Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-08T06:52:05.641Z Has data issue: false hasContentIssue false

18 - Taste of chimpanzee foods*

from Part IV - Feeding

Published online by Cambridge University Press:  05 September 2015

Michio Nakamura
Affiliation:
Kyoto University, Japan
Kazuhiko Hosaka
Affiliation:
Kamakura Women’s University, Japan
Noriko Itoh
Affiliation:
Kyoto University, Japan
Koichiro Zamma
Affiliation:
Great Ape Research Institute
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Mahale Chimpanzees
50 Years of Research
, pp. 246 - 258
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, E., Hoon, M. A., Mueller, K. L., et al. (2000). A novel family of mammalian taste receptors. Cell, 100, 693702.CrossRefGoogle ScholarPubMed
Bandelt, H. J., Forster, P., and Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 3748.CrossRefGoogle ScholarPubMed
Behrens, M., Brockhoff, A., Batram, C., et al. (2009). The human bitter taste receptor hTAS2R50 is activated by the two natural bitter terpenoids andrographolide and amarogentin. Journal of Agricultural and Food Chemistry, 57, 9860–6.CrossRefGoogle ScholarPubMed
Brockhoff, A., Behrens, M., Massarotti, A., Appendino, G., and Meyerhof, W. (2007). Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. Journal of Agricultural and Food Chemistry, 55, 6236–43.CrossRefGoogle ScholarPubMed
Bufe, B., Breslin, P. A., Kuhn, C., et al. (2005). The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Current Biology, 15, 322–7.CrossRefGoogle ScholarPubMed
Chandrashekar, J., Mueller, K. L., Hoon, M. A., et al. (2000). T2Rs function as bitter taste receptors. Cell, 100, 703–11.CrossRefGoogle ScholarPubMed
Chandrashekar, J., Hoon, M. A., Ryba, N. J., and Zuker, C. S. (2006). The receptors and cells for mammalian taste. Nature. 444, 288–94.CrossRefGoogle ScholarPubMed
Chiarelli, B. (1963). Sensitivity to PTC (phenyl-thio-carbamide) in primates. Folia Primatologica, 1, 8894.CrossRefGoogle Scholar
Dotson, C. D., Zhang, L., Xu, H., et al. (2008). Bitter taste receptors influence glucose homeostasis. PLoS ONE, 3, e3974.CrossRefGoogle ScholarPubMed
Fisher, R. A., Ford, E. B., and Huxley, J. (1939). Taste-testing the anthropoid apes. Nature, 144, 750.CrossRefGoogle Scholar
Glaser, D. (1986). Geschmacksforschung bei Primaten. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 131, 92110.Google Scholar
Go, Y., Satta, Y., Takenaka, O., and Takahata, N. (2005). Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics, 170, 313–26.CrossRefGoogle ScholarPubMed
Hayakawa, T., Sugawara, T., Go, Y., et al. (2012). Eco-geographical diversification of bitter taste receptor genes (TAS2Rs) among subspecies of chimpanzees (Pan troglodytes). PLoS ONE, 7, e43277.CrossRefGoogle ScholarPubMed
Hayakawa, T., Suzuki-Hashido, N., Matsui, A., and Go, Y. (2014). Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade. Molecular Biology and Evolution, 31, 2018–31.CrossRefGoogle ScholarPubMed
Hellekant, G. and Ninomiya, Y. (1991). On the taste of umami in chimpanzee. Physiology and Behavior, 49, 927–34.CrossRefGoogle ScholarPubMed
Hellekant, G., Ninomiya, Y., and Danilova, V. (1997). Taste in chimpanzees II: single chorda tympani fibers. Physiology and Behavior, 61, 829–41.CrossRefGoogle ScholarPubMed
Hladik, C. M. and Simmen, B. (1996). Taste perception and feeding behavior in nonhuman primates and human populations. Evolutionary Anthropology, 5, 5871.3.0.CO;2-S>CrossRefGoogle Scholar
Huffman, M. A. (1997). Current evidence for self-medication in primates: a multidisciplinary perspective. Yearbook of Physical Anthropology, 104(S25), 171200.3.0.CO;2-7>CrossRefGoogle Scholar
Huffman, M. A. (2003). Animal self-medication and ethno-medicine: exploration and exploitation of the medicinal properties of plants. The Proceedings of the Nutrition Society, 62, 371–81.CrossRefGoogle ScholarPubMed
Huffman, M. A. and Seifu, M. (1989). Observations on the illness and consumption of a possibly medicinal plant Vernonia amygdalina (Del.), by a wild chimpanzee in the Mahale Mountains National Park, Tanzania. Primates, 30, 5163.CrossRefGoogle Scholar
Imai, H., Suzuki, N., Ishimaru, Y., et al. (2012). Functional diversity of bitter taste receptor TAS2R16 in primates. Biology Letters, 8, 652–6.CrossRefGoogle ScholarPubMed
Izawa, K. and Itani, J. (1966). Chimpanzees in the Kasakati Basin, Tanganyika. (1) Ecological study in the rainy season, 1963–1964. Kyoto University African Studies, 1, 73156.Google Scholar
Jisaka, M., Kawanaka, M., Sugiyama, H., et al. (1992). Antischistosomal activities of sesquiterpene lactones and steroid glucosides from Vernonia amygdalina, possibly used by wild chimpanzees against parasite-related diseases. Bioscience, Biotechnology, and Biochemistry, 56, 845–6.CrossRefGoogle ScholarPubMed
Kim, U. K., Jorgenson, E., Coon, H., et al. (2003). Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science, 299, 1221–5.CrossRefGoogle ScholarPubMed
Kuhn, C., Bufe, B., Winnig, M., et al. (2004). Bitter taste receptors for saccharin and acesulfame K. The Journal of Neuroscience, 24, 10260–5.CrossRefGoogle ScholarPubMed
Meyerhof, W., Batram, C., Kuhn, C., et al. (2010). The molecular receptive ranges of human TAS2 R bitter taste receptors. Chemical Senses, 35, 157–70.CrossRefGoogle Scholar
Nei, M. and Gojobori, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution, 3, 418–26.Google ScholarPubMed
Nishida, T. (1980). Local differences in responses to water among wild chimpanzees. Folia Primatologica, 33, 189209.CrossRefGoogle ScholarPubMed
Nishida, T. (1991). Primate gastronomy: Cultural food preferences in nonhuman primates and origins of cuisine. In Chemical Senses, Vol. 4: Appetite and Nutrition. ed. Friedman, M. L., Tordoff, M. G., and Kare, M. R.. New York: Marcel Dekker, pp. 195209.Google Scholar
Nishida, T. (2008). [Learning from Animals’ “Feeding”: New Edition.] Kyoto: Kyoto University Press. In Japanese.Google Scholar
Nishida, T. (2012). Chimpanzees of the Lakeshore: Natural History and Culture at Mahale. Cambridge: Cambridge University Press.Google Scholar
Nishida, T. and Uehara, S. (1981). Kitongwe name of plants: A preliminary listing. African Study Monographs, 1, 109–31.Google Scholar
Nishida, T. and Uehara, S. (1983). Natural diet of chimpanzees (Pan troglodytes schweinfurthii): Long-term record from the Mahale Mountains, Tanzania. African Study Monographs, 3, 109–30.Google Scholar
Nishida, T., Wrangham, R. W., Goodall, J., and Uehara, S. (1983). Local differences in plant-feeding habits of chimpanzees between the Mahale Mountains and Gombe National Park, Tanzania. Journal of Human Evolution, 12, 467–80.CrossRefGoogle Scholar
Nishida, T., Ohigashi, H., and Koshimizu, K. (2000). Tastes of chimpanzee plant foods. Current Anthropology, 41, 431–8.CrossRefGoogle ScholarPubMed
Nishida, T., Zamma, K., Matsusaka, T., Inaba, A., and McGrew, M. C. (2010). Chimpanzee Behavior in the Wild: An Audio-Visual Encyclopedia. Tokyo: Springer.CrossRefGoogle Scholar
Nissen, H. W. (1931). A field study of the chimpanzee: observations of chimpanzee behavior and environment in western French Guinea. Comparative Psychology Monographs, 8, 1122.Google Scholar
Pronin, A. N., Xu, H., Tang, H., et al. (2007), Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Current Biology, 17, 1403–8.CrossRefGoogle Scholar
Reed, D. R., Zhu, G., Breslin, P. A., et al. (2010). The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12. Human Molecular Genetics, 19, 4278–85.CrossRefGoogle Scholar
Sabater Pi, J. (1979). Feeding behaviour and diet of chimpanzees (Pan troglodytes troglodytes) in the Okorobiko Mountains in Rio Muni (West Africa). Zeitschrift für Tierpsychologie, 50, 265–81.Google ScholarPubMed
Sakamaki, T. (1998). First record of algae-feeding by a female chimpanzee at Mahale. Pan Africa News, 5, 13.CrossRefGoogle Scholar
Sandell, M. A. and Breslin, P. A. (2006). Variability in a taste-receptor gene determines whether we taste toxins in food. Current Biology, 16, R792–4.CrossRefGoogle Scholar
Snyder, L. H. (1931). Inherited taste deficiency. Science, 74, 151–2.CrossRefGoogle ScholarPubMed
Soranzo, N., Bufe, B., Sabeti, P. C., et al. (2005). Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Current Biology, 15, 1257–65.CrossRefGoogle ScholarPubMed
Steiner, J. E. and Glaser, D. (1984). Differential behavioral responses to taste stimuli in non-human primates. Journal of Human Evolution, 13, 709–23.CrossRefGoogle Scholar
Sugawara, T., Go, Y., Udono, T., et al. (2011). Diversification of bitter taste receptor gene family in western chimpanzees. Molecular Biology and Evolution, 28, 921–31.CrossRefGoogle ScholarPubMed
Sugiyama, Y. and Koman, J. (1992). The flora of Bossou: its utilization by chimpanzees and humans. African Study Monographs, 13, 127–69.Google Scholar
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–95.CrossRefGoogle ScholarPubMed
Takahata, Y., Hiraiwa-Hasegawa, M., Takasaki, H. and Nyundo, R. (1986). Newly acquired feeding habits among the chimpanzees of the Mahale Mountains National Park, Tanzania. Human Evolution, 1, 277–84.CrossRefGoogle Scholar
Takasaki, H. (1983). Mahale chimpanzees taste mangoes: towards acquisition of a new food item? Primates, 24, 273–5.CrossRefGoogle Scholar
Thalmann, S., Behrens, M., and Meyerhof, W. (2013). Major haplotypes of the human bitter taste receptor TAS2R41 encode functional receptors for chloramphenicol. Biochemical and Biophysical Research Communications, 435, 267–73.CrossRefGoogle ScholarPubMed
Toda, Y., Nakagita, T., Hayakawa, T., et al. (2013). Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor). The Journal of Biological Chemistry, 288, 36863–77.CrossRefGoogle ScholarPubMed
Ueno, A., Ueno, Y., and Tomonaga, M. (2004). Facial responses to four basic tastes in newborn rhesus macaques (Macaca mulatta) and chimpanzees (Pan troglodytes). Behavioural Brain Research, 154, 261–71.CrossRefGoogle ScholarPubMed
Yarmolinsky, D. A., Zuker, C. S., and Ryba, N. J. (2009). Common sense about taste: from mammals to insects. Cell, 139, 234–44.CrossRefGoogle ScholarPubMed
Wooding, S., Kim, U. K., Bamshad, M. J., et al. (2004). Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. American Journal of Human Genetics, 74, 637–46.CrossRefGoogle ScholarPubMed
Wooding, S., Bufe, B., Grassi, C., et al. (2006). Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature, 440, 930–4.CrossRefGoogle ScholarPubMed
Wooding, S., Gunn, H., Ramos, P., et al. (2010). Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. Chemical Senses, 35, 685–92.CrossRefGoogle ScholarPubMed
Wrangham, R. (2009). Catching Fire: How Cooking Made Us Human. London: Profile books.Google Scholar
Zamma, K., Nakashima, M., and Ramadhani, A. (2011). Mahale chimpanzees start to eat oil palm. Pan Africa News, 18, 68.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×