Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-10T02:24:35.856Z Has data issue: false hasContentIssue false

4 - Angular-spectrum and multipole expansions

Published online by Cambridge University Press:  05 July 2012

Anthony J. Devaney
Affiliation:
Northeastern University, Boston
Get access

Summary

The Green-function solution to the radiation problem given in Eq. (2.23) of Chapter 2 represents this solution in terms of a superposition of outgoing spherical waves with each spherical wave being weighted by the source amplitude at that point. This solution was derived starting from the fact that the Helmholtz equation is linear and, hence, can be represented as a superposition of elementary solutions to the equation when excited by delta functions; i.e., as a convolution of the source term with a Green function that satisfies the same outgoing-wave condition, namely the Sommerfeld radiation condition (SRC), as is satisfied by the radiated field. Alternative representations of the field can also be obtained by making use of the linearity of the Helmholtz equation and the fact that the radiated field satisfies the homogeneous Helmholtz equation everywhere outside the source region τ0. In particular, as we have seen in the last chapter, it is possible to represent the field in such regions in terms of an expansion of eigenfunctions of the homogeneous Helmholtz equation such as the plane waves or multipole fields. Indeed, in Examples 3.3 and 3.5 of Chapter 3 we expanded outgoing-wave fields such as the radiated field in a plane-wave expansion and a multipole expansion, respectively, with the expansion coefficients (planewave amplitudes and multipole moments) determined directly from boundary values of the field. We continue with this task in this chapter, where we develop plane-wave and multipole expansions for the radiated field directly in terms of the source Q rather than in terms of the boundary value of the radiated field.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×