Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T23:37:42.488Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

Andreas Hofmann
Affiliation:
Griffith University, Queensland
Anne Simon
Affiliation:
Université Lyon I
Tanja Grkovic
Affiliation:
Griffith University, Queensland
Malcolm Jones
Affiliation:
Queensland Institute of Medical Research
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahatyrova, S., Frese, R., Siebert, C. et al. (2004). The native architecture of a photosynthetic membrane. Nature 430, 1058–62.CrossRefGoogle ScholarPubMed
Berat, R., Remy-Zolghadry, M., Gounou, C. et al. (2007). Peptide-presenting two-dimensional protein matrix on supported lipid bilayers: an efficient platform for cell adhesion. Biointerphases 2, 165–72.CrossRefGoogle ScholarPubMed
Bettio, A. & Beck-Sickinger, A. (2001). Biophysical methods to study ligand-receptor interactions of neuropeptide Y. Biopolymers 60, 420–37.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Bohr, N. (1913a). On the constitution of atoms and molecules. Philosophical Magazine 26, 857.Google Scholar
Bohr, N. (1913b). On the constitution of atoms and molecules. Philosophical Magazine 26, 476.Google Scholar
Bohr, N. (1913c). On the constitution of atoms and molecules. Philosophical Magazine 26, 1–25.Google Scholar
Boute, N., Jockers, R. & Issad, T. (2002). The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends in Pharmacological Sciences 23, 351–4.CrossRefGoogle ScholarPubMed
Boutet, S., Lomb, L., Williams, G. J. et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–4.CrossRefGoogle ScholarPubMed
Bragg, W. H. & Bragg, W. L. (1913). The reflexion of X-rays by crystals. Proceedings of the Royal Society A 88, 428–38.CrossRefGoogle Scholar
Brakmann, S. & Nöbel, N. (2003). FRET in der Biochemie. Nachrichten aus Chemie, Technik und Laboratorium 51, 319–23.Google Scholar
Bundle, D. & Siguskjold, B. (1994). Determination of accurate thermodynamics of binding by titration microcalorimetry. Methods in Enzymology 247, 288–305.CrossRefGoogle ScholarPubMed
Chapman, H. N., Fromme, P., Barty, A. et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature 470, 73–7.CrossRefGoogle ScholarPubMed
Cooper, A. (1999). Thermodynamic analysis of biomolecular interactions. Current Opinion in Chemical Biology 3, 557–63.CrossRefGoogle ScholarPubMed
Cooper, A. & McAuley, K. E. (1993). Microcalorimetry and the molecular recognition of peptides and proteins. Philosophical Transactions of the Royal Society A 345, 23–35.CrossRefGoogle Scholar
Drake, B., Prater, C. B., Weisenhorn, A. L. et al. (1989). Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586–9.CrossRefGoogle ScholarPubMed
Dunitz, J. (1995). Win some, lose some: Enthalpy-entropy compensation in weak intermolecular interactions. Chemistry & Biology 2, 709–712.CrossRefGoogle ScholarPubMed
Förster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annals of Physics 2, 57–75.Google Scholar
Ganchev, D., Rijkers, D., Snel, M., Killian, A. & de Kruijff, B. (2004). Strength of integration of transmembrane alpha-helical peptides in lipid bilayers as determined by atomic force spectroscopy. Biochemistry 43, 14 987–93.CrossRefGoogle ScholarPubMed
Gill, S. C. & von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry 182, 319–26.CrossRefGoogle ScholarPubMed
Giordano, L., Jovin, T., Irie, M. & Jares-Erijman, E. (2002). Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). Journal of the American Chemical Society 124, 7481–9.CrossRefGoogle Scholar
Grandbois, M., Clausen-Schaumann, H. & Gaub, H. (1998). Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophysical Journal 74, 2398–404.CrossRefGoogle ScholarPubMed
Harkins, W. D. (1952). The Physical Chemistry of Surface Films. New York: Reinhold.Google Scholar
Hénon, S. & Meunier, J. (1991). Microscope at the Brewster angle: direct observation of first-order phase transitions in monolayers. Review of Scientific Instruments 62, 936–9.CrossRefGoogle Scholar
Heyduk, T. & Niedziela-Majka, A. (2002). Fluorescence resonance energy transfer analysis of Escherichia coli RNA polymerase and polymerase-DNA complexes. Biopolymers 61, 201–13.CrossRefGoogle Scholar
Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K. & Schindler, H. (1996). Detection and localization of individual antibody–antigen recognition events by atomic force microscopy. Proceedings of the National Academy of Sciences, USA 93, 3477–81.CrossRefGoogle ScholarPubMed
Hofmann, A. & Wlodawer, A. (2002). PCSB – a program collection for structural biology and biophysical chemistry. Bioinformatics 18, 209–10.CrossRefGoogle ScholarPubMed
Holdgate, G. (2001). Making cool drugs hot: the use of isothermal titration calorimetry as a tool to study binding energetics. BioTechniques 31, 164–84.Google ScholarPubMed
Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry 377, 528–39.CrossRefGoogle ScholarPubMed
Hönig, D. & Möbius, D. (1991). Direct visualization of monolayers at the air-water interface by Brewster Angle Microscopy. Journal of Physical Chemistry 95, 4590–2.CrossRefGoogle Scholar
Kang, J., Piszczek, G. & Lakowicz, J. (2002). Enhanced emission induced by FRET from a long-lifetime, low quantum yield donor to a long-wavelength, high quantum yield acceptor. Journal of Fluorescence 12, 97–103.CrossRefGoogle Scholar
Keller, C. & Kasemo, B. (1998). Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophysical Journal 75, 1397–402.CrossRefGoogle ScholarPubMed
Kimura, C., Maeda, K., Hai, H. & Miki, M. (2002). Ca2+- and s1-induced movement of troponin T on mutant thin filaments reconstituted with functionally deficient mutant tropomyosin. Journal of Biochemistry 132, 345–52.CrossRefGoogle Scholar
Klewpatinond, M. & Viles, J. H. (2007). Fragment length influences affinity for Cu2+ and Ni2+ binding to His96 or His111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH. Biochemical Journal 404, 393–402.CrossRefGoogle ScholarPubMed
Kohl, T., Heinze, K., Kuhlemann, R., Koltermann, A. & Schwille, P. (2002). A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proceedings of the National Academy of Sciences, USA 99, 12 161–6.CrossRefGoogle ScholarPubMed
Mach, H., Middaugh, C. R. & Lewis, R. V. (1992). Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Analytical Biochemistry 200, 74–80.CrossRefGoogle ScholarPubMed
Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physics Review 34, 57–64.CrossRefGoogle Scholar
Moshinsky, D. J., Ruslim, L., Blake, R. A. & Tang, F. (2003). A widely applicable, high-throughput TR-FRET assay for the measurement of kinase autophosphorylation: VEGFR-2 as a prototype. Journal of Biomolecular Screening 4, 447–52.CrossRefGoogle Scholar
Moukhtar, J., Faivre-Moskalenko, C., Milani, P. et al. (2010). Effect of genomic long-range correlations on DNA persistence length: from theory to single molecule experiments. Journal of Physical Chemistry B 114, 5125–43.CrossRefGoogle ScholarPubMed
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–7.CrossRefGoogle ScholarPubMed
Pan, Y., Shan, W., Fang, H. et al. (2013). Annexin-V modified QCM sensor for the label-free and sensitive detection of early stage apoptosis. Analyst 138, 6287–90.CrossRefGoogle ScholarPubMed
Perczel, A., Park, K. & Fasman, G. (1992). Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Analytical Biochemistry 203, 83–93.CrossRefGoogle ScholarPubMed
Popmintchev, T., Chen, M., Popmintchev, D. et al. (2012). Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–91.CrossRefGoogle ScholarPubMed
Remington, S. J. (2011). Green fluorescent protein: a perspective. Protein Science 20, 1509–19.CrossRefGoogle ScholarPubMed
Rhee, H., June, Y., Lee, J. et al. (2009). Femtosecond characterization of vibrational optical activity of chiral molecules. Nature 458, 310–13.CrossRefGoogle ScholarPubMed
Rice, P., Longden, I. & Bleasby, A. (2000). EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics 16, 276–7.CrossRefGoogle ScholarPubMed
Richter, R. P., Hock, K. K., Burkhartsmeyer, J. et al. (2007). Membrane-grafted hyaluronan films: a well-defined model system of glycoconjugate cell coats. Journal of the American Chemical Society 129, 5306–7.CrossRefGoogle ScholarPubMed
Rodahl, M., Höök, F., Krozer, A., Brzezinski, P. & Kasemo, B. (1996). Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Review of Scientific Instruments 66, 3924–30.CrossRefGoogle Scholar
Rogers, M. S., Cryan, L. M., Habeshian, K. A. et al. (2012). A FRET-based high throughput screening assay to identify inhibitors of anthrax protective antigen binding to capillary morphogenesis gene 2 protein. PLoS ONE 7, e3991.CrossRefGoogle ScholarPubMed
Rosenblum, B., Lee, L., Spurgeon, S. et al. (1997). New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Research 25, 4500–4.CrossRefGoogle ScholarPubMed
Salzer, R. & Steiner, G. (2004). Oberflächenplasmonen-Resonanz in neuem Licht. Nachrichten aus Chemie, Technik und Laboratorium 52, 809–11.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Phyik 155, 206–22.CrossRefGoogle Scholar
Schwartz, C. L., Heumann, J. M., Dawson, S. C. & Hoenger, A. (2012). A detailed, hierarchical study of Giardia lamblia’s ventral disc reveals novel microtubule-associated protein complexes. PLoS ONE 7, e43783.CrossRefGoogle ScholarPubMed
Simon, A., Cohen-Bouhacina, T., Porte, M. C. et al. (2003). Characterization of dynamic cellular adhesion of osteoblasts using atomic force microscopy. Cytometry 54A, 36–47.CrossRefGoogle Scholar
Song, L., Jares-Erijman, E. & Jovin, T. (2002). A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). Journal of Photochemistry and Photobiology A: Chemistry 150, 177–85.CrossRefGoogle Scholar
Stryer, L. & Haugland, R. (1967). Energy transfer: a spectroscopic ruler. Proceedings of the National Academy of Sciences, USA 58, 719–26.CrossRefGoogle ScholarPubMed
Trakselis, M., Alley, S., Abel-Santos, E. & Benkovic, S. (2001). Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences, USA 98, 8368–75.CrossRefGoogle ScholarPubMed
Uhlemann, S., Müller, H., Hartel, P., Zach, J. & Haider, M. (2013). Thermal magnetic field noise limits resolution in transmission electron microscopy. Physical Review Letters 111, 046101.CrossRefGoogle ScholarPubMed
Ullman, E. F., Kirakossian, H., Singh, S. et al. (1994). Luminescent oxygen channeling immunoassay: Measurement of particle binding kinetics by chemiluminescence. Proceedings of the National Academy of Sciences, USA 91, 5426–30.CrossRefGoogle ScholarPubMed
Warburg, O. & Christian, W. (1941). Isolierung und Kristallisation des Gärungsferments Enolase. Biochemische Zeitschrift 310, 384–421.Google Scholar
White, T. A., Kirian, R. A., Martin, A. V. et al. (2012). CrystFEL: a software suite for snapshot serial crystallography. Journal of Applied Crystallography 45, 335–41.CrossRefGoogle Scholar
Wiseman, T., Williston, S., Brandts, J. & Lin, L. (1989). Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical Biochemistry 179, 131–7.CrossRefGoogle ScholarPubMed
Xu, Y., Piston, D. & Johnson, C. (1999). A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proceedings of the National Academy of Sciences, USA 96, 151–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Andreas Hofmann, Griffith University, Queensland
  • Book: Methods of Molecular Analysis in the Life Sciences
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107045224.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Andreas Hofmann, Griffith University, Queensland
  • Book: Methods of Molecular Analysis in the Life Sciences
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107045224.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Andreas Hofmann, Griffith University, Queensland
  • Book: Methods of Molecular Analysis in the Life Sciences
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107045224.009
Available formats
×