Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-28T04:29:44.598Z Has data issue: false hasContentIssue false

4 - Dynamic channel allocation and power control

Published online by Cambridge University Press:  05 June 2012

Mischa Schwartz
Affiliation:
Columbia University, New York
Get access

Summary

In Chapter 3 we discussed channel allocation in a cellular environment with reuse constraints built in to keep interference to a tolerable level. The reuse constraints reduce the number of channels that can be allocated to each cell, reducing thereby the improvement in system traffic capacity expected through the use of the cell concept. Various strategies have been proposed and/or adopted to obtain further improvement in system performance. The use of directional antennas to reduce the number of interfering signals with which a desired signal has to contend is one possibility (Stüber, 2001). This procedure has, in fact, been adopted in current cellular systems. Another approach is that of reducing cell size, hence gaining more cells in a geographic region, with consequent increase in capacity, with a given reuse characteristic included. Cellular systems are, in fact, moving toward a hierarchy of cell sizes: larger cells, called macrocells; microcells, to be used, ideally, in the more crowded urban environments where the traffic load does dictate reducing the cell size (base station antennas and their attendant transmitter–receiver systems may be located at the reduced height of street lamp posts); and picocells, to be used principally in indoor cellular systems. One problem with the microcell approach is that handoffs, to be discussed in Chapter 9, become more frequent, increasing the need to handle handoff calls more effectively. Macrocell overlays on microcellular systems have been proposed as well to improve traffic-handling capability (Stüber, 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×