Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T10:30:27.098Z Has data issue: false hasContentIssue false

19 - Porous and Novel Materials

Published online by Cambridge University Press:  10 December 2009

William F. Hosford
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Applications of porous materials

There are many applications of porous materials. Their ability to fill space with a minimum weight leads to their use in packaging. Life jackets and rafts use porous materials because of their low density. Examples of their use as thermal insulators range from Styrofoam cups to heat shields for space craft. Aluminum baseball bats are filled with foam to dampen vibrations. The low elastic moduli and high elastic strains of foams lead to use as cushions and mattresses. Filters are made from porous materials.

Stiff lightweight structures such as aircraft wings are made from sandwiches of continuous sheets filled with foams or honeycombs. Open porous structures can form frameworks for infiltration by other materials leading to application of biocompatible implants. Open pore structures are used as supports for catalysts.

Fabrication of porous foams

Natural cellular materials include sponges and wood. Foams of polymers, metals, and ceramics can be made by numerous methods. Foams are often produced by entrapping evolved gas. Inert gasses such as CO2 and N2 may be dissolved under high pressure and released by decreasing the pressure. Gas bubbles may also be formed by chemical decomposition or chemical reaction. Mechanical beating will produce foams. Foamed structures may be formed by bonding previously expanded spheres as in the case of polystyrene. Incomplete sintering of pressed powders creates materials with continuous internal passages that find use as filters and oilless bearings.

Type
Chapter
Information
Materials Science
An Intermediate Text
, pp. 202 - 207
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gibson, L. J. and Ashby, M. F.. Cellular Foams. Cambridge, U.K.: Cambrige Univ. Press 1999.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×