Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T16:05:49.859Z Has data issue: false hasContentIssue false

9 - A polyhedral geometry thread – Constructing braided Platonic solids and other woven polyhedra

Published online by Cambridge University Press:  10 November 2010

Peter Hilton
Affiliation:
State University of New York, Binghamton
Jean Pedersen
Affiliation:
Santa Clara University, California
Get access

Summary

A curious fact

In Chapter 8 we gave instructions for braiding tetrahedra, cubes, and octahedra. The natural question to ask is: Can we construct the other two Platonic solids by a similar braiding technique? It turns out that we can braid all five of the regular convex solids. In fact, it is easy to verify the following composite statement for the five Platonic solids.

If you make each solid from straight strips of paper fashioned into bands and if you require that all strips on the given model be identical to (or mirror images of) one another, that every edge on the completed model be covered by at least one thickness from the strips, that every face be entirely covered by the strips, and that the same total area from each strip must show on the finished model,

Then you can braid

  1. the tetrahedron from 2 strips

  2. the hexahedron (cube) from 3 strips

  3. the octahedron from 4 strips

  4. the icosahedron from 5 strips

  5. the dodecahedron from 6 strips.

(The pattern pieces are shown in Figure 9.1.)

We don't have any general explanation for this curious fact, but we will show you how you can easily demonstrate it. This we do by providing you with instructions for constructing the required polyhedra, and once the polyhedra are constructed, you may then verify, simply by looking at them, that they satisfy the conditions of the preceding statement.

Type
Chapter
Information
A Mathematical Tapestry
Demonstrating the Beautiful Unity of Mathematics
, pp. 123 - 144
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×