Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T21:37:44.447Z Has data issue: false hasContentIssue false

8 - Parameterization of Subgrid-Scale Processes

Published online by Cambridge University Press:  15 May 2017

Guy P. Brasseur
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Daniel J. Jacob
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, C. D. (2000) Essentials of Meteorology: An Invitation to the Atmosphere, 3rd edition, Thomson Brooks/Cole, Belmont, CA.Google Scholar
Allen, D., Pickering, K., Stenchikov, G., Thompson, A., and Kondo, Y. (2000) A three-dimensional total odd nitrogen (NOy) simulation during SONEX using a stretched-grid chemical transport model, J. Geophys. Res., 105: doi: 10.1029/1999JD901029.Google Scholar
Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and Turekian, K. K. (1993) Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res., 98(D11), 2057320586, doi:10.1029/93JD02456.Google Scholar
Balkovsky, E. and Fouxon, A. (1999) Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem, Phys. Rev. E, 60, 4164.Google Scholar
Blackadar, A. K. (1979) High Resolution Models of the Planetary Boundary Layer, Advances in Environmental and Scientific Engineering, Vol. I, Gordon and Breach, New York.Google Scholar
Brasseur, G. P. and Solomon, S. (2005) Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd edition, Springer, New York.CrossRefGoogle Scholar
Brodkey, R. S. (1981) Fundamentals of turbulent motions, mixing and kinetics, Chem. Eng. Comm., 8, 123.Google Scholar
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F. (1971) Flux profile relationships in the atmospheric surface layer, J. Atmos. Sci., 28, 181189.2.0.CO;2>CrossRefGoogle Scholar
Cassiani, M., Vinuesa, J. F. Galmarini, S. and Denby, D. (2010) Stochastic fields methods for sub-grid scale emission heterogeneity in mesoscale atmospheric dispersion flows, Atm. Chem. Phys., 10, 267277.Google Scholar
Chella, R. and Ottino, J. M. (1984) Conversion and selectivity modifications due to mixing in unpremixed reactors, Chem. Eng. Sci., 39, 551.CrossRefGoogle Scholar
Christian, H. J., Blakeslees, R., Boccippio, D., et al. (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005, doi:10.1029/2002JD002347.Google Scholar
Collins, W. J., Stevenson, D. S., Johnson, C. E., and Derwent, R. G. (1997) Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls, J. Atmos. Chem., 26, 223274.CrossRefGoogle Scholar
Damköhler, G. (1940) Influence of turbulence on the velocity of flames in gas mixtures, Z. Elektrochem, 46, 601626.Google Scholar
Damköhler, G. (1947) The effect of turbulence on the flame velocity in gas mixtures, Technical report NACA TM 1112.Google Scholar
Deardorff, J. W. (1966) The counter gradient heat flux in the lower atmosphere and in the laboratory, J. Atmos. Sci., 23, 503506.2.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. (1972) Theoretical expression for the countergradient vertical heat flux, J. Geophys. Res., 77 (30), 59005904.Google Scholar
Durran, D. R. (2010) Numerical Methods for Fluid Dynamics: with Applications to Geophysics, 2nd edition, Springer, New York.CrossRefGoogle Scholar
Dyer, A. J. (1974) A review of flux-profile relations, Bound. Layer Meteor., 1, 363372.CrossRefGoogle Scholar
Ecke, R. (2005) The turbulence problem: An experimentalist’s perspective, Los Alamos Sci., 29, 124141.Google Scholar
Ekman, V. W. (1905) On the influence of the earth’s rotation on ocean currents, Ark. Mat. Astron. Fys., 2, 11, 152.Google Scholar
Fairlie, T. D., Pierce, R. B., Al-Saadi, J. A., et al. (1999) The contribution of mixing in Lagrangian photochemical predictions of polar ozone loss over the Arctic in summer 1997, J. Geophys. Res., 104, 2659726609.CrossRefGoogle Scholar
Favre, A. (1958a) Equations statistiques des gaz turbulents: Masse, quantité de movement, C. R. Acad. Sci. Paris, 246, 25762579.Google Scholar
Favre, A. (1958b) Equations statistiques des gaz turbulents: Énergie totale, énergie interne. C. R. Acad. Sci. Paris, 246, 27232725Google Scholar
Feng, J. (2007) A 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models, Atmos. Environ., 41, 68086822,.CrossRefGoogle Scholar
Feng, J. (2009), A size-resolved model for below-cloud scavenging of aerosols by snowfall, J. Geophys. Res., 114, D08203, doi:10.1029/2008JD011012.CrossRefGoogle Scholar
Fox, R. O. (2003) Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Garratt, J. R. (1994) The Atmospheric Boundary Layer, Cambridge University Press, Cambridge.Google Scholar
Giorgi, F. and Chameides, W. L. (1986) Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model, J. Geophys. Res., 91, 1436714376.Google Scholar
Grell, G. A., Peckham, S. E., Schmitz, R., et al. (2005), Fully coupled online chemistry within the WRF model, Atmos. Environ., 39, 69576975, doi: 10.106/j.atmosenv.2005.04.027.Google Scholar
Heald, C. L., Jacob, D., Fiore, A., et al. (2003) Asian outflow and transpacific transport of carbon monoxide and ozone pollution: An integerated satellite aircraft and model perspective, J. Geophys. Res., 108, 4804.Google Scholar
Hesselberg, T. (1926) Die Gesetze des ausgegleichenen atmosphaerischen Bewegungen. Beitr. Physik freien Atmosphaere., 12, 141160.Google Scholar
Hines, C. O. (1997a) Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere: Part 1. Basic formulation, J. Atmos. Solar. Terr. Phys., 59, 371386.CrossRefGoogle Scholar
Hines, C. O. (1997b) Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere: Part 2. Broad and quasi monochromatic spectra, and implementation, J. Atmos. Solar. Terr. Phys., 59, 387400.Google Scholar
Hogstrom, U. (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation, Bound. Layer Meteor., 42, 5578.CrossRefGoogle Scholar
Holton, J. R. (1992) An Introduction to Dynamical Meteorology, 3rd edition, Academic Press, New York.Google Scholar
Holtslag, A. A. M. and Boville, B. (1993) Local versus nonlocal boundary-layer diffusion in a global climate model, J. Climate, 6, 18251842.Google Scholar
Hong, S. Y., Noh, Y., and Dudhia, J. (2006) A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Wea. Rev., 134, 23182341.Google Scholar
Kain, J. S. and Fritsch, J. M. (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 27842802.Google Scholar
Kazil, J., Wang, H., Feingold, G., et al. (2011) Modeling chemical and aerosol processes in the transition from closed to open cells during VOCALs-Rex, Atmos. Chem. Phys., 11, 74917514, doi: 10.5194/acp-11-7491-2011.CrossRefGoogle Scholar
Kolmogorov, A. N. (1941a) The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Dokl. Akad. Nauk SSSR, 30, 301303. Reprinted in Proc. R. Soc. Lond., Ser: A, 434, 9–13, 1991Google Scholar
Kolmogorov, A. N. (1941b) Dissipation of energy in the locally isotropic turbulence, Dokl. Akad. Nauk SSSR, 31, 1921. Reprinted in Proc. R. Soc. Lond., Ser: A, 434, 15–17, 1991.Google Scholar
Kramm, G. and Meixner, F. X. (2000) On the dispersionof trace species in the atmospheric boundary layer: A reformulation of the governing equations for the turbulent flow of the compressible atmosphere, Tellus, 52A, 500522.Google Scholar
Lawrence, M. G. and Crutzen, P. J. (1998) The impact of cloud particle gravitational settling on soluble trace gas distribution, Tellus, 50B, 263289.Google Scholar
Levine, S. Z. and Schwartz, S. E. (1982) In-cloud and below-cloud scavenging of nitric acid vapor, Atmos. Environ., 16 (7), 17251734.Google Scholar
Lin, J. C., Gerbig, C., Wofsy, S. C., et al. (2003) A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model, J. Geophys. Res., 108, 4493, doi:10.1029/2002JD003161.CrossRefGoogle Scholar
Lindzen, R. S. (1981) Turbulence and stress due to gravity wave and tidal breakdown, J. Geophys. Res., 86, 97079714.Google Scholar
Liu, S. C., McAfee, J. R., and Cicerone, R.J. (1984) Radon 222 and tropospheric vertical transport, J. Geophys. Res., 89, 72917297.Google Scholar
Mari, C., Jacob, D. J., and Bechtold, P. (2000) Transport and scavenging of soluble gases in a deep convective cloud, J. Geophys. Res., 105, 2225522267.Google Scholar
McKenna, D. S., Grooss, J. U., Gunther, G., et al. (2002) A new Chemical Lagrangian Model of the Stratosphere (CLaMS): 2. Formulation of chemistry scheme and initialization, J. Geophys. Res., 107, 4309.Google Scholar
Medvedev, A. S. and Klaassen, G. P. (1995) Vertical evolution of gravity wave spectra and the parameterization of associated wave drag, J. Geophys. Res., 110 (D12), 2584125853, doi: 10.1029/95JD02533.Google Scholar
Meijer, E. W., van Velthoven, P. E. J., Brunner, D. W., Huntrieser, H., and Kedler, H. (2001) Improvement and evaluation of the parameterisation of nitrogen oxide production by lightning, Phys. Chem. Earth. (C), 26, 577583.Google Scholar
Monin, A. S. and Obukhov, A. M. (1954) Basic laws of turbulent mixing in the atmosphere near the ground, Tr. Akad. Nauk., SSSR Geophyz Inst., No 24 (151), 19631987.Google Scholar
Murray, L. T., Jacob, D. J., Logan, J. A., et al., (2012) Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, J. Geophys. Res., 117, D20307, doi:10.1029/2012JD017934Google Scholar
Obukhov, A. M. (1941) On the distribution of energy in the spectrum of turbulent flow, Dokl. Akad. Nauk SSSR, 32, 2224.Google Scholar
Ott, L. E., Pickering, K. E., Stenchikov, G. L., et al. (2010) Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations, J. Geophys. Res., 115, D04301, doi: 10.1029/2009JD011880.CrossRefGoogle Scholar
Pope, S. B. (2000) Turbulent Flows, Cambridge University Press, Cambridge.Google Scholar
Prandtl, L. (1925) Über die ausgebildete Turbulenz, Z. Angew. Math. Mech., 5, 136138.Google Scholar
Price, C. and Rind, D. (1992) A simple parameterization for calculating global lightning distribution, J. Geophys. Res., 97, 99199933.Google Scholar
Price, C., Penner, J., and Prather, M. (1997) NOx from lightning: 1. Global distribution based on lightning physics, J. Geophys. Res., 102, 59295941.Google Scholar
Prusa, J. M., Smolarkiewicz, P. K., and Garcia, R. R. (1996) On the propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing, J. Atmos. Sci., 53 (15), 21862216.Google Scholar
Rastigejev, Y., Park, R., Brenner, M. P., and Jacob, D. J. (2010) Resolving intercontinental pollution plumes in global models of atmospheric transport, J. Geophys. Res., 115, D02302.Google Scholar
Richardson, L. F. (1922) Weather Prediction by Numerical Process. Cambridge University Press, Cambridge, reprinted 1965.Google Scholar
Sauvage, B., Martin, R. V., van Donkelaar, A., et al. (2007) Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone, Atmos. Chem. Phys., 7, 815838.Google Scholar
Schumann, U. and Huntrieser, H. (2007) The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 38233907.Google Scholar
Seinfeld, J. H. and Pandis, S. N. (1996) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York.Google Scholar
Seinfeld, J. H. and Pandis, S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, Chichester.Google Scholar
Solomon, S., Qin, D., Manning, M., et al. (eds.) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.Google Scholar
Stensrud, D. J. (2007) Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Stuart, A. L. and Jacobson, M. Z. (2006). A numerical model of the partitioning of trace chemical solutes during drop freezing, J. Atmos. Chem., 53(1), 1342.Google Scholar
Stull, R. B. (1988) An Introduction to Boundary Layer Meteorology, Kluwer, Dordrecht.Google Scholar
Théry, C., Laroche, P., and Blanchet, P. (2000) EULINOX: The European lightning nitrogen oxides experiment. In EULINOX Final Report (Höller, H. and Schumann, U., eds.), Deutches Zentrum für Luft- und Raumfahrt, Köln.Google Scholar
Thomson, D. J. and Wilson, J. D. (2012) History of Lagrangian stochastic models for turbulent dispersion. In Lagrangian Modeling of the Atmosphere (Lin, J., Brunner, D., Gerbig, C., et al., eds.), American Geophysical Union, Washington, DC.Google Scholar
Thouret, V., Cho, J., Newell, R., Marenco, A., and Smit, H. (2000) General characteristics of tropospheric trace constituent layers observed in the MOZAIC program, J. Geophys. Res., 105, 1737917392.Google Scholar
Troen, L. and Mahrt, L. (1986) A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation, Bound. Layer Meteorol., 37, 129148.Google Scholar
Valiño, L. (1998) A field Monte-Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow, Turbulence and Combustion, 60, 157. doi:10.1023/A:1009968902446Google Scholar
Van Mieghem, J. (1973) Atmospheric Energetics, Oxford University Press, Oxford.Google Scholar
Verver, G. H. L., van Dop, H., and Holtslag, A. A. M. (1997) Turbulent mixing of reactive gases in the convective boundary layer, Bound. Layer Meteorol., 85, 197222.Google Scholar
Vilà-Guerau de Arellano, J. (1992) A review of turbulent flow studies relating to the atmosphere, ACTA Chimica Hungarica-Models in Chemistry, 129 (6), 889902.Google Scholar
Vinuesa, J.-F. and Vilà-Guerau de Arellano, J. (2005) Introducing effective reaction rates to account for the inefficient mixing of the convective boundary layer, Atmos. Environ., 39, 445461.Google Scholar
Wallace, J. M. and Hobbs, P. V. (2006) Atmospheric Science: An Introductory Survey, Academic Press, New York.Google Scholar
Wild, O. and Prather, M. J. (2006) Global tropospheric ozone modeling: Quantifying errors due to grid resolution, J. Geophys. Res., 111, D11305, doi: 10.1029/2005JD006605.Google Scholar
Wyngaard, J. C. (1982) Planetary boundary layer modeling. In Atmospheric Turbulence and Air Pollution Modelling, (Nieuwstadt, F. T. M. and Van Dop, H., eds.), Reidel, Norwell, MA.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×