Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-18T22:15:15.284Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 June 2012

Jason H. T. Bates
Affiliation:
University of Vermont
Get access

Summary

Viewing the lungs as a mechanical system has intrigued engineers, physicists, and mathematicians for decades. Indeed, the field of lung mechanics is now mature and highly quantitative, making wide use of sophisticated mathematical and computational methods. Nevertheless, most books on lung mechanics are aimed primarily at physiologists and medical professionals, and are therefore somewhat lacking in the mathematical treatment necessary for a rigorous scientific introduction to the subject. This book attempts to fill that gap. Accordingly, some familiarity with the methods of applied mathematics, including basic calculus and differential equations, is assumed. The material covered is suitable for a first-year graduate course in bioengineering. I hope, however, it will also be accessible to motivated biologists and physiologists.

This book focuses on inverse models of lung mechanics, and is organized around the principle that these models can be arranged in a hierarchy of complexity. Chapter 1 expands on this concept and introduces the adjunct notion of forward modeling. It also sets the scene with a brief overview of pulmonary physiology in general. Chapter 2 attends to the fact that all the mathematical modeling skill in the world is for nought without good experimental data. Accordingly, this chapter is devoted to the key experimental methodologies that have provided the data on which the models described in subsequent chapters are based. It can thus be skipped without loss of continuity and referred back to when issues related to experimental validation of models arise.

Type
Chapter
Information
Lung Mechanics
An Inverse Modeling Approach
, pp. xi - xii
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Jason H. T. Bates, University of Vermont
  • Book: Lung Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511627156.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Jason H. T. Bates, University of Vermont
  • Book: Lung Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511627156.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Jason H. T. Bates, University of Vermont
  • Book: Lung Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511627156.001
Available formats
×