Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T10:14:48.605Z Has data issue: false hasContentIssue false

13 - Thermal History of the Earth

Published online by Cambridge University Press:  15 December 2009

Gerald Schubert
Affiliation:
University of California, Los Angeles
Donald L. Turcotte
Affiliation:
Cornell University, New York
Peter Olson
Affiliation:
The Johns Hopkins University
Get access

Summary

Introduction

Mantle convection plays an essential role in determining the evolution of the Earth's temperature through geologic time because it is the primary mechanism by which the Earth transfers heat from its deep interior to its surface. Once the internally generated heat reaches the surface it is transferred to the ocean–atmosphere system by a variety of processes including conduction and hydrothermal circulation through the oceanic crust and is eventually radiated to space. From the perspective of studying the changes in the Earth's interior temperature over geologic time, we can ignore the relatively rapid transport of internal heat through the atmosphere and oceans and assume that all heat delivered to the Earth's surface from below immediately escapes the Earth. The heat lost through the Earth's surface tends to cool the interior, and heat produced within the Earth by the decay of radioactive elements tends to warm it. The thermal evolution of the Earth is a consequence of the competition between internal energy sources producing heat and mantle convection removing it. A quantitative description of the Earth's thermal history is the application of basic energy conservation in a convecting mantle.

While the basic approach to modeling the Earth's thermal history is straightforward, its implementation is a major challenge because of the complexity of a realistic model and available computer resources that limit detailed numerical calculations of three-dimensional, time-dependent convection at the very high Rayleigh numbers applicable to the Earth's present mantle and at the even higher Rayleigh numbers appropriate to the Earth's early mantle.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×