Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-17T07:47:10.672Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Jason H. T. Bates
Affiliation:
University of Vermont
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Lung Mechanics
An Inverse Modeling Approach
, pp. 207 - 217
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jackson, A.C. and Vinegar, A., A technique for measuring frequency response of pressure, volume, and flow transducers. J Appl Physiol, 1979. 47: p. 462–467.CrossRefGoogle ScholarPubMed
Duvivier, C., et al., Static and dynamic performances of variable reluctance and piezoresistive pressure transducers for forced oscillation measurements. Eur Respir J, 1991. 1: p. 146–150.Google Scholar
Pedley, T. and Drazen, J., Aerodynamic theory. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 41–54.Google Scholar
Bates, J.H.T., et al., Correcting for the Bernoulli effect in lateral pressure measurements. Pediatr Pulmonol, 1992. 12: p. 251–256.CrossRefGoogle ScholarPubMed
Bates, J.H. and Lauzon, A.M., A nonstatistical approach to estimating confidence intervals about model parameters: application to respiratory mechanics. IEEE Trans Biomed Eng, 1992. 39(1): p. 94–100.CrossRefGoogle ScholarPubMed
Navalesi, P., et al., Influence of site of tracheal pressure measurement on in situ estimation of endotracheal tube resistance. J Appl Physiol, 1994. 77: p. 2899–2906.CrossRefGoogle ScholarPubMed
Baydur, A., et al., A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis, 1982. 126: p. 788–791.Google ScholarPubMed
Dechman, G., Sato, J., and Bates, J.H.T., Factors affecting the accuracy of esophageal balloon measurement of pleural pressure in dogs. J Appl Physiol, 1992. 72: p. 383–388.CrossRefGoogle ScholarPubMed
Peslin, R., et al., Validity of the esophageal balloon technique at high frequencies. J Appl Physiol, 1993. 74: p. 1039–1044.CrossRefGoogle ScholarPubMed
Panizza, J.A., Comparison of balloon and transducer catheters for estimating lung elasticity. J Appl Physiol, 1992. 72: p. 231–235.CrossRefGoogle ScholarPubMed
Wang, C.G., et al., Methacholine-induced airway reactivity of inbred rats. J Appl Physiol, 1986. 61(6): p. 2180–2185.CrossRefGoogle ScholarPubMed
Fredberg, J.J., et al., Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation. J Appl Physiol, 1984. 57(3): p. 788–800.CrossRefGoogle ScholarPubMed
Bates, J.H., Baconnier, P., and Milic-Emili, J., A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol, 1988. 64(5): p. 2204–2214.CrossRefGoogle ScholarPubMed
Ludwig, M.S., et al., Partitioning of pulmonary resistance during constriction in the dog: effects of volume history. J Appl Physiol, 1987. 62(2): p. 807–815.CrossRefGoogle ScholarPubMed
Ludwig, M.S., Romero, P.V., and Bates, J.H., A comparison of the dose-response behavior of canine airways and parenchyma. J Appl Physiol, 1989. 67(3): p. 1220–1225.CrossRefGoogle ScholarPubMed
Tomioka, S., Bates, J.H., and Irvin, C.G., Airway and tissue mechanics in a murine model of asthma: alveolar capsule vs. forced oscillations. J Appl Physiol, 2002. 93(1): p. 263–270.CrossRefGoogle Scholar
Bates, J.H., et al., Measurement of alveolar pressure in closed-chest dogs during flow interruption. J Appl Physiol, 1989. 67(1): p. 488–492.CrossRefGoogle ScholarPubMed
Renzi, P.E., Giurdanella, C.A., and Jackson, A.C., Improved frequency response of pneumotachometers by digital compensation. J Appl Physiol, 1990. 68: p. 382–386.CrossRefGoogle ScholarPubMed
Farre, R., et al., Analysis of the dynamic characteristics of pressure transducers for studying respiratory mechanics at high frequencies. Med & Biol Eng & Comput, 1989. 27: p. 531–536.CrossRefGoogle ScholarPubMed
Schuessler, T.F., Maksym, G.N., and Bates, J.H.T., Estimating tracheal flow in small animals. Proceedings of the 15th Annual International Meeting of the IEEE Engineering in Medicine and Biology Society, San Diego, October 28–31, 1993: p. 560–561.Google Scholar
Schibler, A., et al., Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J, 2002. 20(4): p. 912–918.CrossRefGoogle ScholarPubMed
Clary, A.L. and Fouke, J.M., Fast-responding automated airway temperature probe. Med & Biol Eng & Comput, 1991. 29: p. 501–504.CrossRefGoogle ScholarPubMed
Cohen, K.P., et al., Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction. IEEE Trans Biomed Eng, 1997. 44: p. 555–566.CrossRefGoogle ScholarPubMed
Aliverti, A., et al., Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Ann Biomed Eng, 2001. 29: p. 60–70.CrossRefGoogle ScholarPubMed
Bates, J.H.T., Measurement techniques in respiratory mechanics. In Physiologic Basis of Respiratory Disease. Hamid, Q., Shannon, J., and Martin, J., Editors. 2005, Hamilton, Canada: BC Decker, p. 623–637.Google Scholar
Lundblad, L.K., et al., Airway hyperresponsiveness in allergically inflamed mice: the role of airway closure. Am J Respir Crit Care Med, 2007. 175(8): p. 768–774.CrossRefGoogle ScholarPubMed
Gold, W., Pulmonary function testing. In Textbook of Respiratory Medicine. Murray, J. and Nadel, J., Editors. 2000, Philadelphia, PA: Saunders, p. 793–799.Google Scholar
Shore, S., Milic-Emili, J., and Martin, J.G., Reassessment of body plethysmographic technique for the measurement of thoracic gas volume in asthmatics. Am Rev Respir Dis, 1982. 126(3): p. 515–520.Google ScholarPubMed
Dechman, G.S., et al., The effect of changing end-expiratory pressure on respiratory system mechanics in open- and closed-chest anesthetized, paralyzed patients. Anesth Analg, 1995. 81(2): p. 279–286.Google ScholarPubMed
Marini, J.J., Auto-positive end-expiratory pressure and flow limitation in adult respiratory distress syndrome–intrinsically different? Crit Care Med, 2002. 30(9): p. 2140–2141.CrossRefGoogle ScholarPubMed
Neergaard, K. and Wirz, K., Die Messung der Stromungswiderstande in den Atemwegen des Menschen, insbesondere bei Asthma und Emphysem. Ztschr f Klin Med, 1927. 105: p. 51–82.Google Scholar
Mols, G., et al., Volume-dependent compliance in ARDS: proposal of a new diagnostic concept. Intensive Care Med, 1999. 25(10): p. 1084–1091.CrossRefGoogle ScholarPubMed
Mead, J. and Whittenberger, J.L., Evaluation of airway interruption technique as a method for measuring pulmonary airflow resistance. J Appl Physiol, 1954. 6(7): p. 408–416.CrossRefGoogle ScholarPubMed
Frank, N.R., Mead, J., and Whittenberger, J.L., Comparative sensitivity of four methods for measuring changes in respiratory flow resistance in man. J Appl Physiol, 1971. 31(6): p. 934–938.CrossRefGoogle ScholarPubMed
Lauzon, A.M. and Bates, J.H., Estimation of time-varying respiratory mechanical parameters by recursive least squares. J Appl Physiol, 1991. 71(3): p. 1159–1165.CrossRefGoogle ScholarPubMed
Lee, R.C.K., Optimal Estimation, Identification and Control. 1964, Cambridge, MA: MIT Press.Google Scholar
Hantos, Z., et al., Parameter estimation of transpulmonary mechanics by a nonlinear inertive model. J Appl Physiol, 1982. 52(4): p. 955–963.CrossRefGoogle ScholarPubMed
Bijaoui, E.L., et al., Mechanical properties of the lung and upper airways in patients with sleep-disordered breathing. Am J Respir Crit Care Med, 2002. 165(8): p. 1055–1061.CrossRefGoogle ScholarPubMed
West, J., Respiratory Physiology. The Essentials. 6th edition. 1999, Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Leff, A. and Schumacker, P., Respiratory Physiology. Basics and Applications. 1993, Philadelphia, PA: Saunders.Google Scholar
Pedley, T.J., Schroter, R.C., and Sudlow, M.F., The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir Physiol, 1970. 9(3): p. 387–405.CrossRefGoogle ScholarPubMed
Kabilan, S., Lin, C.L., and Hoffman, E.A., Characteristics of airflow in a CT-based ovine lung: a numerical study. J Appl Physiol, 2007. 102(4): p. 1469–1482.CrossRefGoogle Scholar
Weibel, E., Morphometry of the Human Lung. 1963, Berlin: Springer.CrossRefGoogle Scholar
Horsfield, K., Kemp, W., and Phillips, S., An asymmetrical model of the airways of the dog lung. J Appl Physiol, 1982. 52(1): p. 21–26.CrossRefGoogle ScholarPubMed
Fredberg, J. and Hoenig, A., Mechanical response of the lung at high frequencies. J Biomech Eng, 1978. 100: p. 57–66.CrossRefGoogle Scholar
Lutchen, K.R., Greenstein, J.L., and Suki, B., How inhomogeneities and airway walls affect frequency dependence and separation of airway and tissue properties. J Appl Physiol, 1996. 80(5): p. 1696–1707.CrossRefGoogle ScholarPubMed
Thorpe, C.W. and Bates, J.H., Effect of stochastic heterogeneity on lung impedance during acute bronchoconstriction: a model analysis. J Appl Physiol, 1997. 82(5): p. 1616–1625.CrossRefGoogle ScholarPubMed
Gillis, H.L. and Lutchen, K.R., How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: a morphometric model. Ann Biomed Eng, 1999. 27(1): p. 14–22.CrossRefGoogle ScholarPubMed
Gomes, R.F. and Bates, J.H., Geometric determinants of airway resistance in two isomorphic rodent species. Respir Physiol Neurobiol, 2002. 130(3): p. 317–325.CrossRefGoogle ScholarPubMed
Kaczka, D.W., et al., Airway and lung tissue mechanics in asthma. Effects of albuterol. Am J Respir Crit Care Med, 1999. 159(1): p. 169–178.CrossRefGoogle ScholarPubMed
Ebihara, T., et al., Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis. Temporal aspects. Am J Respir Crit Care Med, 2000. 162(4 Pt 1): p. 1569–1576.CrossRefGoogle ScholarPubMed
Bates, J.H., Cojocaru, A., and Lundblad, L.K., Bronchodilatory effect of deep inspiration on the dynamics of bronchoconstriction in mice. J Appl Physiol, 2007. 103(5): p. 1696–1705.CrossRefGoogle ScholarPubMed
Lauzon, A.M. and Bates, J.H., Kinetics of respiratory system elastance after airway challenge in dogs. J Appl Physiol, 2000. 89(5): p. 2023–2029.CrossRefGoogle ScholarPubMed
Bates, J.H., et al., Temporal dynamics of pulmonary response to intravenous histamine in dogs: effects of dose and lung volume. J Appl Physiol, 1994. 76(2): p. 616–626.CrossRefGoogle ScholarPubMed
Mitzner, W., et al., Effect of bronchial smooth muscle contraction on lung compliance. J Appl Physiol, 1992. 72(1): p. 158–167.CrossRefGoogle ScholarPubMed
Bates, J.H., Donoso, F.A., and Peslin, R., Airway and tissue impedances of canine lungs after step volume changes. J Appl Physiol, 1993. 75(4): p. 1460–1466.CrossRefGoogle ScholarPubMed
Kelly, S.M., Bates, J.H., and Michel, R.P., Altered mechanical properties of lung parenchyma in postobstructive pulmonary vasculopathy. J Appl Physiol, 1994. 77(6): p. 2543–2551.CrossRefGoogle ScholarPubMed
Verbeken, E.K., et al., Structure and function in fibrosing alveolitis. J Appl Physiol, 1994. 76(2): p. 731–742.CrossRefGoogle ScholarPubMed
Takubo, Y., et al., Alpha1-antitrypsin determines the pattern of emphysema and function in tobacco smoke-exposed mice: parallels with human disease. Am J Respir Crit Care Med, 2002. 166(12 Pt 1): p. 1596–1603.CrossRefGoogle ScholarPubMed
Verbeken, E.K., et al., Tissue and airway impedance of excised normal, senile, and emphysematous lungs. J Appl Physiol, 1992. 72(6): p. 2343–2353.CrossRefGoogle ScholarPubMed
Hubmayr, R.D., Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med, 2002. 165(12): p. 1647–1653.CrossRefGoogle Scholar
Halpern, D. and Grotberg, J.B., Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes: a model of airway closure. J Biomech Eng, 1993. 115(3): p. 271–277.CrossRefGoogle ScholarPubMed
Allen, G.B., et al., Pulmonary impedance and alveolar instability during injurious ventilation in rats. J Appl Physiol, 2005. 99(2): p. 723–730.CrossRefGoogle ScholarPubMed
Crotti, S., et al., Recruitment and derecruitment during acute respiratory failure. An experimental study. Am J Respir Cell Mol Biol, 2001. 164: p. 131–140.Google Scholar
Gattinoni, L., et al., Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med, 1995. 151(6): p. 1807–1814.CrossRefGoogle ScholarPubMed
King, G.G., et al., Differences in airway closure between normal and asthmatic subjects measured with single-photon emission computed tomography and technegas. Am J Respir Crit Care Med, 1998. 158(6): p. 1900–1906.CrossRefGoogle ScholarPubMed
Christie, R.V., The elastic properties of the emphysematous lung and their clinical significance. J Clin Invest, 1934. 13(2): p. 295–321.CrossRefGoogle ScholarPubMed
Bachofen, H., Hildebrandt, J., and Bachofen, M., Pressure-volume curves of air- and liquid-filled excised lungs-surface tension in situ. J Appl Physiol, 1970. 29(4): p. 422–431.CrossRefGoogle ScholarPubMed
Prange, H.D., Laplace's law and the alveolus: a misconception of anatomy and a misapplication of physics. Adv Physiol Educ, 2003. 27(1–4): p. 34–40.CrossRefGoogle Scholar
Allen, G., et al., Transient mechanical benefits of a deep inflation in the injured mouse lung. J Appl Physiol, 2002. 93(5): p. 1709–1715.CrossRefGoogle ScholarPubMed
Lauzon, A.M., Dechman, G., and Bates, J.H., Time course of respiratory mechanics during histamine challenge in the dog. J Appl Physiol, 1992. 73(6): p. 2643–2647.CrossRefGoogle ScholarPubMed
Ingram, R.H. and Pedley, T.J., Pressure-flow relationships in the lungs. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 277–293.Google Scholar
Lutchen, K.R., et al., Airway inhomogeneities contribute to apparent lung tissue mechanics during constriction. J Appl Physiol, 1996. 80(5): p. 1841–1849.CrossRefGoogle ScholarPubMed
Mishima, M., Balassy, Z., and Bates, J.H., Acute pulmonary response to intravenous histamine using forced oscillations through alveolar capsules in dogs. J Appl Physiol, 1994. 77(5): p. 2140–2148.CrossRefGoogle ScholarPubMed
Ding, D.J., Martin, J.G., and Macklem, P.T., Effects of lung volume on maximal methacholine-induced bronchoconstriction in normal humans. J Appl Physiol, 1987. 62(3): p. 1324–1330.CrossRefGoogle ScholarPubMed
An, S.S., et al., Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J, 2007. 29(5): p. 834–860.CrossRefGoogle ScholarPubMed
Brusasco, V. and Pellegrino, R., Complexity of factors modulating airway narrowing in vivo: relevance to assessment of airway hyperresponsiveness. J Appl Physiol, 2003. 95(3): p. 1305–1313.CrossRefGoogle ScholarPubMed
McParland, B.E., Macklem, P.T., and Pare, P.D., Airway wall remodeling: friend or foe? J Appl Physiol, 2003. 95(1): p. 426–434.CrossRefGoogle ScholarPubMed
Bates, J.H. and Lauzon, A.M., Parenchymal tethering, airway wall stiffness, and the dynamics of bronchoconstriction. J Appl Physiol, 2007. 102(5): p. 1912–1920.CrossRefGoogle ScholarPubMed
Moreno, R.H., Hogg, J.C., and Pare, P.D., Mechanics of airway narrowing. Am Rev Respir Dis, 1986. 133(6): p. 1171–1180.Google ScholarPubMed
Yager, D., et al., Amplification of airway constriction due to liquid filling of airway interstices. J Appl Physiol, 1989. 66(6): p. 2873–2884.CrossRefGoogle ScholarPubMed
Wiggs, B.R., et al., A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis, 1992. 145(6): p. 1251–1258.CrossRefGoogle ScholarPubMed
Bates, J.H., et al., The synergistic interactions of allergic lung inflammation and intratracheal cationic protein. Am J Respir Crit Care Med, 2008. 177(3): p. 261–268.CrossRefGoogle ScholarPubMed
Brown, K., et al., Evaluation of the flow-volume loop as an intra-operative monitor of respiratory mechanics in infants. Pediatr Pulmonol, 1989. 6(1): p. 8–13.CrossRefGoogle ScholarPubMed
Wagers, S., et al., Nonlinearity of respiratory mechanics during bronchoconstriction in mice with airway inflammation. J Appl Physiol, 2002. 92(5): p. 1802–1807.CrossRefGoogle ScholarPubMed
Bersten, A.D., Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J, 1998. 12: p. 526–532.CrossRefGoogle ScholarPubMed
Salazar, E. and Knowles, J.H., An analysis of pressure-volume characteristics of the lungs. J Appl Physiol, 1964. 19: p. 97–104.CrossRefGoogle ScholarPubMed
Eidelman, D.H., Ghezzo, H., and Bates, J.H., Exponential fitting of pressure-volume curves: confidence limits and sensitivity to noise. J Appl Physiol, 1990. 69(4): p. 1538–1541.CrossRefGoogle ScholarPubMed
Venegas, J.G., Harris, R.S, and Simon, B.A., A comprehensive equation for the pulmonary pressure-volume curve. J Appl Physiol, 1998. 84(1): p. 389–395.CrossRefGoogle ScholarPubMed
Goerke, J. and Clements, J.A., Alveolar surface tension and lung surfactant. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 247–261.Google Scholar
Otis, D.R., et al., Role of pulmonary surfactant in airway closure: a computational study. J Appl Physiol, 1993. 75(3): p. 1323–1333.CrossRefGoogle ScholarPubMed
Allen, G. and Bates, J.H., Dynamic mechanical consequences of deep inflation in mice depend on type and degree of lung injury. J Appl Physiol, 2004. 96(1): p. 293–300.CrossRefGoogle ScholarPubMed
Mead, J., Mechanical properties of lungs. Physiol Rev, 1961. 41: p. 281–330.CrossRefGoogle ScholarPubMed
Fung, Y.C., Microrheology and constitutive equation of soft tissue. Biorheology, 1988. 25(1–2): p. 261–270.CrossRefGoogle ScholarPubMed
Haut, R.C. and Little, R.W., A constitutive equation for collagen fibers. J Biomech, 1972. 5(5): p. 423–430.CrossRefGoogle ScholarPubMed
Fung, Y., Biomechanics. Mechanical Properties of Living Tissues. 1981, New York, NY: Springer-Verlag, p. 41–53.Google Scholar
Sobin, S.S., Fung, Y.C., and Tremer, H.M., Collagen and elastin fibers in human pulmonary alveolar walls. J Appl Physiol, 1988. 64(4): p. 1659–1675.CrossRefGoogle ScholarPubMed
Maksym, G.N. and Bates, J.H., A distributed nonlinear model of lung tissue elasticity. J Appl Physiol, 1997. 82(1): p. 32–41.CrossRefGoogle ScholarPubMed
Suki, B. and Bates, J.H., Extracellular matrix mechanics in lung parenchymal diseases. Respir Physiol Neurobiol, 2008. 163(1–3): p. 33–43.CrossRefGoogle ScholarPubMed
Maksym, G.N., Fredberg, J.J., and Bates, J.H., Force heterogeneity in a two-dimensional network model of lung tissue elasticity. J Appl Physiol, 1998. 85(4): p. 1223–1229.CrossRefGoogle Scholar
Bates, J.H., et al., Linking parenchymal disease progression to changes in lung mechanical function by percolation. Am J Respir Crit Care Med, 2007. 176(6): p. 617–623.CrossRefGoogle ScholarPubMed
Collard, H.R., et al., Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2007. 176(7): p. 636–643.CrossRefGoogle ScholarPubMed
Pagano, M. and Gauvreau, K., Analysis of variance. In Principles of Biostatistics. 2000, Pacific Grove, CA: Duxbury, p. 288–290.Google Scholar
Akaike, H., A new look at the statistical model identification. IEEE Trans Automatic Control, 1974. 16(6): p. 716–723.CrossRefGoogle Scholar
Hurvich, C.M. and Tsai, C.-L., Regression and time series model selection in small samples. Biometrika, 1989. 76: p. 297–307.CrossRefGoogle Scholar
Kaczka, D.W., Massa, C.B., and Simon, B.A., Reliability of estimating stochastic lung tissue heterogeneity from pulmonary impedance spectra: a forward-inverse modeling study. Ann Biomed Eng, 2007. 35(10): p. 1722–1738.CrossRefGoogle ScholarPubMed
Hyatt, R., Forced expiration. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 295–314.Google Scholar
Fish, J., Bronchial challenge testing. In Allergy: Principles and Practice. 4th edition. Middleton, E., Editor. 1993, St. Louis, MO: Mosby-Year Book.Google Scholar
Wilson, T., Rodarte, J., and Butler, J., Wave-speed and viscous flow limitation. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 295–314.Google Scholar
Bates, J.H.T., Physics of expiratory flow limitation. In Physiologic Basis of Respiratory Disease. Hamid, Q., Shannon, J., and Martin, J., Editors. 2005, Hamilton, Canada: BC Decker, p. 55–60.Google Scholar
Du Toit, J.I., et al., Characteristics of bronchial hyperresponsiveness in smokers with chronic air-flow limitation. Am Rev Respir Dis, 1986. 134(3): p. 498–501.Google ScholarPubMed
Cherniak, R., Pulmonary Function Testing. 1977, Phildelphia, PA: WB Saunders.Google Scholar
Polak, A.G. and Lutchen, K.R., Computational model for forced expiration from asymmetric normal lungs. Ann Biomed Eng, 2003. 31(8): p. 891–907.CrossRefGoogle ScholarPubMed
Lambert, R.K., Simulation of the effects of mechanical nonhomogeneities on expiratory flow from human lungs. J Appl Physiol, 1990. 68(6): p. 2550–2563.CrossRefGoogle ScholarPubMed
Macklem, P.T. and Mead, J., Factors determining maximum expiratory flow in dogs. J Appl Physiol, 1968. 25(2): p. 159–169.CrossRefGoogle ScholarPubMed
Dawson, S.V. and Elliott, E.A., Wave-speed limitation on expiratory flow – a unifying concept. J Appl Physiol, 1977. 43(3): p. 498–515.CrossRefGoogle ScholarPubMed
Mink, S., Ziesmann, M., and Wood, L.D., Mechanisms of increased maximum expiratory flow during HeO2 breathing in dogs. J Appl Physiol, 1979. 47(3): p. 490–502.CrossRefGoogle ScholarPubMed
Weinberger, H., A First Course in Partial Differential Equations. 1965, New York, NY: Wiley.Google Scholar
Pride, N.B., et al., Determinants of maximal expiratory flow from the lungs. J Appl Physiol, 1967. 23(5): p. 646–662.CrossRefGoogle ScholarPubMed
Zamir, M., Pulsatile flow in an elastic tube. In The Physics of Pulsatile Flow. 2000, New York, NY: Springer-Verlag, p. 113–146.CrossRefGoogle Scholar
Foss, S.D., A method of exponential curve fitting by numerical integration. Biometrics, 1970. 26: p. 815–821.CrossRefGoogle Scholar
Bates, J.H., et al., Respiratory resistance with histamine challenge by single-breath and forced oscillation methods. J Appl Physiol, 1986. 61(3): p. 873–880.CrossRefGoogle ScholarPubMed
Bates, J.H., et al., Volume-time profile during relaxed expiration in the normal dog. J Appl Physiol, 1985. 59(3): p. 732–737.CrossRefGoogle ScholarPubMed
Otis, A.B., et al., Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol, 1956. 8(4): p. 427–443.CrossRefGoogle ScholarPubMed
Mead, J., Contribution of compliance of airways to frequency-dependent behavior of lungs. J Appl Physiol, 1969. 26(5): p. 670–673.CrossRefGoogle ScholarPubMed
Macklem, P.T., Airway obstruction and collateral ventilation. Physiol Rev, 1971. 51(2): p. 368–436.CrossRefGoogle ScholarPubMed
Mount, L.E., The ventilation flow-resistance and compliance of rat lungs. J Physiol, 1955. 127(1): p. 157–167.CrossRefGoogle ScholarPubMed
Bates, J.H., Rossi, A., and Milic-Emili, J., Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol, 1985. 58(6): p. 1840–1848.CrossRefGoogle ScholarPubMed
Similowski, T. and Bates, J.H., Two-compartment modelling of respiratory system mechanics at low frequencies: gas redistribution or tissue rheology? Eur Respir J, 1991. 4(3): p. 353–358.Google ScholarPubMed
D'Angelo, E., et al., Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time. J Appl Physiol, 1989. 67(6): p. 2556–2564.CrossRefGoogle Scholar
Bates, J.H., et al., Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol, 1988. 65(1): p. 408–414.CrossRefGoogle ScholarPubMed
Romero, P.V., et al., High-frequency characteristics of respiratory mechanics determined by flow interruption. J Appl Physiol, 1990. 69(5): p. 1682–1688.CrossRefGoogle ScholarPubMed
Fredberg, J.J., et al., Nonhomogeneity of lung response to inhaled histamine assessed with alveolar capsules. J Appl Physiol, 1985. 58(6): p. 1914–1922.CrossRefGoogle ScholarPubMed
Ludwig, M.S., et al., Interpretation of interrupter resistance after histamine-induced constriction in the dog. J Appl Physiol, 1990. 68(4): p. 1651–1656.CrossRefGoogle ScholarPubMed
Sato, J., et al., Low-frequency respiratory system resistance in the normal dog during mechanical ventilation. J Appl Physiol, 1991. 70(4): p. 1536–1543.CrossRefGoogle ScholarPubMed
D'Angelo, E., Tavola, M., and Milic-Emili, J., Volume and time dependence of respiratory system mechanics in normal anaesthetized paralysed humans. Eur Respir J, 2000. 16(4): p. 665–672.CrossRefGoogle ScholarPubMed
Cooley, J.W. and Tukey, J.W., An algorithm for the machine calculation of complex Fourier series. Math Comput, 1965. 19: p. 297–301.CrossRefGoogle Scholar
Dubois, A.B., et al., Oscillation mechanics of lungs and chest in man. J Appl Physiol, 1956. 8(6): p. 587–594.CrossRefGoogle ScholarPubMed
Peslin, R. and Fredberg, J., Oscillation mechanics of the respiratory system. In Handbook of Physiology. Section 3: The Respiratory System. Macklem, P. and Mead, J., Editors. 1986, Bethesda, MD: American Physiological Society, p. 145–178.Google Scholar
Zwart, A. and Woestijne, K.P. Vaqn, Mechanical respiratory impedance by forced oscillation. European Respiratory Review, 1994. 4: p. 114–237.Google Scholar
Ferris, B.G., Mead, J., and Opie, L.H., Partitioning of respiratory flow resistance in man. J Appl Physiol, 1964. 19: p. 653–658.CrossRefGoogle ScholarPubMed
Franken, H., et al., Forced oscillation technique: comparison of two devices. J Appl Physiol, 1985. 59(5): p. 1654–1659.CrossRefGoogle ScholarPubMed
Peslin, R., et al., Respiratory impedance measured with head generator to minimize upper airway shunt. J Appl Physiol, 1985. 59(6): p. 1790–1795.CrossRefGoogle ScholarPubMed
Lutchen, K.R., et al., Use of transfer impedance measurements for clinical assessment of lung mechanics. Am J Respir Crit Care Med, 1998. 157(2): p. 435–446.CrossRefGoogle ScholarPubMed
Kaminsky, D.A., et al., Oscillation mechanics of the human lung periphery in asthma. J Appl Physiol, 2004. 97(5): p. 1849–1858.CrossRefGoogle ScholarPubMed
Davey, B.L. and Bates, J.H., Regional lung impedance from forced oscillations through alveolar capsules. Respir Physiol, 1993. 91(2–3): p. 165–182.CrossRefGoogle ScholarPubMed
Bijaoui, E., Baconnier, P.F., and Bates, J.H., Mechanical output impedance of the lung determined from cardiogenic oscillations. J Appl Physiol, 2001. 91(2): p. 859–865.CrossRefGoogle ScholarPubMed
Schuessler, T.F. and Bates, J.H., A computer-controlled research ventilator for small animals: design and evaluation. IEEE Trans Biomed Eng, 1995. 42(9): p. 860–866.CrossRefGoogle ScholarPubMed
Lutchen, K.R., et al., Airway constriction pattern is a central component of asthma severity: the role of deep inspirations. Am J Respir Crit Care Med, 2001. 164(2): p. 207–215.CrossRefGoogle ScholarPubMed
Lutchen, K.R., et al., Optimal ventilation waveforms for estimating low-frequency respiratory impedance. J Appl Physiol, 1993. 75(1): p. 478–488.CrossRefGoogle ScholarPubMed
Johnson, A.T., Lin, C.S., and Hochheimer, J.N., Airflow perturbation device for measuring airways resistance of humans and animals. IEEE Trans Biomed Eng, 1984. 31(9): p. 622–626.CrossRefGoogle ScholarPubMed
Bates, J.H., Daroczy, B., and Hantos, Z., A comparison of interrupter and forced oscillation measurements of respiratory resistance in the dog. J Appl Physiol, 1992. 72(1): p. 46–52.CrossRefGoogle ScholarPubMed
Michaelson, E.D., Grassman, E.D., and Peters, W.R., Pulmonary mechanics by spectral analysis of forced random noise. J Clin Invest, 1975. 56(5): p. 1210–1230.CrossRefGoogle ScholarPubMed
Goldman, M.D., et al., Within- and between-day variability of respiratory impedance, using impulse oscillometry in adolescent asthmatics. Pediatr Pulmonol, 2002. 34(4): p. 312–319.CrossRefGoogle ScholarPubMed
Daroczy, B. and Hantos, Z., Generation of optimum pseudorandom signals for respiratory impedance measurements. Int J Biomed Comput, 1990. 25: p. 21–31.CrossRefGoogle ScholarPubMed
Nagels, J., et al., Mechanical properties of lungs and chest wall during spontaneous breathing. J Appl Physiol, 1980. 49(3): p. 408–416.CrossRefGoogle ScholarPubMed
Hantos, Z., et al., Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol, 1992. 72(1): p. 168–178.CrossRefGoogle ScholarPubMed
Landser, F.J., Clement, J., and Woestijne, K.P., Normal values of total respiratory resistance and reactance determined by forced oscillations: influence of smoking. Chest, 1982. 81(5): p. 586–591.CrossRefGoogle ScholarPubMed
Peslin, R., Duvivier, C., and Gallina, C., Total respiratory input and transfer impedances in humans. J Appl Physiol, 1985. 59(2): p. 492–501.CrossRefGoogle ScholarPubMed
Bates, J.H., Mishima, M., and Balassy, Z., Measuring the mechanical properties of the lung in vivo with spatial resolution at the acinar level. Physiol Meas, 1995. 16(3): p. 151–159.CrossRefGoogle ScholarPubMed
Mishima, M., Balassy, Z., and Bates, J.H., Assessment of local lung impedance by the alveolar capsule oscillator in dogs: a model analysis. J Appl Physiol, 1996. 80(4): p. 1165–1172.CrossRefGoogle ScholarPubMed
Balassy, Z., Mishima, M., and Bates, J.H., Changes in regional lung impedance after intravenous histamine bolus in dogs: effects of lung volume. J Appl Physiol, 1995. 78(3): p. 875–880.CrossRefGoogle ScholarPubMed
Lutchen, K.R., Giurdanella, C.A., and Jackson, A.C., Inability to separate airway from tissue properties by use of human respiratory input impedance. J Appl Physiol, 1990. 68(6): p. 2403–2412.CrossRefGoogle ScholarPubMed
Finucane, K.E., et al., Resistance of intrathoracic airways of healthy subjects during periodic flow. J Appl Physiol, 1975. 38(3): p. 517–530.CrossRefGoogle ScholarPubMed
Petak, F., et al., Partitioning of pulmonary impedance: modeling vs. alveolar capsule approach. J Appl Physiol, 1993. 75(2): p. 513–521.CrossRefGoogle ScholarPubMed
Hantos, Z., et al., Mechanical impedance of the lung periphery. J Appl Physiol, 1997. 83(5): p. 1595–1601.CrossRefGoogle ScholarPubMed
Bates, J.H. and Lutchen, K.R., The interface between measurement and modeling of peripheral lung mechanics. Respir Physiol Neurobiol, 2005. 148(1–2): p. 153–164.CrossRefGoogle ScholarPubMed
Bates, J.H., et al., Temporal dynamics of acute isovolume bronchoconstriction in the rat. J Appl Physiol, 1997. 82(1): p. 55–62.CrossRefGoogle ScholarPubMed
Lutchen, K.R. and Jackson, A.C., Reliability of parameter estimates from models applied to respiratory impedance data. J Appl Physiol, 1987. 62(2): p. 403–413.CrossRefGoogle ScholarPubMed
Wagers, S., et al., The allergic mouse model of asthma: normal smooth muscle in an abnormal lung? J Appl Physiol, 2004. 96(6): p. 2019–2027.CrossRefGoogle Scholar
Peslin, R., et al., Frequency response of the chest: modeling and parameter estimation. J Appl Physiol, 1975. 39(4): p. 523–534.CrossRefGoogle ScholarPubMed
Sobh, J.F., et al., Respiratory transfer impedance between 8 and 384 Hz in guinea pigs before and after bronchial challenge. J Appl Physiol, 1997. 82(1): p. 172–181.CrossRefGoogle ScholarPubMed
Aliverti, A., Dellaca, R.L., and Pedotti, A., Transfer impedance of the respiratory system by forced oscillation technique and optoelectronic plethysmography. Ann Biomed Eng, 2001. 29(1): p. 71–82.CrossRefGoogle ScholarPubMed
Dellaca, R.L., et al., Spatial distribution of human respiratory system transfer impedance. Ann Biomed Eng, 2003. 31(2): p. 121–131.CrossRefGoogle ScholarPubMed
Mishima, M., et al., Frequency characteristics of airway and tissue impedances in respiratory diseases. J Appl Physiol, 1991. 71(1): p. 259–270.CrossRefGoogle ScholarPubMed
Tomalak, W., et al., Optimal frequency range to analyze respiratory transfer impedance with six-element model. J Appl Physiol, 1993. 75(6): p. 2656–2664.CrossRefGoogle ScholarPubMed
Lutchen, K.R., Sensitivity analysis of respiratory parameter uncertainties: impact of criterion function form and constraints. J Appl Physiol, 1990. 69(2): p. 766–775.CrossRefGoogle ScholarPubMed
Jackson, A.C., Giurdanella, C.A., and Dorkin, H.L., Density dependence of respiratory system impedances between 5 and 320 Hz in humans. J Appl Physiol, 1989. 67(6): p. 2323–2330.CrossRefGoogle ScholarPubMed
Franken, H., et al., Oscillating flow of a viscous compressible fluid through a rigid tube: a theoretical model. IEEE Trans Biomed Eng, 1981. 28(5): p. 416–420.CrossRefGoogle ScholarPubMed
Benade, A.H., On the propagation of sound waves in a cylindrical conduit. J Acoust Soc Am, 1950. 22: p. 563–564.Google Scholar
Bates, J.H., et al., Lung tissue rheology and 1/f noise. Ann Biomed Eng, 1994. 22(6): p. 674–681.CrossRefGoogle ScholarPubMed
Hildebrandt, J., Dynamic properties of air-filled excised cat lung determined by liquid plethysmograph. J Appl Physiol, 1969. 27(2): p. 246–250.CrossRefGoogle ScholarPubMed
Fredberg, J.J. and Stamenovic, D., On the imperfect elasticity of lung tissue. J Appl Physiol, 1989. 67(6): p. 2408–2419.CrossRefGoogle ScholarPubMed
Gomes, R.F., et al., Comparative respiratory system mechanics in rodents. J Appl Physiol, 2000. 89(3): p. 908–916.CrossRefGoogle ScholarPubMed
Suki, B., et al., Partitioning of airway and lung tissue properties: comparison of in situ and open-chest conditions. J Appl Physiol, 1995. 79(3): p. 861–869.CrossRefGoogle ScholarPubMed
Fredberg, J.J., et al., Tissue resistance and the contractile state of lung parenchyma. J Appl Physiol, 1993. 74(3): p. 1387–1397.CrossRefGoogle ScholarPubMed
Fust, A., Bates, J.H., and Ludwig, M.S., Mechanical properties of mouse distal lung: in vivo versus in vitro comparison. Respir Physiol Neurobiol, 2004. 143(1): p. 77–86.CrossRefGoogle ScholarPubMed
Sakai, H., et al., Hysteresivity of the lung and tissue strip in the normal rat: effects of heterogeneities. J Appl Physiol, 2001. 91(2): p. 737–747.CrossRefGoogle ScholarPubMed
Hantos, Z., et al., Constant-phase modelling of pulmonary tissue impedance. Bull Eur Physiopathol Respir, 1987. 12: p. 326s.Google Scholar
Suki, B., Barabasi, A.L., and Lutchen, K.R., Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J Appl Physiol, 1994. 76(6): p. 2749–2759.CrossRefGoogle ScholarPubMed
Petak, F., et al., Methacholine-induced bronchoconstriction in rats: effects of intravenous vs. aerosol delivery. J Appl Physiol, 1997. 82(5): p. 1479–1487.CrossRefGoogle ScholarPubMed
Bates, J.H., A recruitment model of quasi-linear power-law stress adaptation in lung tissue. Ann Biomed Eng, 2007. 35(7): p. 1165–1174.CrossRefGoogle ScholarPubMed
Bates, J.H., A micromechanical model of lung tissue rheology. Ann Biomed Eng, 1998. 26(4): p. 679–687.CrossRefGoogle ScholarPubMed
Mijailovich, S.M., Stamenovic, D., and Fredberg, J.J., Toward a kinetic theory of connective tissue micromechanics. J Appl Physiol, 1993. 74(2): p. 665–681.CrossRefGoogle Scholar
Ito, S., et al., Tissue heterogeneity in the mouse lung: effects of elastase treatment. J Appl Physiol, 2004. 97(1): p. 204–212.CrossRefGoogle ScholarPubMed
Suki, B., et al., Partitioning of lung tissue response and inhomogeneous airway constriction at the airway opening. J Appl Physiol, 1997. 82(4): p. 1349–1359.CrossRefGoogle ScholarPubMed
Bellardine Black, C.L., et al., Impact of positive end-expiratory pressure during heterogeneous lung injury: insights from computed tomographic image functional modeling. Ann Biomed Eng, 2008. 36(6): p. 980–991.CrossRefGoogle ScholarPubMed
Kaczka, D.W., et al., Partitioning airway and lung tissue resistances in humans: effects of bronchoconstriction. J Appl Physiol, 1997. 82(5): p. 1531–1541.CrossRefGoogle ScholarPubMed
Hirai, T. and Bates, J.H., Effects of deep inspiration on bronchoconstriction in the rat. Respir Physiol, 2001. 127(2–3): p. 201–215.CrossRefGoogle ScholarPubMed
Bates, J.H. and Allen, G.B., The estimation of lung mechanics parameters in the presence of pathology: a theoretical analysis. Ann Biomed Eng, 2006. 34(3): p. 384–392.CrossRefGoogle ScholarPubMed
Magin, R.L., Fractional calculus in bioengineering, part 3. Crit Rev Biomed Eng, 2004. 32(3–4): p. 195–377.CrossRefGoogle ScholarPubMed
Magin, R.L., Fractional calculus in bioengineering, part 2. Crit Rev Biomed Eng, 2004. 32(2): p. 105–193.CrossRefGoogle ScholarPubMed
Magin, R.L., Fractional calculus in bioengineering. Crit Rev Biomed Eng, 2004. 32(1): p. 1–104.CrossRefGoogle ScholarPubMed
Schetzen, M., The Volterra and Wiener Theories of Nonlinear Systems. 1980, New York: Wiley.Google Scholar
Suki, B. and Bates, J.H., A nonlinear viscoelastic model of lung tissue mechanics. J Appl Physiol, 1991. 71(3): p. 826–833.CrossRefGoogle ScholarPubMed
Maksym, G.N. and Bates, J.H., Nonparametric block-structured modeling of rat lung mechanics. Ann Biomed Eng, 1997. 25(6): p. 1000–1008.CrossRefGoogle ScholarPubMed
Maksym, G.N., Kearney, R.E., and Bates, J.H., Nonparametric block-structured modeling of lung tissue strip mechanics. Ann Biomed Eng, 1998. 26(2): p. 242–252.CrossRefGoogle ScholarPubMed
Suki, B., Nonlinear phenomena in respiratory mechanical measurements. J Appl Physiol, 1993. 74(5): p. 2574–2584.CrossRefGoogle ScholarPubMed
Suki, B., Zhang, Q., and Lutchen, K.R., Relationship between frequency and amplitude dependence in the lung: a nonlinear block-structured modeling approach. J Appl Physiol, 1995. 79(2): p. 660–671.CrossRefGoogle ScholarPubMed
Zhang, Q., Suki, B., and Lutchen, K.R., Harmonic distortion from nonlinear systems with broadband inputs: applications to lung mechanics. Ann Biomed Eng, 1995. 23(5): p. 672–681.CrossRefGoogle ScholarPubMed
Suki, B., et al., Nonlinearity and harmonic distortion of dog lungs measured by low-frequency forced oscillations. J Appl Physiol, 1991. 71(1): p. 69–75.CrossRefGoogle ScholarPubMed
Suki, B. and Lutchen, K.R., Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: applications to respiratory mechanics. IEEE Trans Biomed Eng, 1992. 39(11): p. 1142–1151.CrossRefGoogle ScholarPubMed
Hunter, I.W. and Korenberg, M.J., The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern, 1986. 55(2–3): p. 135–144.Google ScholarPubMed
Funk, J.R., et al., Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng, 2000. 122(1): p. 15–22.CrossRefGoogle ScholarPubMed
Doehring, T.C., et al., Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J Biomech Eng, 2005. 127(4): p. 700–708.CrossRefGoogle ScholarPubMed
Barabasi, A.L., Linked. The New Science of Networks. 2002, Cambridge, MA: Perseus, p. 77.Google Scholar
Bak, P., How Nature Works. The Science of Self-organized Criticality. 1996, New York, NY: Springer-Verlag, p. 31–37.Google Scholar
West, B.J. and Schlesinger, M., On the ubiquity of 1/f noise. Int J Modern Phys, 1989. 3: p. 795–819.CrossRefGoogle Scholar
Bak, P., Tang, C., and Wiesenfeld, K., Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett, 1987. 59(4): p. 381–384.CrossRefGoogle ScholarPubMed
Barabasi, A.L. and Albert, R., Emergence of scaling in random networks. Science, 1999. 286(5439): p. 509–512.Google ScholarPubMed
Kullmann, L. and Kertesz, J., Preferential growth: exact solution of the time-dependent distributions. Phys Rev E Stat Nonlin Soft Matter Phys, 2001. 63(5 Pt 1): p. 051112.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jason H. T. Bates, University of Vermont
  • Book: Lung Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511627156.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jason H. T. Bates, University of Vermont
  • Book: Lung Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511627156.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jason H. T. Bates, University of Vermont
  • Book: Lung Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511627156.014
Available formats
×