnham Royal, Slough, UK, 182 pp.Google Scholar
Gurr, G. M., Wratten, S. D. and Barbosa, P. (2000) Success in conservation biological control of arthropods. In Measures of Success in Biological Control, ed. Gurr, G. and Wratten, S.. Dordrecht: Kluwer Academic Publishers, pp. 105–132.CrossRefGoogle Scholar
Gutierrez, A. P., D'Oultremont, T., Ellis, C. K. and Ponti, L. (2006). Climatic limits of pink bollworm in Arizona and California: effects of climate warming. Acta Oecologica 30, 353–364.CrossRefGoogle Scholar
Gutierrez, A. P., Ponti, L., D'Oultremont, T. and Ellis, C. K. (2008). Climate change effects on poikilothermic tritrophic interactions. Climatic Change 87, 167–192.CrossRefGoogle Scholar
Harrington, R., Tatchell, G. M. and Bale, J. S. (1990). Weather, life cycle strategy and spring populations of aphids. Acta Phytopathologica & Entomologica Hungarica 25, 423–432.Google Scholar
Harrington, R, Clark, S. J., Welham, S. J., Verrier, S. J., Denholm, C. H., Hullé, M., Maurice, D., Rounsevell, M. D. A., Cocu, N. and ,EU EXAMINE Consortium (2007). Environmental change and the phenology of European aphids. Global Change Biology 13, 1550–1564.CrossRefGoogle Scholar
Harrington, R., Dewar, A. M., and George, B. (1989). Forecasting the incidence of virus yellows in sugar beet in England. Annals of Applied Biology 114, 459–469.CrossRefGoogle Scholar
Hart, A. J., Bale, J. S., Tullett, A. G., Worland, M. R. and Walters, K. F. A. (2002a). Effects of temperature on the establishment potential of the predatory mite Amblyseius californicus McGregor (Acari: Phytoseiidae) in the UK. Journal of Insect Physiology 48, 593–600.CrossRefGoogle Scholar
Hart, A. J., Tullett, A. G.Bale, J. S. and Walters, K. F. A. (2002b). Effects of temperature on the establishment potential in the UK of the non-native glasshouse biocontrol agent Macrolophus caliginosus. Physiological Entomology 27, 112–123.CrossRefGoogle Scholar
Hatherly, I. S., Hart, A. J., Tullett, A. G. T. and Bale, J. S. (2005). Use of thermal data as a screen for the establishment potential of non-native biocontrol agents in the UK. BioControl 50, 687–698.CrossRefGoogle Scholar
Hatherly, I. S., Pedersen, B. P. and Bale, J. S. (2009). Effect of host plant, prey species and intergenerational changes on the prey preferences of the predatory mirid Macrolophus caliginosus. BioControl 54, 35–45.CrossRefGoogle Scholar
Hazell, S. P., Pedersen, B. P., Worland, M. R., Blackburn, T. M. and Bale, J. S. (2008). A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiological Entomology 33, 389–394.CrossRefGoogle Scholar
Heather, N. and Hallman, G. J. (2008). Pest Management and Phytosanitary Trade Barriers. Wallingford, UK: CABI.CrossRefGoogle Scholar
Hill, J. K. and Gatehouse, A. G. (1993). Phenotypic plasticity and geographical variation in the pre-reproductive period of Autographa gamma (Lepidoptera: Noctuidae) and its implications for migration in this species. Ecological Entomology 18, 39–46.CrossRefGoogle Scholar
Hoch, G., Toffolo, E. P., Netherer, S., Battisti, A. and Schopf, A. (2009). Survival at low temperature of larvae of the pine processionary moth, Thaumetopoea pityocampa from an area of range expansion. Agricultural and Forest Entomology 11, 313–320.CrossRefGoogle Scholar
Hughes, R. D. (1960). Induction of diapause in Erioischia brassicae (Bouché) (Dipt., Anthomyiidae). Journal of Experimental Biology 37, 218–223.Google Scholar
Hunt, E., Kuhlmann, U., Sheppard, A., Qin, T. K., Barratt, B. I. P., Harrison, L., Mason, P. G., Parker, D., Flanders, R. V. and Goolsby, J. (2008). Review of invertebrate biological control regulation in Australia, New Zealand, Canada and the USA: recommendations for a harmonized European system. Journal of Applied Entomology 132, 89–123.CrossRefGoogle Scholar
Jepsen, J. U., Hagen, S. B., Ims, R. A. and Yoccoz, N. G. (2008). Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. Journal of Animal Ecology 77, 257–264.CrossRefGoogle ScholarPubMed
Jolly, N. (2000). The predatory mite Neoseiulus californicus: its potential as a biological control agent for the fruit tree red spider mite, Panonychus ulmi. BCPC conference at Brighton, Pests and Diseases, 487–490.Google Scholar
Kiritani, K. (2006). Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Population Ecology 48, 5–12.CrossRefGoogle Scholar
Kiritani, K. (2007). The impact of global warming and land-use change on the pest status of rice and fruit bugs (Heteroptera) in Japan. Global Change Biology 13, 1586–1595.CrossRefGoogle Scholar
Lapointe, S. L., Borchert, D. M. and Hall, D. G. (2007). Effect of low temperatures on mortality and oviposition in conjunction with climate mapping to predict spread of the root weevil Diaprepes abreviatus and introduced natural enemies. Environmental Entomology 36, 73–82.CrossRefGoogle ScholarPubMed
Lawton, J. H. (1995). The response of insects to environmental change. In Insects in a Changing Environment, ed. Harrington, R. and Stork, N. E.. New York: Academic Press, pp. 3–26.Google Scholar
Lenteren, J. C. and Bueno, V. H. B. P. (2003). Augmentative biological control of arthropods in Latin America. BioControl 48, 123–139.CrossRefGoogle Scholar
Lenteren, J. C. and Woets, J. (1988). Biological and integrated pest control in greenhouses. Annual Review of Entomology 33, 239–269.CrossRefGoogle Scholar
Lenteren, J. C., Bale, J. S., Bigler, F., Hokkanen, H. M. T., and Loomans, A. J. M. (2006). Assessing risks of releasing exotic biological control agents of arthropod pests. Annual Review of Entomology 51, 609–634.CrossRefGoogle ScholarPubMed
Logan, J. A. and Bentz, B. J. (1999). Model analysis of mountain pine beetle (Coleoptera: Scolytidae) seasonality. Environmental Entomology 28, 924–934.CrossRefGoogle Scholar
Musolin, D. H. (2007). Insects in a warmer world: ecological, physiological and life history responses of true bugs (Heteroptera) to climate change. Global Change Biology 13, 1565–1585.CrossRefGoogle Scholar
Musolin, D. H. and Numata, H. (2003a). Photoperiodic and temperature control of diapause induction and colour change in the southern green stink bug Nezara viridula. Physiological Entomology 28, 65–74.CrossRefGoogle Scholar
Musolin, D. H. and Numata, H. (2003b). Timing of diapause induction and its life history consequences in Nezara viridula: is it costly to expand the distribution range?Ecological Entomology 28, 694–703.CrossRefGoogle Scholar
Nilssen, A. and Tenow, O. (1990). Diapause, embryo growth and supercooling capacity of Epirrita autumnata eggs from Northern Fennoscandia. Entomologia Experimentalis et Applicata 57, 39–55.CrossRefGoogle Scholar
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W. J., Thomas, J. A. and Warren, M. (1999). Polewards shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583.CrossRefGoogle Scholar
Phelps, K., Collier, R. H., Reader, R. J. and Finch, S. (1993). Monte Carlo simulation method for forecasting the timing of pest insect attacks. Crop Protection 12, 335–342.CrossRefGoogle Scholar
Powell, J. A., Jenkins, J. L., Logan, J. A. and Bentz, B. J. (2000). Seasonal temperature alone can synchronize life cycles. Bulletin of Mathematical Biology 62, 977–998.CrossRefGoogle ScholarPubMed
Powell, S. J. and Bale, J. S. (2004). Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae). Journal of Insect Physiology 50, 277–284.CrossRefGoogle Scholar
Powell, S. J and Bale, J. S. (2005) Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. Journal of Experimental Biology 208, 2615–2620.CrossRefGoogle ScholarPubMed
Powell, S. J and Bale, J. S. (2006) Effect of long term and rapid cold hardening on the cold torpor temperature of an aphid. Physiological Entomology 31, 348–352.CrossRefGoogle Scholar
Powell, S. J. and Bale, J. S. (2008). Intergenerational acclimation in aphid overwintering. Ecological Entomology 33, 95–100.CrossRefGoogle Scholar
Qi, A., Dewar, A. M. and Harrington, R. (2004). Decision making in controlling virus yellows of sugar beet in the UK. Pesticide Management Science 60, 727–732.CrossRefGoogle ScholarPubMed
Régnière, J. and Bentz, B. J. (2007). Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. Journal of Insect Physiology 53, 559–572.CrossRefGoogle ScholarPubMed
Safranyik, L. (1978). Effect of climate and weather on mountain pine beetle populations. In Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests, ed. Kibbee, D. L., Berryman, A. A., Amman, G. D., and Stark, R. W.. Conference held at Washington State University, Pullman WA in 1978. Forest, Wildlife and Range Experiment Station, University of Idaho, Moscow ID. 224 pp.Google Scholar
Strathdee, A. T., Howling, G. G. and Bale, J. S. (1995). Cold hardiness of aphid eggs. Journal of Insect Physiology 41, 653–657.CrossRefGoogle Scholar
Talekar, N. S. and Shelton, A. M. (1993). Biology, ecology and management of the diamondback moth. Annual Review of Entomology 38, 275–301.CrossRefGoogle Scholar
Tenow, O. and Nilssen, A. (1990). Egg cold hardiness and topographical limitations to outbreaks of Epirrita autumnata in Northern Fennoscandia. Journal of Applied Ecology 27, 723–734.CrossRefGoogle Scholar
Thomas, C. D., Bodsworth, E. J., Wilson, R. J., Simmons, A. D., Davies, Z. G., Musche, M. and Conradt, L. (2001). Ecological and evolutionary processes at expanding range margins. Nature 411, 577–581.CrossRefGoogle ScholarPubMed
Tran, J. K., Ylioja, T., Billings, R. F., Régnière, J. and Ayres, M. P. (2007). Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecological Applications 17, 882–899.CrossRefGoogle ScholarPubMed
Tullett, A. G. T., Hart, A. J., Worland, M. R. and Bale, J. S. (2004). Assessing the effects of low temperature on the establishment potential in Britain of the non-native biological control agent Eretmocerus eremicus. Physiological Entomology 29, 363–371.CrossRefGoogle Scholar
Ungerer, M. J., Ayres, M. P. and Lombardero, M. J. (1999). Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). Journal of Biogeography 26, 1133–1145.CrossRefGoogle Scholar
Wäckers, F. L. (2003). The parasitoids' need for sweets: sugars in mass rearing and biological control. In Quality Control and Production of Biological Control Agents: Theory and Testing Procedures, ed. Lenteren, J. C.. Wallingford, UK: CABI, pp. 59–72.CrossRefGoogle Scholar
Werker, A. R., Dewar, A. M., and Harrington, R. (1998). Modelling the incidence of virus yellows in sugar beet in the UK in relation to numbers of migrating Myzus persicae. Journal of Applied Ecology 35, 811–818.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×