References[1] L.M., Blumenthal: Theory and Applications of Distance Geometry. Oxford, Clarendon Press, 1953.
[2] E., Egerváry: On orthocentric simplexes. Acta Math. Szeged IX (1940), 218–226.
[3] M., Fiedler: Geometrie simplexu I. Časopis pěst. mat. 79 (1954), 270–297.
[4] M., Fiedler: Geometrie simplexu II. Časopis pěst. mat. 80 (1955), 462–476.
[5] M., Fiedler: Geometrie simplexu III. Časopis pěst. mat. 81 (1956), 182–223.
[6] M., Fiedler: Über qualitative Winkeleigenschaften der Simplexe. Czechosl. Math. J. 7(82) (1957), 463–478.
[7] M., Fiedler: Einige Sätze aus der metrischen Geometrie der Simplexe in Euklidischen Räumen. In: Schriftenreihe d. Inst. f. Math. DAW, Heft 1, Berlin (1957), 157.
[8] M., Fiedler: A note on positive definite matrices. (Czech, English summary.)Czechosl. Math. J. 10(85) (1960), 75–77.
[9] M., Fiedler: Über eine Ungleichung für positive definite Matrizen. Mathematische Nachrichten 23 (1961), 197–199.
[10] M., Fiedler: Über die qualitative Lage des Mittelpunktes der umgeschriebenen Hyperkugel im n-Simplex. Comm. Math. Univ. Carol. 2(1) (1961), 3–51.
[11] M., Fiedler: Über zyklische n-Simplexe und konjugierte Raumvielecke. Comm. Math. Univ. Carol. 2(2) (1961), 3–26.
[12] M., Fiedler, V., Pták: On matrices with non-positive off-diagonal elements and positive principal minors. Czechosl. Math. J. 12(87) (1962), 382–400.
[13] M., Fiedler: Hankel matrices and 2-apolarity. Notices AMS 11 (1964), 367–368.
[14] M., Fiedler: Relations between the diagonal elements of two mutually inverse positive definite matrices. Czechosl. Math. J. 14(89) (1964), 39–51.
[15] M., Fiedler: Some applications of the theory of graphs in the matrix theory and geometry. In: Theory of Graphs and Its Applications. Proc. Symp. Smolenice 1963, Academia, Praha (1964), 37–41.
[16] M., Fiedler: Matrix inequalities. Numer. Math. 9 (1966), 109–119.
[17] M., Fiedler: Algebraic connectivity of graphs. Czechosl. Math. J. 23(98) (1973), 298–305.
[18] M., Fiedler: Eigenvectors of acyclic matrices. Czechosl. Math. J. 25(100) (1975), 607–618.
[19] M., Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechosl. Math. J. 25(100) (1975), 619–633.
[20] M., Fiedler: Aggregation in graphs. In: Coll. Math. Soc. J. Bolyai, 18. Combinatorics. Keszthely (1976), 315–330.
[21] M., Fiedler: Laplacian of graphs and algebraic connectivity. In: Combinatorics and Graph Theory, Banach Center Publ. vol. 25, PWN, Warszava (1989), 57–70.
[22] M., Fiedler: A geometric approach to the Laplacian matrix of a graph. In: Combinatorial and Graph-Theoretical Problems in Linear Algebra (R. A., Brualdi, S., Friedland, V., Klee, editors), Springer, New York (1993), 73–98.
[23] M., Fiedler: Structure ranks of matrices. Linear Algebra Appl. 179 (1993), 119–128.
[24] M., Fiedler: Elliptic matrices with zero diagonal. Linear Algebra Appl. 197, 198 (1994), 337–347.
[25] M., Fiedler: Moore–Penrose involutions in the classes of Laplacians and simplices. Linear Multilin. Algebra 39 (1995), 171–178.
[26] M., Fiedler: Some characterizations of symmetric inverse M-matrices. Linear Algebra Appl. 275–276 (1998), 179–187.
[27] M., Fiedler: Moore-Penrose biorthogonal systems in Euclidean spaces. Linear Algebra Appl. 362 (2003), 137–143.
[28] M., Fiedler: Special Matrices and Their Applications in Numerical Mathematics, 2nd edn, Dover Publ., Mineola, NY (2008).
[29] M., Fiedler, T. L., Markham: Rank-preserving diagonal completions of a matrix. Linear Algebra Appl. 85 (1987), 49–56.
[30] M., Fiedler, T. L., Markham: A characterization of the Moore–Penrose inverse. Linear Algebra Appl. 179 (1993), 129–134.
[31] R. A., Horn, C. A., Johnson: Matrix Analysis, Cambridge University Press, New York, NY (1985).
[32] D. J. H., Moore: A geometric theory for electrical networks. Ph.D. Thesis, Monash. Univ., Australia (1968).