Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-08T11:57:43.430Z Has data issue: false hasContentIssue false

3 - Transition-metal clusters: geometric and electronic structure

Published online by Cambridge University Press:  19 February 2010

Thomas Fehlner
Affiliation:
University of Notre Dame, Indiana
Jean-Francois Halet
Affiliation:
Université de Rennes I, France
Jean-Yves Saillard
Affiliation:
Université de Rennes I, France
Get access

Summary

To a large extent, we expect the cluster bonding principles established for main-group clusters in Chapter 2 to carry over to transition-metal clusters. However, the AO basis sets for building MOs differ for transition metals which means that the expression of the cluster bonding principles in geometric and electronic structure will also differ. That is, the observed cluster compositions and shapes differ and these differences can be associated with the participation of the metal d functions in cluster bonding. The d functions are the “wild cards” that make transition-metal chemistry so interestingly different from main-group chemistry. In writing Chapter 3 we have assumed that the reader has a basic understanding of the principles of cluster bonding as expressed by p-block clusters (Chapter 2). Emphasis here is placed on the varied expression of d-block metal character within a cluster context. A number of monographs on metal clusters are suggested at the end of this chapter as additional reading for those interested in pursuing a topic in more depth.

Three-connect clusters

Main-group clusters that exhibit three-connect shapes can often be described using localized two-center bonds. What is the situation for metal clusters?

Localized two-center bonds

Two-center–two-electron bonding and the eight-electron rule adequately rationalize three-connect clusters like P4; hence, we expect the 18-electron rule to suffice for three-connect transition-metal clusters like tetrahedral Ir4(CO)12 (Figure 3.1) with 12 terminal carbonyl ligands. Indeed it does.

Type
Chapter
Information
Molecular Clusters
A Bridge to Solid-State Chemistry
, pp. 85 - 138
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shriver, D. F., Kaesz, H. D. and Adams, R. D. (Eds.) (1990). The Chemistry of Metal Cluster Complexes. New York: VCH.Google Scholar
Mingos, D. M. P. and Wales, D. J. (1990). Introduction to Cluster Chemistry. New York: Prentice Hall.Google Scholar
Braunstein, P., Oro, L. A. and Raithby, P. R. (Eds.) (1999). Metal Clusters in Chemistry, Weinheim: Wiley-VCH.CrossRefGoogle Scholar
Woolley, R. G. (1985). Inorg. Chem., 24, 3519, 3525.CrossRef
Lauher, J. W. (1978). J. Am. Chem. Soc., 100, 5305.CrossRef
Lauher, J. W. (1979). J. Am. Chem. Soc., 101, 2604.CrossRef
Lewis, J. and Johnson, B. F. G. (1982). Pure and Appl. Chem., 54, 97.CrossRef
Johnson, B. F. G. and Lewis, J. (1981). Adv. Inorg. Chem. Radiochem., 24, 225.CrossRef
Mingos, D. M. P. and Forsyth, M. I. (1977). J. Chem. Soc., Dalton Trans., 160.
Mingos, D. M. P. (1982). Inorg. Chem., 21, 464.CrossRef
Chisholm, M. H. (Ed.) (1995). Early Transition Metal Clusters with π-Donor Ligands. New York: VCH.Google Scholar
Cotton, F. A. and Haas, T. E. (1964). Inorg. Chem., 3, 10.CrossRef
Wade, K. (1976). Adv. Inorg. Chem. and Radiochem., 18, 1.CrossRef
Chisholm, M. C., Clark, D. L., Hampden-Smith, M. J. and Hoffman, D. H. (1989). Angew. Chem. Int. Ed. Engl., 28, 432.CrossRef
Hughbanks, T. (1989). Prog. Solid St. Chem., 19, 329.CrossRef
Welch, E. J., Crawford, N. R. M., Bergman, R. G. and Long, J. R. (2003). J. Am. Chem. Soc., 125, 11464.CrossRef
Ingleson, M. J., Mahon, M. F., Raithby, P. R. and Weller, A. S. (2004). J. Am. Chem. Soc., 126, 4784.CrossRef
Chini, P. (1980). J. Organomet. Chem., 200, 37.CrossRef
Klabunde, K. J. (Ed.) (2001). Nanoscale Materials in Chemistry. New York: John Wiley.CrossRefGoogle Scholar
Stave, M. S. and DePristo, A. E. (1992). J. Chem. Phys., 97, 3386.CrossRef
Fayet, M., McGlinchey, J. J. and Wöste, L. H. (1987). J. Am. Chem. Soc., 109, 1733.CrossRef
Mingos, D. M. P. and Johnston, R. L. (1987). Structure and Bonding, 68, 29.
Tran, N. T., Kawano, M., Powell, D. R. and Dahl, L. F. (1998). J. Am. Chem. Soc., 120, 10986.CrossRef
Schnepf, A. and Schnöckel, H. (2002). Angew. Chem. Int. Ed., 41, 3532.3.0.CO;2-4>CrossRef
Schmid, G. (1992). Chem Rev, 92, 1709.CrossRef
Zhang, H., Schmid, G. and Hartmann, U. (2003). Nano Letters, 3, 305.CrossRef
Klabunde, K. J. (1994). Free Atoms, Clusters and Nanoscale Particles. New York: Academic Press.Google Scholar
Schmid, G. (2004). Nanoparticles. From Theory to Application. Weinheim: Wiley-VCH.Google Scholar
Ozin, G. A. and Arsenault, A. C. (2005). Nanochemistry. A Chemical Approach to Nanomaterials. Cambridge: Royal Society of Chemistry.Google Scholar
Shriver, D. F., Kaesz, H. D. and Adams, R. D. (Eds.) (1990). The Chemistry of Metal Cluster Complexes. New York: VCH.Google Scholar
Mingos, D. M. P. and Wales, D. J. (1990). Introduction to Cluster Chemistry. New York: Prentice Hall.Google Scholar
Braunstein, P., Oro, L. A. and Raithby, P. R. (Eds.) (1999). Metal Clusters in Chemistry, Weinheim: Wiley-VCH.CrossRefGoogle Scholar
Woolley, R. G. (1985). Inorg. Chem., 24, 3519, 3525.CrossRef
Lauher, J. W. (1978). J. Am. Chem. Soc., 100, 5305.CrossRef
Lauher, J. W. (1979). J. Am. Chem. Soc., 101, 2604.CrossRef
Lewis, J. and Johnson, B. F. G. (1982). Pure and Appl. Chem., 54, 97.CrossRef
Johnson, B. F. G. and Lewis, J. (1981). Adv. Inorg. Chem. Radiochem., 24, 225.CrossRef
Mingos, D. M. P. and Forsyth, M. I. (1977). J. Chem. Soc., Dalton Trans., 160.
Mingos, D. M. P. (1982). Inorg. Chem., 21, 464.CrossRef
Chisholm, M. H. (Ed.) (1995). Early Transition Metal Clusters with π-Donor Ligands. New York: VCH.Google Scholar
Cotton, F. A. and Haas, T. E. (1964). Inorg. Chem., 3, 10.CrossRef
Wade, K. (1976). Adv. Inorg. Chem. and Radiochem., 18, 1.CrossRef
Chisholm, M. C., Clark, D. L., Hampden-Smith, M. J. and Hoffman, D. H. (1989). Angew. Chem. Int. Ed. Engl., 28, 432.CrossRef
Hughbanks, T. (1989). Prog. Solid St. Chem., 19, 329.CrossRef
Welch, E. J., Crawford, N. R. M., Bergman, R. G. and Long, J. R. (2003). J. Am. Chem. Soc., 125, 11464.CrossRef
Ingleson, M. J., Mahon, M. F., Raithby, P. R. and Weller, A. S. (2004). J. Am. Chem. Soc., 126, 4784.CrossRef
Chini, P. (1980). J. Organomet. Chem., 200, 37.CrossRef
Klabunde, K. J. (Ed.) (2001). Nanoscale Materials in Chemistry. New York: John Wiley.CrossRefGoogle Scholar
Stave, M. S. and DePristo, A. E. (1992). J. Chem. Phys., 97, 3386.CrossRef
Fayet, M., McGlinchey, J. J. and Wöste, L. H. (1987). J. Am. Chem. Soc., 109, 1733.CrossRef
Mingos, D. M. P. and Johnston, R. L. (1987). Structure and Bonding, 68, 29.
Tran, N. T., Kawano, M., Powell, D. R. and Dahl, L. F. (1998). J. Am. Chem. Soc., 120, 10986.CrossRef
Schnepf, A. and Schnöckel, H. (2002). Angew. Chem. Int. Ed., 41, 3532.3.0.CO;2-4>CrossRef
Schmid, G. (1992). Chem Rev, 92, 1709.CrossRef
Zhang, H., Schmid, G. and Hartmann, U. (2003). Nano Letters, 3, 305.CrossRef
Klabunde, K. J. (1994). Free Atoms, Clusters and Nanoscale Particles. New York: Academic Press.Google Scholar
Schmid, G. (2004). Nanoparticles. From Theory to Application. Weinheim: Wiley-VCH.Google Scholar
Ozin, G. A. and Arsenault, A. C. (2005). Nanochemistry. A Chemical Approach to Nanomaterials. Cambridge: Royal Society of Chemistry.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×