Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T05:15:11.190Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 June 2019

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accioly, A., and Paszko, R. 2004. Photon mass and gravitational deflection. Phys. Rev. D, 69, 107501.Google Scholar
Agarwal, B., Jain, P., Mitra, S., Nayak, A. C., and Verma, R. K. 2015. Elko fermions as dark matter candidates. Phys. Rev., D92, 075027. arXiv: 1407.0797[hep-ph].Google Scholar
Aharonov, Y., and Susskind, L. 1967. Observability of the sign change of spinors under 2πrotations. Phys. Rev., 158, 12371238.Google Scholar
Ahluwalia, D. V. 1994. Quantum measurement, gravitation, and locality. Phys. Lett., B339, 301303. arXiv: gr-qc/9308007.Google Scholar
Ahluwalia, D. V. 1995. A new type of massive spin one boson: And its relation with Maxwell equations. In: The Present Status of the Quantum Theory of Light. Proceedings, Symposium in Honour of Jean-Pierre Vigier, Toronto, Canada, August 27-30, 1995.Google Scholar
Ahluwalia, D. V. 1996. Theory of neutral particles: McLennan-Case construct for neutrino, its generalization, and a fundamentally new wave equation. Int. J. Mod. Phys., A11, 18551874. arXiv: hep-th/9409134[hep-th].Google Scholar
Ahluwalia, D. V. 1998. Book review of Quantum Field Theory by Lewis, H. Ryder, . Found. of Phys., 28, 527529.Google Scholar
Ahluwalia, D. V. 2000. Wave particle duality at the Planck scale: Freezing of neutrino oscillations. Phys. Lett., A275, 3135. arXiv: gr-qc/0002005.Google Scholar
Ahluwalia, D. V. 2003. Extended set of Majorana spinors, a new dispersion relation, and a preferred frame. arXiv: hep-ph/0305336 (unpublished).Google Scholar
Ahluwalia, D. V. 2004. Charge conjugation and Lense-Thirring effect: A new asymmetry. Int. J. Mod. Phys., D13, 23612367. arXiv: gr-qc/0405112[gr-qc]. [Gen. Rel. Grav. 36, 2581 (2004)].Google Scholar
Ahluwalia, D. V. 2017a. Evading Weinberg’s no-go theorem to construct mass dimension one fermions: Constructing darkness. EPL, 118(6), 60001. arXiv: 1605.04224[hep-th].Google Scholar
Ahluwalia, D. V. 2017b. Reflections of the observer and the observed in quantum gravity. Int. J. Mod. Phys., D26(12), 1743001. arXiv: 1706.05927[gr-qc].Google Scholar
Ahluwalia, D. V. 2017c. The theory of local mass dimension one fermions of spin one half. Adv. Appl. Clifford Algebras, 27(3), 22472285. arXiv: 1601.03188[hep-th].Google Scholar
Ahluwalia, D. V., and Ernst, D. J. 1992. Paradoxical kinematic acausality in Weinberg’s equations for massless particles of arbitrary spin. Mod. Phys. Lett., A7, 19671974.Google Scholar
Ahluwalia, D. V., and Grumiller, D. 2005a. Dark matter: A spin one half fermion field with mass dimension one? Phys. Rev., D72, 067701. arXiv: hep-th/0410192 [hep-th].Google Scholar
Ahluwalia, D. V., and Grumiller, D. 2005b. Spin half fermions with mass dimension one: Theory, phenomenology, and dark matter. JCAP, 0507, 012. arXiv: hep-th/0412080[hep-th].Google Scholar
Ahluwalia, D. V., and Horvath, S. P. 2010. Very special relativity as relativity of dark matter: The Elko connection. JHEP, 11, 078. arXiv: 1008.0436[hep-ph].Google Scholar
Ahluwalia, D. V., and Nayak, A. C. 2015. Elko and mass dimension one field of spin one half: Causality and fermi statistics. Int. J. Mod. Phys., D23, 1430026. arXiv: 1502.01940[hep-th].Google Scholar
Ahluwalia, D. V., and Sarmah, S. 2019. Elko under spatial rotations. EPL 125, 300005. arXiv: 1810.04985[hep-th].Google Scholar
Ahluwalia, D. V., and Sawicki, M. 1993. Front form spinors in the Weinberg-Soper formalism and generalized Melosh transformations for any spin. Phys. Rev., D47, 5161–5168. arXiv: nucl-th/9603019.Google Scholar
Ahluwalia, D. V., Lee, C.-Y., and Schritt, D. 2010. Elko as self-interacting fermionic dark matter with axis of locality. Phys. Lett., B687, 248252. arXiv: 0804.1854[hep-th].Google Scholar
Ahluwalia, D. V., Horvath, S. P., and Schritt, D. 2011a. Amplitudes for space-like separations and causality. arXiv: 1110.1162[hep-ph].Google Scholar
Ahluwalia, D. V., Lee, C.-Y., and Schritt, D. 2011b. Self-interacting Elko dark matter with an axis of locality. Phys. Rev., D83, 065017. arXiv: 0911.2947[hep-ph].Google Scholar
Aitchison, I. J. R., and Hey, A. J. G. 2004. Gauge Theories in Particle Physics: A Practical Introduction. Vol. 2: Non-Abelian Gauge Theories: QCD and the Electroweak Theory. Bristol, UK: IOP 454 p. The citations in the monograph refer to this edition.Google Scholar
Alves, A., Dias, M., and de Campos, F. 2014. Perspectives for an Elko Phenomenology using monojets at the 14 TeV LHC. Int. J. Mod. Phys., D23, 1444005. arXiv: 1410.3766[hep-ph].Google Scholar
Alves, A., de Campos, Fernando, Dias, M., and Hoff da Silva, J. M. 2015. Searching for Elko dark matter spinors at the CERN LHC. Int. J. Mod. Phys., A30, 1550006. arXiv: 1401.1127[hep-ph].Google Scholar
Alves, A., Dias, M., de Campos, F., Duarte, L., and Hoff da Silva, J. M. 2018. Constraining Elko dark matter at the LHC with monophoton events. EPL, 121(3), 31001. arXiv: 1712.05180[hep-ph].CrossRefGoogle Scholar
Referee, Anonymous. 2006. Referee report for Marsden application 07-UOC-055 (Royal Society of New Zealand) “Dark Matter and its Darkness”.Google Scholar
Atiyah, M. 2013. What Is a Spinor? www.youtube.com/watch?v=SBdW978Ii E.Google Scholar
Bahamonde, S., Boehmer, C. G., Carloni, S., Copeland, E. J., Fang, W., and Tamanini, N. 2018. Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rept., 775–777, 1–122. arXiv: 1712.03107[gr-qc].Google Scholar
Barkana, R. 2018. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature, 555(7694), 71–74. arXiv: 1803.06698[astro-ph.CO].Google Scholar
Barkana, R., Outmezguine, N. J., Redigolo, D., and Volansky, T. 2018. Strong constraints on light dark matter interpretation of EDGES signal. Phys. Rev., D98, 103005. arXiv: 1803.03091[hep-ph].Google Scholar
Basak, A., and Bhatt, J. R. 2011. Lorentz invariant dark-spinor and inflation. JCAP, 1106, 011. arXiv: 1104.4574[astro-ph.CO].Google Scholar
Basak, A., and Shankaranarayanan, S. 2015. Super-inflation and generation of first order vector perturbations in Elko. JCAP, 1505, 034. arXiv: 1410.5768[hep-ph].Google Scholar
Basak, A., Bhatt, , Jitesh, R., Shankaranarayanan, S., and Prasantha Varma, K. V. 2013. Attractor behaviour in Elko cosmology. JCAP, 1304, 025. arXiv: 1212.3445[astro-ph.CO].Google Scholar
Bernardini, A. E., and da Rocha, R. 2012. Dynamical dispersion relation for Elko dark spinor fields. Phys. Lett., B717, 238–241. arXiv: 1203.1049[hep-th].Google Scholar
Bertone, G., and Hooper, D. 2018. A history of dark matter. Rev. Mod. Phys., 90(4), 045002. arXiv: 1605.04909[astro-ph.CO].Google Scholar
Böhmer, C. G. 2007a. The Einstein-Cartan-Elko system. Annalen Phys., 16, 3844. arXiv: gr-qc/0607088[gr-qc].Google Scholar
Böhmer, C. G. 2007b. The Einstein-Elko system: Can dark matter drive inflation? Annalen Phys., 16, 325341. arXiv: gr-qc/0701087[gr-qc].Google Scholar
Böhmer, C. G. 2008. Dark spinor inflation: Theory primer and dynamics. Phys. Rev., D77, 123535. arXiv: 0804.0616[astro-ph].Google Scholar
Böhmer, C. G., and Burnett, J. 2008. Dark spinors with torsion in cosmology. Phys. Rev., D78, 104001. arXiv: 0809.0469[gr-qc].Google Scholar
Böhmer, C. G., and Burnett, J. 2010. Dark energy with dark spinors. Mod. Phys. Lett., A25, 101–110. arXiv: 0906.1351[gr-qc].Google Scholar
Böhmer, C. G., and Mota, D. F. 2008. CMB anisotropies and inflation from nonstandard Spinors. Phys. Lett., B663, 168–171. arXiv: 0710.2003[astro-ph].Google Scholar
Böhmer, C. G., Burnett, J., Mota, D. F., and Shaw, D. J. 2010. Dark spinor models in gravitation and cosmology. JHEP, 07, 053. arXiv: 1003.3858[hep-th].Google Scholar
Bonetti, L., Ellis, J., Mavromatos, N. E., Sakharov, A. S., Sarkisyan-Grinbaum, , Edward, K. G., and Spallicci, Alessandro D. A. M. 2016. Photon mass limits from fast radio bursts. Phys. Lett., B757, 548552. arXiv: 1602.09135[astro-ph.HE].Google Scholar
Bonora, L., and da Rocha, R. 2016. New spinor fields on Lorentzian 7-manifolds. JHEP, 01, 133. arXiv: 1508.01357[hep-th].Google Scholar
Brown, H. R. 2005. Physical Relativity: Space-Time Structure from a Dynamical Perspective. Oxford: Oxford University Press.Google Scholar
Bueno Rogerio, R. J., Hoff da Silva, J. M., Pereira, S. H., and da Rocha, R. 2016. A framework to a mass dimension one fermionic sigma model. Europhys. Lett., 113(6), 60001. arXiv: 1603.09183[hep-th].Google Scholar
Bueno Rogerio, R. J., Hoff da Silva, J. M., Dias, M., and Pereira, S. H. 2018. Effective lagrangian for a mass dimension one fermionic field in curved spacetime. JHEP, 02, 145. arXiv: 1709.08707[hep-th].Google Scholar
Burgard, C. 1992. Private communication.Google Scholar
Cavalcanti, R. T., Hoff da Silva, J. M., and da Rocha, R. 2014. VSR symmetries in the DKP algebra: The interplay between Dirac and Elko spinor fields. Eur. Phys. J. Plus, 129, 246. arXiv: 1401.7527[hep-th].Google Scholar
Chang, Y.-C., Bouhmadi-Lopez, M., and Chen, P. 2017. Phantom dark ghost in Einstein-Cartan Gravity. Eur. Phys. J., C77 (5), 278. arXiv: 1507.07571[gr-qc].Google Scholar
Chaves, M., and Singleton, D. 2008. A unified model of phantom energy and dark Matter. SIGMA, 4, 009. arXiv: 0801.4728[hep-th].Google Scholar
Chee, G. 2010. Stability of de Sitter solutions sourced by dark spinors. arXiv: 1007.0554[gr-qc].Google Scholar
Chryssomalakos, C., and Okon, E. 2004. Generalized quantum relativistic kinematics: A stability point of view. Int. J. Mod. Phys., D13, 2003–2034. arXiv: hep-th/0410212[hep-th].Google Scholar
Cohen, A. G., and Glashow, Sheldon L. 2006. Very special relativity. Phys. Rev. Lett., 97, 021601. arXiv: hep-ph/0601236[hep-ph].Google Scholar
Cohen-Tannoudji, C., Diu, B., and Laloe, F. 1977. Quantum Mechanics, Vol. I and Vol. II. Wiley Interscience.Google Scholar
Coleman, S. R., and Mandula, J. 1967. All possible symmetries of the S Matrix. Phys. Rev., 159, 12511256.Google Scholar
da Rocha, R., and Cavalcanti, R. T. 2017. Flag-dipole and flagpole spinors fluid flows in Kerr spacetimes. Phys. Atom. Nucl., 80(2), 329–333. arXiv: 1602.02441[hep-th].Google Scholar
da Rocha, R., and Hoff da Silva, J. M. 2010. Elko, flagpole and flag-dipole spinor fields, and the instanton Hopf fibration. Adv. Appl. Clifford Algebras, 20, 847–870. arXiv: 0811.2717[math-ph].Google Scholar
da Rocha, R., and Hoff da Silva, J. M. 2014. Hawking radiation from Elko Particles tunnelling across black strings horizon. Europhys. Lett. (EPL), 107, 50001. arXiv: 1408.2402[hep-th].Google Scholar
da Rocha, R., and Hoff da Silva, J. M. 2007. From Dirac spinor fields to Elko. J. Math. Phys., 48, 123517. arXiv: 0711.1103[math-ph].Google Scholar
da Rocha, R., and Pereira, J. G. 2007. The quadratic spinor Lagrangian, axial torsion current, and generalizations. Int. J. Mod. Phys., D16, 1653–1667. arXiv: gr-qc/0703076[GR-QC].Google Scholar
da Rocha, R., and Rodrigues, W. A. Jr. 2006. Where are Elko spinor fields in Lounesto spinor field classification? Mod. Phys. Lett., A21, 65–74. arXiv: math-ph/0506075[math-ph].Google Scholar
da Rocha, R., Hoff da Silva, J. M., and Bernardini, A. E. 2011a. Elko spinor fields as a tool for probing exotic topological spacetime features. Int. J. Mod. Phys. Conf. Ser., 3, 133142.Google Scholar
da Rocha, R., Bernardini, Alex E., and Hoff da Silva, J. M. 2011b. Exotic dark spinor fields. JHEP, 04, 110. arXiv: 1103.4759[hep-th].Google Scholar
da Rocha, R., Fabbri, L., Hoff da Silva, J. M., Cavalcanti, R. T., and Silva-Neto, J. A. 2013. Flag-Dipole spinor fields in ESK Gravities. J. Math. Phys., 54, 102505. arXiv: 1302.2262[gr-qc].Google Scholar
Darwin, C. G. 1927. The electron as a vector wave. Nature, 119, 282284.Google Scholar
Dasgupta, A. 2016. Private communication.Google Scholar
de Souza, G. 2015. The Representations of HOM(2) and SIM(2) in the Context of Very Special Relativity. M.Phil. thesis, State University of Campinas (Unicamp), São Paulo, Brasil.Google Scholar
Dias, M., de Campos, F., and Hoff da Silva, J. M. 2012. Exploring Elko typical signature. Phys. Lett., B706, 352–359. arXiv: 1012.4642[hep-ph].Google Scholar
Dirac, P. A. M. 1928. The quantum theory of the electron. Proc. Roy. Soc. Lond., A117, 610624.Google Scholar
Dirac, P. A. M. 1930. The Principles of Quantum Mechanics. Oxford University Press.Google Scholar
Doplicher, S., Fredenhagen, K., and Roberts, J. E. 1994. Space-time quantization induced by classical gravity. Phys. Lett., B331, 3944.Google Scholar
dos Santos Souza, A. P., Pereira, S. H., and Jesus, J. F. 2015. A new approach on the stability analysis in Elko cosmology. Eur. Phys. J., C75, 36. arXiv: 1407. 3401[gr-qc].Google Scholar
Dowker, J. S. 1969. Is the sign change of spinors under 2π rotations observable? J. Phys. A, 2, 267273.Google Scholar
Dvoeglazov, V. V. 1995a. Lagrangian for the Majorana-Ahluwalia construct. Nuovo Cim., A108, 1467–1476. arXiv: hep-th/9506083[hep-th].Google Scholar
Dvoeglazov, V. V. 1995b. Neutral particles in light of the Majorana-Ahluwalia ideas. Int. J. Theor. Phys., 34, 2467–2490. arXiv: hep-th/9504158[hep-th].Google Scholar
Dyson, F. J. 1949. The S matrix in quantum electrodynamics. Phys. Rev., 75, 17361755.Google Scholar
Fabbri, L. 2010. Causal propagation for Elko fields. Mod. Phys. Lett., A25, 151157. arXiv: 0911.2622[gr-qc]. [Erratum: Mod. Phys. Lett.A25,1295(2010)].CrossRefGoogle Scholar
Fabbri, L. 2011a. The most general cosmological dynamics for Elko matter Fields. Phys. Lett., B704, 255–259. arXiv: 1011.1637[gr-qc].Google Scholar
Fabbri, L. 2011b. Zero energy of plane-waves for Elkos. Gen. Rel. Grav., 43, 1607–1613. arXiv: 1008.0334[gr-qc].Google Scholar
Fabbri, L. 2012. Conformal gravity with the most general Elko matter. Phys. Rev., D85, 047502. arXiv: 1101.2566[gr-qc].Google Scholar
Fabbri, L., and Vignolo, S. 2012a. A modified theory of gravity with torsion and its applications to cosmology and particle physics. Int. J. Theor. Phys., 51, 3186–3207. arXiv: 1201.5498[gr-qc].Google Scholar
Fabbri, L., and Vignolo, S. 2012b. The most general Elko matter in torsional f(R)-theories. Annalen Phys., 524, 77–84. arXiv: 1012.4282[gr-qc].Google Scholar
Fabbri, L., and Vignolo, S. 2014. Elko and Dirac spinors seen from torsion. Int. J. Mod. Phys., D23, 1444001. arXiv: 1407.8237[gr-qc].Google Scholar
Faddeev, L. D. 1989. Mathematician’s view on the development of physics (in Frontiers in physics, high technology and mathematics edited by H. A. Cerdeira and S. Lundqvist). 238–246. Also see: L. D. Faddeev, 1988 Asia-Pacific News, Vol. 3, page 21 .Google Scholar
Feynman, R. P. 1949. The theory of positrons. Phys. Rev., 76(Sep), 749759.Google Scholar
Feynman, R. P., and Weinberg, S. 1999. Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures. Cambridge University Press. (See Feynman in).Google Scholar
Flato, M. 1982. Deformation view of physical theories. Czech. J. Phys., B32, 472475. Note: While the general physical ideas of this important paper remain valid, some of the pessimistic remarks have been proved by experiments to be unfounded.Google Scholar
Folland, G. B. 2008. Quantum Field Theory: A Tourist Guide for Mathematicians.Google Scholar
Gaioli, F. H., and Garcia Alvarez, E. T. 1995 . Some remarks about intrinsic parity in Ryder’s derivation of the Dirac equation. Am. J. Phys., 63, 177178. arXiv: hep-th/9807211[hep-th].Google Scholar
Gredat, D., and Shankaranarayanan, S. 2010. Modified scalar and tensor spectra in spinor driven inflation. JCAP, 1001, 008. arXiv: 0807.3336[astro-ph].Google Scholar
Haag, R., Lopuszanski, Jan T., and Sohnius, M. 1975. All possible generators of supersymmetries of the S Matrix. Nucl. Phys., B88, 257.Google Scholar
Hackermueller, L., Uttenthaler, S., Hornberger, K., Reiger, E., Brezger, B., Zeilinger, A., and Arndt, M. 2003. Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett., 91(Aug), 090408.Google Scholar
Hardy, E., Lasenby, R., March-Russell, J., and West, S. M. 2015. Big bang synthesis of nuclear dark matter. JHEP, 06, 011. arXiv: 1411.3739[hep-ph].Google Scholar
Hladik, J. 1999. Spinors in Physics. Graduate Texts in Contemporary Physics. New York: Springer.Google Scholar
Hoff da Silva, J. M., and Cavalcanti, R. T. 2017. Revealing how different spinors can be: the Lounesto spinor classification. Mod. Phys. Lett., A32(35), 1730032. arXiv: 1708.06222[physics.gen-ph].Google Scholar
Hoff da Silva, J. M., and da Rocha, R. 2013. Unfolding Physics from the algebraic classification of spinor fields. Phys. Lett., B718, 1519–1523. arXiv: 1212.2406 [hep-th].Google Scholar
Hoff da Silva, J. M., and da Rocha, R. 2009. From Dirac action to Elko action. Int. J. Mod. Phys., A24, 3227–3242. arXiv: 0903.2815[math-ph].Google Scholar
Hoff da Silva, J. M., and Pereira, S. H. 2014. Exact solutions to Elko spinors in spatially flat Friedmann-Robertson-Walker spacetimes. JCAP, 1403, 009. arXiv: 1401.3252[hep-th].Google Scholar
Hoff da Silva, J. M., Coronado Villalobos, C. H., and da Rocha, R. 2016a. Black holes and exotic spinors. Universe, 2(2), 8.Google Scholar
Hoff da Silva, J. M., Coronado Villalobos, C. H., Bueno Rogerio, R. J., and Scatena, E. 2016b. On the bilinear covariants associated to mass dimension one spinors. Eur. Phys. J., C76(10), 563. arXiv: 1608.05365[hep-th].Google Scholar
Hoff da Silva, J. M., Coronado Villalobos, C. H., Bueno Rogerio, R. J. Bueno, and da Rocha, R. 2017. On the spinor Representation. arXiv: 1702.05034[math-ph].Google Scholar
Hogerheijde, M. R., et al. 2011. Detection of the water reservoir in a forming planetary system. Science, 334, 338–340. arXiv: 1110.4600[astro-ph.SR].Google Scholar
Horvathy, P. A. 1985. The observability of 2π rotations around an Aharonov-Bohm solenoid. Phys. Rev., A31, 11511153.Google Scholar
Ilderton, A. 2016. Very special relativity as a background field theory. Phys. Rev., D94(4), 045019. arXiv: 1605.04967[hep-th].Google Scholar
Jardim, I. C., Alencar, G., Landim, R. R., and Costa Filho, R. N. 2015. Solutions to the problem of Elko spinor localization in brane models. Phys. Rev., D91, 085008. arXiv: 1411.6962[hep-th].Google Scholar
Kainulainen, K., Tuominen, K., and Vaskonen, V. 2016. Self-interacting dark matter and cosmology of a light scalar mediator. Phys. Rev., D93(1), 015016. arXiv: 1507.04931[hep-ph]. [Erratum: Phys. Rev. D95, no.7, 079901(2017)].Google Scholar
Kempf, A., Mangano, G., and Mann, R. B. 1995. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev., D52, 1108–1118. arXiv: hep-th/9412167.Google Scholar
Klein, A. G., and Opat, G. I. 1976. Observation of 2π rotations by Fresnel diffraction of neutrons. Phys. Rev. Lett., 37, 238.CrossRefGoogle Scholar
Kouwn, S., Lee, J., Lee, T. H., and Oh, P. 2013. Dark spinor model with torsion and cosmology. Mod. Phys. Lett., A28, 1350121. arXiv: 1211.2981[gr-qc].Google Scholar
Lee, C.Y. 2015. Self-interacting mass-dimension one fields for any spin. Int. J. Mod. Phys., A30, 1550048. arXiv: 1210.7916[hep-th].Google Scholar
Lee, C.Y. 2016a. A Lagrangian for mass dimension one fermionic dark matter. Phys. Lett., B760, 164–169. arXiv: 1404.5307[hep-th].Google Scholar
Lee, C.Y. 2016b. Symmetries and unitary interactions of mass dimension one fermionic dark matter. Int. J. Mod. Phys., A31(35), 1650187. arXiv: 1510.04983[hep-th].Google Scholar
Lee, C.Y., and Dias, M. 2016. Constraints on mass dimension one fermionic dark matter from the Yukawa interaction. Phys. Rev., D94(6), 065020. arXiv: 1511.01160[hep-ph].Google Scholar
Lee, T. D., and Wick, G. C. 1966. Space inversion, time Reversal, and other discrete symmetries in local field theories. Phys. Rev., 148(Aug), 13851404.CrossRefGoogle Scholar
Lee, T. D., and Yang, C.N. 1956. Question of parity conservation in weak Interactions. Phys. Rev., 104, 254258.Google Scholar
Lee, T. H. 2012. Some cosmological solutions of 5D Einstein equations with dark spinor condensate. Phys. Lett., B712, 69.Google Scholar
Liu, Y.X., Zhou, X.N., Yang, K., and Chen, F.W. 2012. Localization of 5D Elko spinors on Minkowski branes. Phys. Rev., D86, 064012. arXiv: 1107.2506[hep-th].Google Scholar
Lounesto, P. 2001. Clifford algebras and spinors. Lond. Math. Soc. Lect. Note Ser., 286, 1338.Google Scholar
Lubański, J. K. 1942. Sur la theorie des particules elementaires de spin quelconque. I. Physica, 9. (in French).Google Scholar
Luo, J., Tu, L.C., Hu, Z.K., and Luan, E.J. 2003. New Experimental Limit on the Photon Rest Mass with a Rotating Torsion Balance. Phys. Rev. Lett., 90(Feb), 081801.Google Scholar
Majorana, E. 1937. Theory of the symmetry of electrons and positrons. Nuovo Cim., 14, 171184.Google Scholar
McDermott, S. D. 2018 . Is self-interacting dark matter undergoing dark fusion? Phys. Rev. Lett., 120(22), 221806. arXiv: 1711.00857[hep-ph].Google Scholar
Michelson, A. A., and Morley, E. W. 1887. On the relative motion of the Earth and the luminiferous ether. Am. J. Sci., 34, 333345.Google Scholar
Mishra, S. S. 2017. private communication.Google Scholar
Nakayama, Y. 2018a. Local field theory construction of Very Special Conformal Symmetry. arXiv: 1802.06489[hep-th].Google Scholar
Nakayama, Y. 2018b. Very special conformal field theories and their holographic duals. Phys. Rev., D97(6), 065003. arXiv: 1707.05423[hep-th].Google Scholar
Neto, J. A. Silva. 2017. f(R) gravity with torsion and Lorentz violation. PhD. thesis.Google Scholar
Padmanabhan, T. 2016. The atoms of space, gravity and the cosmological constant. Int. J. Mod. Phys., D25(07), 1630020. arXiv: 1603.08658[gr-qc].Google Scholar
Pakvasa, S. 2018. The Stern-Gerlach Experiment and the Electron Spin. arXiv: 1805.09412[physics.hist-ph].Google Scholar
Pauli, W. 1927. Zur quantenmechanik des magnetischen elektrons. Zeitschrift für Physik, 43, 601623.Google Scholar
Penrose, R. 1955. A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 51(7), 406413.Google Scholar
Pereira, S. H., and Guimares, T. M. 2017. From inflation to recent cosmic acceleration: The fermionic Elko field driving the evolution of the universe. JCAP, 1709(09), 038. arXiv: 1702.07385[gr-qc].Google Scholar
Pereira, S. H., and Lima, R. C. 2017. Creation of mass dimension one fermionic particles in asymptotically expanding universe. Int. J. Mod. Phys., D26(12), 1730028. arXiv: 1612.02240[hep-th].Google Scholar
Pereira, S. H., and S., A. Pinho, S. 2014. Elko applications in cosmology. Int. J. Mod. Phys., D23(14), 1444008.Google Scholar
Pereira, S. H., Pinho, S. S., and Hoff da Silva, J. M. 2014. Some remarks on the attractor behaviour in Elko cosmology. JCAP, 1408, 020. arXiv: 1402.6723[gr-qc].Google Scholar
Pereira, S. H., Holanda, R. F. L., Pinho, S. and Souza, A. 2017a. Evolution of the universe driven by a mass dimension one fermion field. EPL, 120(3), 31001. arXiv: 1703.07636[gr-qc].Google Scholar
Pereira, S. H., Pinho, S. S., A. Hoff da Silva, J. M., and Jesus, J. F. 2017b. Λ(t) cosmology induced by a slowly varying Elko field. JCAP, 1701(01), 055. arXiv: 1608.02777[gr-qc].Google Scholar
Podio, L., et al. 2013. Water vapor in the protoplanetary disk of DG Tau. Astrophys. J., 766, L5. arXiv: 1302.1410[astro-ph.SR].Google Scholar
Ramond, P. 1981. Field Theory: A Modern Primer. Benjamin/Cummings Publishing Company, USA.Google Scholar
Rauch, H., Treimer, W., and Bonse, U. 1974. Test of a single crystal neutron interferometer. Physics Letters A, 47(5), 369 – 371.Google Scholar
Robertson, A. 2017. The Cosmological Implications of Self-Interacting Dark Matter. PhD. thesis, Durham U.Google Scholar
Rogerio, R. J. Bueno, , and Hoff da Silva, J. M. 2017. The local vicinity of spins sum for certain mass dimension one spinors. Europhys. Lett., 118(1), 10003. arXiv: 1602.05871[hep-th].Google Scholar
Ryder, L. H. 1986 and 1996. Quantum Field Theory. Cambridge University Press.Google Scholar
Schwartz, M. D. 2014a. Quantum Field Theory and the Standard Model. Cambridge University Press.Google Scholar
Schwartz, M. D. 2014b. Quantum Field Theory and the Standard Model. Cambridge University Press.Google Scholar
Schwinger, J. 1951. The theory of quantized fields. I. Phys. Rev., 82, 914927.Google Scholar
Shankaranarayanan, S. 2009. What-if inflaton is a spinor condensate? Int. J. Mod. Phys., D18, 2173–2179. arXiv: 0905.2573[astro-ph.CO].Google Scholar
Shankaranarayanan, S. 2010. Dark spinor driven inflation. Pages 1237–1240 of: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. Proceedings, 12th Marcel Grossmann Meeting on General Relativity, Paris, France, July 12-18, 2009. Vol. 1-3.Google Scholar
Shirokov, Y. M. 1960. Space and time reflections in relativistic theory. Nucl. Phys. B, 15, 112.Google Scholar
Silverman, M. P. 1980. The curious problem of spinor rotation. Eur. J. Phys., 1, 116123.Google Scholar
Sperança, L. D. 2014. An identification of the Dirac operator with the parity operator. Int. J. Mod. Phys., D23, 1444003. arXiv: 1304.4794[math-ph].Google Scholar
Spergel, D. N., and Steinhardt, P. J. 2000. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett., 84, 3760–3763. arXiv: astro-ph/9909386[astro-ph].Google Scholar
Srednicki, M. 2007. Quantum Field Theory. Cambridge University Press.Google Scholar
‘t Hooft, G. 1973. Dimensional regularization and the renormalization group. Nucl. Phys., B61, 455468.Google Scholar
Tomonaga, S. 1946. On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Theor. Phys., 1, 2742. This is a translation of the original 1943 paper in Japanese.Google Scholar
Trautman, A. 2005. On eight kinds of spinors. Acta Phys. Polon., B36, 121130.Google Scholar
Tulin, S., and Yu, H-B. 2018. Dark matter self-interactions and small scale structure. Phys. Rept., 730, 1–57. arXiv: 1705.02358[hep-ph].Google Scholar
Tung, W. K. 1985. Group Theory in Physics. Singapore, Singapore: World Scientific (1985) 344p.Google Scholar
Uhlenbeck, G. E., and Goudsmit, S. 1925. Die Intensität der Zeemankomponenten. Naturwissenschaften, 13, 90.Google Scholar
Uhlenbeck, G. E., and Goudsmit, S. 1926. Spinning electrons and the structure of spectra. Nature, 117, 264265.Google Scholar
Vilela Mendes, R. 1994. Deformations, stable theories and fundamental constants. J. Phys., A27, 80918104.Google Scholar
Wei, H. 2011. Spinor dark energy and cosmological coincidence Problem. Phys. Lett., B695, 307311. arXiv: 1002.4230[gr-qc].Google Scholar
Weinberg, S. 1964a. Feynman rules for any spin. Phys. Rev., 133, B1318B1332.Google Scholar
Weinberg, S. 1964b. Feynman rules for any spin. II . massless particles. Phys. Rev., 134, B882–B896.Google Scholar
Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley & Sons.Google Scholar
Weinberg, S. 2005. The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press.Google Scholar
Weinberg, S. 2012. Lectures on Quantum Mechanics. Cambridge University Press.Google Scholar
Weinberg, S. 1969. Feynman rules for any spin: III. Phys. Rev., 181, 18931899.Google Scholar
Weinberg, S. 2013. The Quantum Theory of Fields. Vol. 2: Modern applications. Cambridge University Press.Google Scholar
Werner, S. A., Colella, R., Overhauser, A. W., and Eagen, C. F. 1975. Observation of the phase shift of a neutron due to precession in a magnetic field. Phys. Rev. Lett., 35, 10531055.Google Scholar
Wigner, E. P. 1939. On unitary representations of the inhomogeneous Lorentz group. Annals Math., 40, 149204. [Reprint: Nucl. Phys. Proc. Suppl. 6, 9(1989)].Google Scholar
Wigner, E. P. 1964. Unitary representations of the inhomogeneous Lorentz group including reflection. In: Group Theoretical Concepts and Methods in Elementary Particle Physics: Lectures of the Istanbul Summer School of Theoretical Physics, 1962, edited by F. Gursey; (Gordon and Breach).Google Scholar
Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D., and Hudson, R. P. 1957. Experimental test of parity conservation in beta decay. Phys. Rev., 105, 14131414.Google Scholar
Yang, Chen-Ning, and Mills, R. L. 1954. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev., 96, 191195.Google Scholar
Zhou, X.-N., Du, Y.-Z., Zhao, H.-Z., and Liu, Y.-X. 2018. Localization of five-dimensional Elko spinors with non-minimal coupling on thick branes. Eur. Phys. J., C78(6), 493. arXiv: 1710.02842[hep-th].Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×