Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-14T11:19:37.772Z Has data issue: false hasContentIssue false

13 - Numerical modeling of geophysical fluid systems

Published online by Cambridge University Press:  15 December 2009

Yuh-Lang Lin
Affiliation:
North Carolina State University
Get access

Summary

In Chapter 12, we discussed various numerical approximations of the advection equation. However, to simulate a geophysical fluid system, such as the atmosphere and ocean, within a finite region, we need to choose the domain size, grid size, time interval, total integration time, and consider other factors, such as the initial condition and boundary conditions. In addition, when we deal with a real fluid system, the governing equations are much more complicated than the one-dimensional, linear advection equation, as considered in Chapter 12. For example, we have to integrate three-dimensional nonlinear governing equations with several dependent variables, instead of a one-dimensional advection equation with only one variable. When a nonlinear equation is being approximated by numerical methods, one may face new problems, such as nonlinear computational instability and nonlinear aliasing. Special numerical techniques are required to avoid these types of problems. Once optimal approximate forms of the equations are selected, it is still necessary to define the domain and grid structure over which the partial differential equations will be approximated. In this chapter, we will also briefly describe on how to build a basic numerical model based on a set of partial differential equations governing a shallow water system, and a hydrostatic or nonhydrostatic continuously stratified fluid system.

Grid systems and vertical coordinates

The first step in developing a mesoscale numerical model is to determine the appropriate domain size, grid intervals, time interval, and total integration time of the model.

Type
Chapter
Information
Mesoscale Dynamics , pp. 518 - 562
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksoy, A., Zhang, F., Nielsen-Gammon, J. W., 2006. Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, doi:10.1029/2006GL026186, 2006.CrossRefGoogle Scholar
Anderson, J. L., 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–903.2.0.CO;2>CrossRefGoogle Scholar
Anthes, R. A. and Warner, T. T., 1978. Development of hydrostatic models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev., 106, 1045–78.2.0.CO;2>CrossRefGoogle Scholar
Arakawa, A. and Lamb, V. R., 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics, 17, Academic Press, 174–265.Google Scholar
Asselin, R. A., 1972. Frequency filter for time integration. Mon. Wea. Rev., 100, 487–90.2.3.CO;2>CrossRefGoogle Scholar
Bacon, D. P., Ahmad, N. N., Boybeyi, Z., Dunn, T. J., Hall, M. S., Lee, P. C. S., Sarma, R. A., Turner, M. D., Waight, K. T. III, Young, S. H., and Zack, J. W., 2000. A dynamically adapting weather and dispersion model: The operational multiscale environment model with grid adaptivity (OMEGA). Mon. Wea. Rev., 128, 2044–76.2.0.CO;2>CrossRefGoogle Scholar
Barnes, S. L., 1964. A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396–409.2.0.CO;2>CrossRefGoogle Scholar
Benjamin, S. G., Dévényi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G. A., Kim, D., Schwartz, B. E., Smirnova, T. G., Smith, T. L. and Manikin, G. S., 2004. An hourly assimilation–forecast cycle: the RUC. Mon. Wea. Rev., 132, 495–518.2.0.CO;2>CrossRefGoogle Scholar
Bougeault, P., 1983. A non-reflective upper boundary condition for limited-height hydrostatic models. Mon. Wea. Rev., 111, 420–9.2.0.CO;2>CrossRefGoogle Scholar
Davies, H., 1983. Limitations of some common lateral boundary conditions used in regional NWP models. Mon. Wea. Rev., 111, 1002–12.2.0.CO;2>CrossRefGoogle Scholar
Dietachmayer, G. S. and Droegemeier, K. K., 1992. Application of continuous dynamic grid adaptation techniques to meteorological modeling. Part I: Basic formulation and accuracy. Mon. Wea. Rev., 120, 1675–1706.2.0.CO;2>CrossRefGoogle Scholar
Doswell, C. A. III, 1984. A kinematic analysis of frontogenesis associated with a nondivergent vortex. J. Atmos. Sci., 41, 1242–8.2.0.CO;2>CrossRefGoogle Scholar
Durran, D. R., 1998. Numerical Methods for Wave Equations in Geophysical Fluid Mechanics. Springer-Verlag.Google Scholar
Ehrendorfer, M., 1997. Predicting the uncertainty of numerical weather forecast: a review. Meteor. Z., 6, 147–83.Google Scholar
Evensen, G., 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–67.CrossRefGoogle Scholar
Gandin, L. S., 1988. Complex quality control of meteorological observations. Mon. Wea. Rev., 116, 1137–56.2.0.CO;2>CrossRefGoogle Scholar
Gleeson, T. A., 1961. A statistical theory of meteorological measurements and predictions. J. Meteor., 18, 192–8.2.0.CO;2>CrossRefGoogle Scholar
Haltiner, G. J. and Williams, R. T., 1980. Numerical Prediction and Dynamic Meteorology. 2nd edn., John Wiley & Sons.Google Scholar
Hamill, T. M., 2006. Ensemble-based atmospheric data assimilation. In Predictability of Weather and Climate, Palmer, T. (ed.), Cambridge University Press, 124–156.CrossRefGoogle Scholar
Hoke, J. E. and Anthes, R. A., 1976. The initialization of numerical models by a dynamical initialization technique. Mon. Wea. Rev., 104, 1551–6.2.0.CO;2>CrossRefGoogle Scholar
Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L., and Hansen, B., 2005. Atmospheric data assimilation with an ensemble Kalman filter: results with real observations. Mon. Wea. Rev., 133, 604–20.CrossRefGoogle Scholar
Hu, M., Xue, M., Gao, J., and Brewster, K., 2006. 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699–721.CrossRefGoogle Scholar
Huang, C.-Y., 2000. A forward-in-time anelastic nonhydrostatic model in a terrain-following coordinate. Mon. Wea. Rev., 128, 2108–34.2.0.CO;2>CrossRefGoogle Scholar
Huang, X.-Y. 1999. A generalization of using an adjoint model in intermittent data assimilation systems. Mon. Wea. Rev., 127, 766–87.2.0.CO;2>CrossRefGoogle Scholar
Kalman, R. E. and Bucy, R. S., 1961. New results in linear filtering and prediction theory. Trans. ASME. J. Basic Eng., 83D, 95–108.CrossRefGoogle Scholar
Kalnay., E., 2003. Atmospheric Modeling, Data Assimilation and Prediction. Cambridge University Press.Google Scholar
Klemp, J. B. and Durran, D. R., 1983. An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430–44.2.0.CO;2>CrossRefGoogle Scholar
Klemp, J. B. and Lilly, D. K., 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78–107.2.0.CO;2>CrossRefGoogle Scholar
Klemp, J. B. and Wilhelmson, R. B., 1978. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–96.2.0.CO;2>CrossRefGoogle Scholar
Kong, F., Droegemeier, K. K., and Hickmon, N. L., 2006. Multi-resolution ensemble forecasts of an observed tornadic thunderstorm system, Part I: Comparison of coarse and fine-grid experiments. Mon. Wea. Rev., 134, 807–33.CrossRefGoogle Scholar
Krishnamurti, T. N., Surendran, S., Shin, D. W., Correa-Torres, R. J., Kumar, T. S. V. V., Williford, E., Kummerow, C., Adler, R. F., Simpson, J., Kakar, R., Olson, W. S., and Turk, F. J., 2001. Real-time multianalysis-multimodel superensemble forecasts of precipitation using TRMM and SSM/I products. Mon. Wea. Rev., 129, 2861–83.2.0.CO;2>CrossRefGoogle Scholar
Lin, Y.-L. and Wang, T.-A., 1996. Flow regimes and transient dynamics of two-dimensional stratified flow over an isolated mountain ridge. J. Atmos. Sci., 53, 139–58.2.0.CO;2>CrossRefGoogle Scholar
Long, R. R., 1953. Some aspects of stratified fluids. I. A theoretical investigation. Tellus, 5, 42–58.CrossRefGoogle Scholar
Lorenz, E. N., 1963. Deterministic non-periodic flow. J. Atmos. Sci., 20, 130–41.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. 1969. The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307.CrossRefGoogle Scholar
Lorenz, E. N., 1996. Predictability – A problem partly solved. Seminar on Predictability, 1995 ECMWF Seminar Proceedings, ECMWF. Volume I, 1–19.Google Scholar
Mahrer, Y. and Pielke, R. A., 1978. A test of an upstream spline interpolation technique for the advective terms in a numerical model. Mon. Wea. Rev., 106, 818–30.2.0.CO;2>CrossRefGoogle Scholar
Martin, W. J. and Xue, M., 2006. Initial condition sensitivity analysis of a mesoscale forecast using very-large ensembles. Mon. Wea. Rev., 134, 192–207.CrossRefGoogle Scholar
Mesinger, F., Janjić, Z. I., Nickovic, S., Gavrilov, D., and Deaven, D. G., 1988. The step-mountain coordinate: model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon. Wea. Rev., 116, 1493–518.2.0.CO;2>CrossRefGoogle Scholar
Miyakoda, K. and Moyer, R., 1968. A method of initialization for dynamical weather forecasting. Tellus, 20, 115–128.CrossRefGoogle Scholar
Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T., 1996. The ECMWF ensemble prediction system. Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–120.CrossRefGoogle Scholar
Ogura, Y. and Philips, N. A., 1962. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173–9.2.0.CO;2>CrossRefGoogle Scholar
Oliger, J. and Sundström, A., 1978. Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. Int'l J. Numer. Methods Fluids, 21, 183–204.Google Scholar
Orlanski, I., 1976. A simple boundary condition for unbounded hyperbolic flows. J. Compu. Phys., 21, 251–269.CrossRefGoogle Scholar
Perkey, D. J. and Kreitzberg, C. W., 1976. A time-dependent lateral boundary scheme for limited-area primitive equation models. Mon. Wea. Rev., 104, 744–55.2.0.CO;2>CrossRefGoogle Scholar
Pielke, R. A., 2002. Mesoscale Meteorological Modeling. 2nd edn., Academic Press.Google Scholar
Phillips, N. A., 1957. A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184–5.2.0.CO;2>CrossRefGoogle Scholar
Rogers, E., Baldwin, M., Black, T., Brill, K., Chen, F., DiMego, C., Gerrity, J., Manikin, G., Mesinger, F., Mitchell, K., Parrish, D., and Zhao, Q., 1998: Changes to the NCEP operational “early” Eta analysis/forecast system. NWS Tech. Proc. Bull., Ser. No. 447, NWS, NOAA. (http://www.nws.noaa.gov/om/tpb/447.htm)
Saltzman, B., 1962. Finite amplitude free convection as an initial value problem – I, J. Atmos. Sci., 19, 329–41.2.0.CO;2>CrossRefGoogle Scholar
Sasaki, Y., 1970. Some basic formulations in numerical variational analysis. Mon. Wea. Rev., 98, 875–83.2.3.CO;2>CrossRefGoogle Scholar
Schoenstadt, A. L., 1978. A transfer function analysis of numerical schemes used to simulate geostrophic adjustment. NPS Report. NPS-53-79-001.
Shapiro, R., 1975. Linear filtering. Math. Compu., 29, 1094–7.CrossRefGoogle Scholar
Shaw, B. L., S. Albers, D. Birkenheuer, J. Brown, J. McGinley, P. Schultz, J. Smart, and E. Szoke, 2004. Application of the Local Analysis and Prediction System (LAPS) diabatic initialization of mesoscale numerical weather prediction models for the IHOP-2002 field experiment. Preprints, 20th Conference on Weather Analysis and Forecasting and 16th Conference on Numerical Weather Prediction, Amer. Meteor. Soc., Seattle, WA.
Skamarock, W. C., 1989. Truncation error estimates for refinement criteria in nested adaptive models. Mon. Wea. Rev., 117, 872–86.2.0.CO;2>CrossRefGoogle Scholar
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Giu, D. M. Barker, W. Wang and J. G. Powers, 2005. A Description of the Advanced Research WRF Version 2. NCAR Technical Note, NCAR/TN-468 + STR. [Available at http://wrf-model.org/wrfadmin/docs/arw_v2.pdf]
Smagorinski, J., J. L. Halloway, Jr., and G. D. Hembree, 1967. Prediction experiments with a general circulation model. Proceed. Int'l. Sympo. Dynamics Large Scale Atmospheric Processes, Nauka, Moscow, USSR, 70–134.
Snyder, C., and Zhang, F., 2003. Tests of an ensemble Kalman filter for convective-scale data assimilation. Mon. Wea. Rev., 131, 1663–77.CrossRefGoogle Scholar
Sugi, M., 1986. Dynamic normal mode initialization. J. Meteor. Soc. Japan, 64, 623–32.CrossRefGoogle Scholar
Sommerfeld, A., 1949. Partial Differential Equations in Physics. Academic Press.Google Scholar
Stensrud, D. J., Brooks, H. E., Du, J., Tracton, M. S., and Rogers, E., 1999. Using ensembles for short-range forecasting. Mon. Wea. Rev., 127, 433–46.2.0.CO;2>CrossRefGoogle Scholar
Stephens, J., 1970. Variational initialization of the balance equation. J. Appl. Meteor., 9, 732–39.2.0.CO;2>CrossRefGoogle Scholar
Sun, J. and Crook, N. A., 1996. Comparison of thermodynamic retrieval by the adjoint method with the traditional retrieval method. Mon. Wea. Rev., 124, 308–24.2.0.CO;2>CrossRefGoogle Scholar
Talagrand, O., 1972. On the damping of high-frequency motions in four-dimensional assimilation of meteorological data. J. Atmos. Sci., 29, 1571–4.2.0.CO;2>CrossRefGoogle Scholar
Temperton, C., 1988. Implicit normal mode initialization. Mon. Wea. Rev., 116, 1013–1031.2.0.CO;2>CrossRefGoogle Scholar
Tong, M. and Xue, M., 2005. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS Experiments. Mon. Wea. Rev., 133, 1789–1807.CrossRefGoogle Scholar
Tracton, M. S. and Kalnay, E., 1993. Operational ensemble prediction at the National Meteorological Center: Practical aspects. Weather and Forecasting, 8, 379–98.2.0.CO;2>CrossRefGoogle Scholar
Xue, M., 2000. High-order monotonic numerical diffusion and smoothing. Mon. Wea. Rev. 128, 2853–64.2.0.CO;2>CrossRefGoogle Scholar
Xue, M. and Martin, W. J., 2006. A high-resolution modeling study of the 24 May 2002 case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev., 134, 149–71.CrossRefGoogle Scholar
Xue, M., Tong, M., and Droegemeier, K. K., 2006. An OSSE framework based on the ensemble square-root Kalman filter for evaluating impact of data from radar networks on thunderstorm analysis and forecast. J. Atmos. Ocean Tech., 23, 46–66.CrossRefGoogle Scholar
Zhang, F., Meng, Z., and Aksoy, A., 2006a. Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation, Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722–36.CrossRefGoogle Scholar
Zhang, F., Odins, A., and Nielsen-Gammon, J. W., 2006b. Mesoscale predictability of an extreme warm-season rainfall event. Weather and Forecasting, 21, 149–66.CrossRefGoogle Scholar
Zou, X. and Kuo, Y.-H., 1996. Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Mon. Wea. Rev., 124, 2859–82.2.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×