Skip to main content Accessibility help
×
  • Cited by 11
Publisher:
Cambridge University Press
Online publication date:
June 2013
Print publication year:
2011
Online ISBN:
9780511973611

Book description

Simplex geometry is a topic generalizing geometry of the triangle and tetrahedron. The appropriate tool for its study is matrix theory, but applications usually involve solving huge systems of linear equations or eigenvalue problems, and geometry can help in visualizing the behaviour of the problem. In many cases, solving such systems may depend more on the distribution of non-zero coefficients than on their values, so graph theory is also useful. The author has discovered a method that in many (symmetric) cases helps to split huge systems into smaller parts. Many readers will welcome this book, from undergraduates to specialists in mathematics, as well as non-specialists who only use mathematics occasionally, and anyone who enjoys geometric theorems. It acquaints the reader with basic matrix theory, graph theory and elementary Euclidean geometry so that they too can appreciate the underlying connections between these various areas of mathematics and computer science.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
[1] L.M., Blumenthal: Theory and Applications of Distance Geometry. Oxford, Clarendon Press, 1953 Google Scholar.
[2] E., Egerváry: On orthocentric simplexes. Acta Math. Szeged IX (1940 Google Scholar), 218–226.
[3] M., Fiedler: Geometrie simplexu I. Časopis pěst. mat. 79 (1954 Google Scholar), 270–297.
[4] M., Fiedler: Geometrie simplexu II. Časopis pěst. mat. 80 (1955 Google Scholar), 462–476.
[5] M., Fiedler: Geometrie simplexu III. Časopis pěst. mat. 81 (1956 Google Scholar), 182–223.
[6] M., Fiedler: Über qualitative Winkeleigenschaften der Simplexe. Czechosl. Math. J. 7(82) (1957 Google Scholar), 463–478.
[7] M., Fiedler: Einige Sätze aus der metrischen Geometrie der Simplexe in Euklidischen Räumen. In: Schriftenreihe d. Inst. f. Math. DAW, Heft 1, Berlin (1957 Google Scholar), 157.
[8] M., Fiedler: A note on positive definite matrices. (Czech, English summary.)Czechosl. Math. J. 10(85) (1960 Google Scholar), 75–77.
[9] M., Fiedler: Über eine Ungleichung für positive definite Matrizen. Mathematische Nachrichten 23 (1961 Google Scholar), 197–199.
[10] M., Fiedler: Über die qualitative Lage des Mittelpunktes der umgeschriebenen Hyperkugel im n-Simplex. Comm. Math. Univ. Carol. 2(1) (1961 Google Scholar), 3–51.
[11] M., Fiedler: Über zyklische n-Simplexe und konjugierte Raumvielecke. Comm. Math. Univ. Carol. 2(2) (1961 Google Scholar), 3–26.
[12] M., Fiedler, V., Pták: On matrices with non-positive off-diagonal elements and positive principal minors. Czechosl. Math. J. 12(87) (1962 Google Scholar), 382–400.
[13] M., Fiedler: Hankel matrices and 2-apolarity. Notices AMS 11 (1964 Google Scholar), 367–368.
[14] M., Fiedler: Relations between the diagonal elements of two mutually inverse positive definite matrices. Czechosl. Math. J. 14(89) (1964 Google Scholar), 39–51.
[15] M., Fiedler: Some applications of the theory of graphs in the matrix theory and geometry. In: Theory of Graphs and Its Applications. Proc. Symp. Smolenice 1963, Academia, Praha (1964 Google Scholar), 37–41.
[16] M., Fiedler: Matrix inequalities. Numer. Math. 9 (1966 Google Scholar), 109–119.
[17] M., Fiedler: Algebraic connectivity of graphs. Czechosl. Math. J. 23(98) (1973 Google Scholar), 298–305.
[18] M., Fiedler: Eigenvectors of acyclic matrices. Czechosl. Math. J. 25(100) (1975 Google Scholar), 607–618.
[19] M., Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechosl. Math. J. 25(100) (1975 Google Scholar), 619–633.
[20] M., Fiedler: Aggregation in graphs. In: Coll. Math. Soc. J. Bolyai, 18. Combinatorics. Keszthely (1976 Google Scholar), 315–330.
[21] M., Fiedler: Laplacian of graphs and algebraic connectivity. In: Combinatorics and Graph Theory, Banach Center Publ. vol. 25, PWN, Warszava (1989 Google Scholar), 57–70.
[22] M., Fiedler: A geometric approach to the Laplacian matrix of a graph. In: Combinatorial and Graph-Theoretical Problems in Linear Algebra (R. A., Brualdi, S., Friedland, V., Klee, editors), Springer, New York (1993 Google Scholar), 73–98.
[23] M., Fiedler: Structure ranks of matrices. Linear Algebra Appl. 179 (1993 Google Scholar), 119–128.
[24] M., Fiedler: Elliptic matrices with zero diagonal. Linear Algebra Appl. 197, 198 (1994 Google Scholar), 337–347.
[25] M., Fiedler: Moore–Penrose involutions in the classes of Laplacians and simplices. Linear Multilin. Algebra 39 (1995 Google Scholar), 171–178.
[26] M., Fiedler: Some characterizations of symmetric inverse M-matrices. Linear Algebra Appl. 275–276 (1998 Google Scholar), 179–187.
[27] M., Fiedler: Moore-Penrose biorthogonal systems in Euclidean spaces. Linear Algebra Appl. 362 (2003 Google Scholar), 137–143.
[28] M., Fiedler: Special Matrices and Their Applications in Numerical Mathematics, 2nd edn, Dover Publ., Mineola, NY (2008 Google Scholar).
[29] M., Fiedler, T. L., Markham: Rank-preserving diagonal completions of a matrix. Linear Algebra Appl. 85 (1987 Google Scholar), 49–56.
[30] M., Fiedler, T. L., Markham: A characterization of the Moore–Penrose inverse. Linear Algebra Appl. 179 (1993 Google Scholar), 129–134.
[31] R. A., Horn, C. A., Johnson: Matrix Analysis, Cambridge University Press, New York, NY (1985 Google Scholar).
[32] D. J. H., Moore: A geometric theory for electrical networks. Ph.D. Thesis, Monash. Univ., Australia (1968 Google Scholar).

Metrics

Usage data cannot currently be displayed.