Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T16:48:22.142Z Has data issue: false hasContentIssue false

3 - Lattices and crystal structures

from Part II - Atomistics

Published online by Cambridge University Press:  05 June 2012

Ellad B. Tadmor
Affiliation:
University of Minnesota
Ronald E. Miller
Affiliation:
Carleton University, Ottawa
Get access

Summary

Crystalline materials were known from ancient times for their beautiful regular shapes and useful properties. Many materials of important technological value are crystalline, and we now understand that their characteristics are a result of the regular, repeating arrangement of atoms making up the crystal structure. The details of this crystal structure determine, for example, the elastic anisotropy of the material. It helps determine whether the crystal is ductile or brittle (or both depending on the direction of the applied loads). The crystallinity manifests itself in structural phase transformations, where materials change from one crystal structure to another under applied temperature or stress. Defects in crystals (discussed in Chapters 1, 6 and 12) determine the electrical and mechanical response of the material. Indeed, we saw in Chapter 1 that the starting point for understanding any of the properties of crystalline materials is the understanding of the underlying crystal structure itself.

Crystal history: continuum or corpuscular?

The evolution of the modern science of crystallography was a long time in coming. Here, we present a brief overview, partly based on the fascinating detailed history of this science in the article by J. N. Lalena [La106].

Prehistoric man used flint, a microcrystalline form of quartz peppered with impurities, to make tools and weapons. Most likely he never concerned himself with the inner structure of the material he was using. If pressed he would probably have adopted a continuum view of his material since clearly as he formed his tools the chips flying off were always just smaller pieces of flint.

Type
Chapter
Information
Modeling Materials
Continuum, Atomistic and Multiscale Techniques
, pp. 115 - 152
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×