Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T11:49:29.248Z Has data issue: false hasContentIssue false

Chapter 15 - Lysosomal Storage Disorders: Neuronal Ceroid Lipofuscinoses and Movement Disorders

from Section II - A Metabolism-Based Approach to Movement Disorders and Inherited Metabolic Disorders

Published online by Cambridge University Press:  24 September 2020

Darius Ebrahimi-Fakhari
Affiliation:
Harvard Medical School
Phillip L. Pearl
Affiliation:
Harvard Medical School
Get access

Summary

The neuronal ceroid lipofuscinoses (NCLs) are rare, inherited, neurodegenerative, fatal lysosomal diseases of childhood caused by mutations in various genes. Although NCLs comprise more than 10 distinct diseases, they share core signs and symptoms: vision loss, epilepsy, dementia, and movement disorders [1–]. Pathologically, NCLs are characterized by lysosomal accumulation of autofluorescent ceroid lipopigments []. These accumulations result in different ultrastructural inclusion patterns on electron microscopy in the various NCL forms. Most NCL genes encode for proteins involved in lysosomal or secretory cellular pathways [].

Type
Chapter
Information
Movement Disorders and Inherited Metabolic Disorders
Recognition, Understanding, Improving Outcomes
, pp. 202 - 214
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mole, SE, Williams, RE. Neuronal ceroid-lipofuscinoses. GeneReviews®. 2001;Oct 10 (updated Aug 1, 2013).Google Scholar
Nita, DA, Mole, SE, Minassian, BA. Neuronal ceroid lipofuscinoses. Epileptic Disord. 2016;18(S2):7388.Google Scholar
Mink, JW, Augustine, EF, Adams, HR, Marshall, FJ, Kwon, JM. Classification and natural history of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013;28(9):1101–5.Google Scholar
Mole, SE, Cotman, SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta. 2015;1852(10 Pt B):2237–41.Google ScholarPubMed
Santavuori, P, Haltia, M, Rapola, J. Infantile type of so-called neuronal ceroid-lipofuscinosis. Dev Med Child Neurol. 1974;16(5):644–53.CrossRefGoogle ScholarPubMed
Becker, K, Goebel, HH, Svennerholm, L, Wendel, U, Bremer, HJ. Clinical, morphological, and biochemical investigations on a patient with an unusual form of neuronal ceroid-lipofuscinosis. Eur J Pediatr. 1979;132(3):197206.Google Scholar
Das, AK, Becerra, CH, Yi, W, et al. Molecular genetics of palmitoyl-protein thioesterase deficiency in the U.S. J Clin Invest. 1998;102(2):361–70.Google Scholar
Ramadan, H, Al-Din, AS, Ismail, A, et al. Adult neuronal ceroid lipofuscinosis caused by deficiency in palmitoyl protein thioesterase 1. Neurology. 2007;68(5):387–8.Google Scholar
van Diggelen, OP, Thobois, S, Tilikete, C, et al. Adult neuronal ceroid lipofuscinosis with palmitoyl-protein thioesterase deficiency: First adult-onset patients of a childhood disease. Ann Neurol. 2001;50(2):269–72.CrossRefGoogle ScholarPubMed
Wisniewski, KE, Connell, F, Kaczmarski, W, et al. Palmitoyl-protein thioesterase deficiency in a novel granular variant of LINCL. Pediatr Neurol. 1998;18(2):119–23.Google Scholar
Steinfeld, R, Heim, P, von Gregory, H, et al. Late infantile neuronal ceroid lipofuscinosis: Quantitative description of the clinical course in patients with CLN2 mutations. Am J Med Genet. 2002;112(4):347–54.CrossRefGoogle ScholarPubMed
Ku, CA, Hull, S, Arno, G, et al. Detailed clinical phenotype and molecular genetic findings in CLN3-associated isolated retinal degeneration. JAMA Ophthalmol. 2017;135(7):749–60.Google Scholar
Khan, KN, El-Asrag, ME, Ku, CA, et al. Specific alleles of CLN7/MFSD8, a protein that localizes to photoreceptor synaptic terminals, cause a spectrum of nonsyndromic retinal dystrophy. Invest Ophthalmol Vis Sci. 2017;58(7):2906–14.CrossRefGoogle Scholar
Mole, SE, Anderson, G, Band, HA, et al. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol. 2019;18(1):107–16.CrossRefGoogle ScholarPubMed
Berkovic, SF, Staropoli, JF, Carpenter, S, et al. Diagnosis and misdiagnosis of adult neuronal ceroid lipofuscinosis (Kufs disease). Neurology. 2016;87(6):579–84.CrossRefGoogle ScholarPubMed
Mahajnah, M, Zelnik, N. Phenotypic heterogeneity in consanguineous patients with a common CLN8 mutation. Pediatr Neurol. 2012;47(4):303–5.CrossRefGoogle ScholarPubMed
Cassim, F, Houdayer, E. Neurophysiology of myoclonus. Neurophysiol Clin. 2006; 36 (5-6): 281–91.Google Scholar
Bergman, H, Wichmann, T, DeLong, MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990;249(4975):1436–8.Google Scholar
DeLong, MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13(7):281–5.Google Scholar
Schulz, A, Kohlschutter, A, Mink, J, Simonati, A, Williams, R. NCL diseases: Clinical perspectives. Biochim Biophys Acta. 2013;1832(11):1801–6.Google Scholar
Vesa, J, Hellsten, E, Verkruyse, LA, et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature. 1995;376(6541):584–7.Google Scholar
Lerner, TJ, Boustany, R-MN, Anderson, JW, et al. Isolation of a novel gene underlying Batten disease, CLN3. Cell. 1995;82(6):949–57.CrossRefGoogle Scholar
Smith, KR, Dahl, HH, Canafoglia, L, et al. Cathepsin F mutations cause type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013;22(7):1417–23.CrossRefGoogle ScholarPubMed
Vanhanen, SL, Puranen, J, Autti, T, et al. Neuroradiological findings (MRS, MRI, SPECT) in infantile neuronal ceroid-lipofuscinosis (infantile CLN1) at different stages of the disease. Neuropediatrics. 2004;35(1):2735.CrossRefGoogle ScholarPubMed
Riikonen, R, Vanhanen, SL, Tyynela, J, Santavuori, P, Turpeinen, U. CSF insulin-like growth factor-1 in infantile neuronal ceroid lipofuscinosis. Neurology. 2000;54(9):1828–32.Google Scholar
Levin, SW, Baker, EH, Zein, WM, et al. Oral cysteamine bitartrate and N-acetylcysteine for patients with infantile neuronal ceroid lipofuscinosis: A pilot study. Lancet Neurol. 2014;13(8):777–87.Google Scholar
Confort-Gouny, S, Chabrol, B, Vion-Dury, J, Mancini, J, Cozzone, PJ.MRI and localized proton MRS in early infantile form of neuronal ceroid-lipofuscinosis. Pediatr Neurol. 1993;9(1):5760.Google Scholar
Metelitsina, TI, Waggoner, DJ, Grassi, MA. Batten disease caused by a novel mutation in the PPT1 gene. Retin Cases Brief Rep. 2016;10(3):211–3.Google Scholar
Nickel, M, Schulz, A, Kohlschütter, A, et al. PP03.8 – 2898: Late language acquisition and unexplained epilepsy are indicators of easily detectable CLN2 disease. Eur J Paediatr Neuro. 2015;19:S38.Google Scholar
Nickel, M, Simonati, A, Jacoby, D, et al. Disease characteristics and progression in patients with late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease: an observational cohort study. Lancet Child Adolesc Health. 2018;2(8):582–90.Google Scholar
Williams, RE, Adams, HR, Blohm, M, et al. Management strategies for CLN2 disease. Pediatr Neurol. 2017;69:102–12.Google Scholar
Saini, AG, Sankhyan, N, Singhi, P. Chorea in late-infantile neuronal ceroid lipofuscinosis: An atypical presentation. Pediatr Neurol. 2016;60:75–8.CrossRefGoogle ScholarPubMed
Di Giacopo, R, Cianetti, L, Caputo, V, et al. Protracted late infantile ceroid lipofuscinosis due to TPP1 mutations: Clinical, molecular and biochemical characterization in three sibs. J Neurol Sci . 2015;356(1):6571.CrossRefGoogle ScholarPubMed
Johannsen, J, Nickel, M, Schulz, A, Denecke, J. Considering valproate as a risk factor for rapid exacerbation of complex movement disorder in progressed stages of late-infantile CLN2 disease. Neuropediatrics. 2016;47(3):194–6.Google Scholar
Sun, Y, Almomani, R, Breedveld, GJ, et al. Autosomal recessive spinocerebellar ataxia 7 (SCAR7) is caused by variants in TPP1, the gene involved in classic late-infantile neuronal ceroid lipofuscinosis 2 disease (CLN2 disease). Hum Mutat. 2013;34(5):706–13.Google Scholar
Dy, ME, Sims, KB, Friedman, J. TPP1 deficiency: Rare cause of isolated childhood-onset progressive ataxia. Neurology. 2015;85(14):1259–61.CrossRefGoogle ScholarPubMed
Marshall, FJ, de Blieck, EA, Mink, JW, et al. A clinical rating scale for Batten disease: Reliable and relevant for clinical trials. Neurology. 2005;65(2):275–9.Google Scholar
Cialone, J, Adams, H, Augustine, EF, et al. Females experience a more severe disease course in Batten disease. J Inherit Metab Dis. 2012;35(3):549–55.Google Scholar
Ostergaard, JR. Juvenile neuronal ceroid lipofuscinosis (Batten disease): Current insights. Degener Neurol Neuromuscul Dis. 2016;6:7383.Google Scholar
Ostergaard, JR, Rasmussen, TB, Molgaard, H. Cardiac involvement in juvenile neuronal ceroid lipofuscinosis (Batten disease). Neurology. 2011;76(14):1245–51.Google Scholar
Elkay, M, Silver, K, Penn, RD, Dalvi, A. Dystonic storm due to Batten’s disease treated with pallidotomy and deep brain stimulation. Mov Disord. 2009;24(7):1048–53.Google Scholar
Hofman, IL. Observations in institutionalized neuronal ceroid-lipofuscinosis patients with special reference to involuntary movements. J Inherit Metab Dis. 1993;16(2):249–51.CrossRefGoogle ScholarPubMed
Aberg, L, Liewendahl, K, Nikkinen, P, et al. Decreased striatal dopamine transporter density in JNCL patients with parkinsonian symptoms. Neurology. 2000;54(5):1069–74.Google Scholar
Rinne, JO, Ruottinen, HM, Nagren, K, Aberg, LE, Santavuori, P. Positron emission tomography shows reduced striatal dopamine D1 but not D2 receptors in juvenile neuronal ceroid lipofuscinosis. Neuropediatrics. 2002;33(3):138–41.Google Scholar
Boehme, DH, Cottrell, JC, Leonberg, SC, Zeman, W. A dominant form of neuronal ceroid-lipofuscinosis. Brain. 1971;94(4):745–60.CrossRefGoogle ScholarPubMed
Ferrer, I, Arbizu, T, Pena, J, Serra, JP. A golgi and ultrastructural study of a dominant form of Kufs’ disease. J Neurol. 1980;222(3):183–90.CrossRefGoogle ScholarPubMed
Josephson, SA, Schmidt, RE, Millsap, P, McManus, DQ, Morris, JC. Autosomal dominant Kufs’ disease: A cause of early onset dementia. J Neurol Sci. 2001; 188 (1-2): 5160.Google Scholar
Burneo, JG, Arnold, T, Palmer, CA, et al. Adult-onset neuronal ceroid lipofuscinosis (Kufs disease) with autosomal dominant inheritance in Alabama. Epilepsia. 2003;44(6):841–6.Google Scholar
Simonati, A, Williams, RE, Nardocci, N, et al. Phenotype and natural history of variant late infantile ceroid-lipofuscinosis 5. Dev Med Child Neurol. 2017;59(8):815–21.Google Scholar
Mancini, C, Nassani, S, Guo, Y, et al. Adult-onset autosomal recessive ataxia associated with neuronal ceroid lipofuscinosis type 5 gene (CLN5) mutations. J Neurol. 2015;262(1):173–8.CrossRefGoogle ScholarPubMed
Sharp, JD, Wheeler, RB, Lake, BD, et al. Loci for classical and a variant late infantile neuronal ceroid lipofuscinosis map to chromosomes 11p15 and 15q21-23. Hum Mol Genet. 1997;6(4):591–5.CrossRefGoogle Scholar
Berkovic, SF, Oliver, KL, Canafoglia, L, et al. Kufs disease due to mutation of CLN6: Clinical, pathological and molecular genetic features. Brain. 2019;142(1):5969.CrossRefGoogle ScholarPubMed
Arsov, T, Smith, KR, Damiano, J, et al. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet. 2011;88(5):566–73.Google Scholar
Canafoglia, L, Gilioli, I, Invernizzi, F, et al. Electroclinical spectrum of the neuronal ceroid lipofuscinoses associated with CLN6 mutations. Neurology. 2015;85(4):316–24.Google Scholar
Siintola, E, Topcu, M, Kohlschutter, A, et al. Two novel CLN6 mutations in variant late-infantile neuronal ceroid lipofuscinosis patients of Turkish origin. Clin Genet. 2005;68(2):167–73.CrossRefGoogle ScholarPubMed
Guerreiro, R, Bras, JT, Vieira, M, et al. CLN6 disease caused by the same mutation originating in Pakistan has varying pathology. Eur J Paediatr Neurol. 2013;17(6):657–60.Google Scholar
Andrade, DM, Paton, T, Turnbull, J, et al. Mutation of the CLN6 gene in teenage-onset progressive myoclonus epilepsy. Pediatr Neurol. 2012;47(3):205–8.Google Scholar
Ozkara, C, Gunduz, A, Coskun, T, et al. Long-term follow-up of two siblings with adult-onset neuronal ceroid lipofuscinosis, Kufs type A. Epileptic Disord. 2017;19(2):147–51.Google Scholar
Topcu, M, Tan, H, Yalnizoglu, D, et al. Evaluation of 36 patients from Turkey with neuronal ceroid lipofuscinosis: Clinical, neurophysiological, neuroradiological and histopathologic studies. Turkish J Pediatr. 2004;46(1):110.Google ScholarPubMed
Siintola, E, Topcu, M, Aula, N, et al. The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am J Hum Genet. 2007;81(1):136-46.Google Scholar
Mandel, H, Cohen Katsanelson, K, Khayat, M, et al. Clinico-pathological manifestations of variant late infantile neuronal ceroid lipofuscinosis (vLINCL) caused by a novel mutation in MFSD8 gene. Eur J Med Genet. 2014;57(11-12):607–12.Google Scholar
Craiu, D, Dragostin, O, Dica, A, et al. Rett-like onset in late-infantile neuronal ceroid lipofuscinosis (CLN7) caused by compound heterozygous mutation in the MFSD8 gene and review of the literature data on clinical onset signs. Eur J Paediatr Neuro. 2015;19(1):7886.Google Scholar
Striano, P, Specchio, N, Biancheri, R, et al. Clinical and electrophysiological features of epilepsy in Italian patients with CLN8 mutations. Epilepsy Behav. 2007;10(1):187–91.Google Scholar
Katata, Y, Uematsu, M, Sato, H, et al. Novel missense mutation in CLN8 in late infantile neuronal ceroid lipofuscinosis: The first report of a CLN8 mutation in Japan. Brain Dev-JPN. 2016;38(3):341–5.Google Scholar
Reinhardt, K, Grapp, M, Schlachter, K, et al. Novel CLN8 mutations confirm the clinical and ethnic diversity of late infantile neuronal ceroid lipofuscinosis. Clin Genet. 2010;77(1):7985.Google Scholar
Beesley, C, Guerreiro, RJ, Bras, JT, et al. CLN8 disease caused by large genomic deletions. Mol Genet Genomic Med. 2017;5(1):8591.Google Scholar
Gao, Z, Xie, H, Jiang, Q, et al. Identification of two novel null variants in CLN8 by targeted next-generation sequencing: First report of a Chinese patient with neuronal ceroid lipofuscinosis due to CLN8 variants. BMC Med Genet. 2018;19(1):21.Google Scholar
Allen, NM, O’hIci, B, Anderson, G, et al. Variant late-infantile neuronal ceroid lipofuscinosis due to a novel heterozygous CLN8 mutation and de novo 8p23.3 deletion. Clinical Genetics. 2012;81(6):602–4.Google Scholar
Steinfeld, R, Reinhardt, K, Schreiber, K, et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006;78(6):988–98.Google Scholar
Doccini, S, Sartori, S, Maeser, S, et al. Early infantile neuronal ceroid lipofuscinosis (CLN10 disease) associated with a novel mutation in CTSD. J Neurol. 2016;263(5):1029–32.Google Scholar
Norman, RM, Wood, N. A congenital form of amaurotic family idiocy. J Neurol Psychiatry. 1941; 4 (3-4): 175–90.Google Scholar
Barohn, RJ, Dowd, DC, Kagan-Hallet, KS. Congenital ceroid-lipofuscinosis. Pediatr Neurol. 1992;8(1):54–9.Google Scholar
Brown, NJ, Corner, BD, Dodgson, MC. A second case in the same family of congenital familial cerebral lipoidosis resembling amaurotic family idiocy. Arch Dis Child. 1954;29(143):4854.Google Scholar
Garborg, I, Torvik, A, Hals, J, Tangsrud, SE, Lindemann, R. Congenital neuronal ceroid lipofuscinosis. A case report. Acta Pathol Microbiol Immunol Scand A. 1987;95(3):119–25.Google Scholar
Humphreys, S, Lake, BD, Scholtz, CL. Congenital amaurotic idiocy: Pathological, histochemical, biochemical and ultrastructural study. Neuropathol Appl Neurobiol. 1985;11(6):475–84.Google Scholar
Sandbank, U. Congenital amaurotic idiocy. Pathol Eur. 1968;3(2):226–9.Google Scholar
Fritchie, K, Siintola, E, Armao, D, et al. Novel mutation and the first prenatal screening of cathepsin D deficiency (CLN10). Acta Neuropathol. 2009;117(2):201–8.Google Scholar
Varvagiannis, K, Hanquinet, S, Billieux, MH, et al. Congenital neuronal ceroid lipofuscinosis with a novel CTSD gene mutation: A rare cause of neonatal-onset neurodegenerative disorder. Neuropediatrics. 2018;49(2):150–3.Google Scholar
Siintola, E, Partanen, S, Stromme, P, et al. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129(Pt 6):1438–45.CrossRefGoogle ScholarPubMed
Hersheson, J, Burke, D, Clayton, R, et al. Cathepsin D deficiency causes juvenile-onset ataxia and distinctive muscle pathology. Neurology. 2014;83(20):1873–5.Google Scholar
Canafoglia, L, Morbin, M, Scaioli, V, et al. Recurrent generalized seizures, visual loss, and palinopsia as phenotypic features of neuronal ceroid lipofuscinosis due to progranulin gene mutation. Epilepsia. 2014;55(6):e56–9.Google Scholar
Almeida, MR, Macario, MC, Ramos, L, et al. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging. 2016;41:200.e15.Google Scholar
Smith Katherine, R, Damiano, J, Franceschetti, S, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet . 2012;90(6):1102-7.Google Scholar
Ramirez, A, Heimbach, A, Grundemann, J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–91.Google Scholar
Estrada-Cuzcano, A, Martin, S, Chamova, T, et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(2):287305.Google Scholar
Bras, J, Verloes, A, Schneider, SA, Mole, SE, Guerreiro, RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–50.CrossRefGoogle ScholarPubMed
Di Fabio, R, Moro, F, Pestillo, L, et al. Pseudo-dominant inheritance of a novel CTSF mutation associated with type B Kufs disease. Neurology. 2014;83(19):1769–70.Google Scholar
Di Fabio, R, Colonnese, C, Santorelli, FM, Pestillo, L, Pierelli, F. Brain imaging in Kufs disease type B: Case reports. BMC Neurol. 2015;15:102.Google Scholar
Van Bogaert, P, Azizieh, R, Desir, J, et al. Mutation of a potassium channel-related gene in progressive myoclonic epilepsy. Ann Neurol. 2007;61(6):579–86.Google Scholar
Farhan, SM, Murphy, LM, Robinson, JF, et al. Linkage analysis and exome sequencing identify a novel mutation in KCTD7 in patients with progressive myoclonus epilepsy with ataxia. Epilepsia. 2014;55(9):e106–11.Google Scholar
Staropoli, JF, Karaa, A, Lim, ET, et al. A homozygous mutation in KCTD7 links neuronal ceroid lipofuscinosis to the ubiquitin-proteasome system. Am J Hum Genet. 2012;91(1):202–8.Google Scholar
Mastrangelo, M, Sartori, S, Simonati, A, et al. Progressive myoclonus epilepsy and ceroidolipofuscinosis 14: The multifaceted phenotypic spectrum of KCTD7-related disorders. Eur J Med Genet. 2019;62(12):103591. doi:10.1016/j.Google Scholar
Metz, KA, Teng, X, Coppens, I, et al. KCTD7 deficiency defines a distinct neurodegenerative disorder with a conserved autophagy-lysosome defect. Ann Neurol. 2018;84(5):766-80.Google Scholar
Koy, A, Lin, JP, Sanger, TD, et al. Advances in management of movement disorders in children. Lancet Neurol. 2016;15(7):719–35.Google Scholar
Singer, HS, Mink, JW, Glibert, DL, Jankovic, J. Movement Disorders in Childhood, 2nd edn. Philadelphia, PA: Academic Press; 2015.Google Scholar
Åberg, L, Liewendahl, K, Nikkinen, P, et al. Decreased striatal dopamine transporter density in JNCL patients with parkinsonian symptoms. Neurology. 2000;54(5):1069-74.Google Scholar
Åberg, LE, Rinne, JO, Rajantie, I, Santavuori, P. A favorable response to anitparkinsonian treatment in juvenile neuronal ceroid lipofucinosis. Neurology. 2001;56(9):1236-9.CrossRefGoogle Scholar
Zweije-Hofman, IL, van der Zee, HJ, van Nieuwenhuizen, O. Anti-parkinson drugs in the Batten–Spielmeyer–Vogt syndrome: A pilot trial. Clin Neurol Neurosurg. 1982;84(2):101–5.Google Scholar
Gospe, SM, Jr., Jankovic, J. Drug-induced dystonia in neuronal ceroid-lipofuscinosis. Pediatr Neurol. 1986;2(4):236–7.Google Scholar
Vercammen, L, Buyse, GM, Proost, JE, Van Hove, JL. Neuroleptic malignant syndrome in juvenile neuronal ceroid lipofuscinosis associated with low-dose risperidone therapy. J Inherit Metab Dis. 2003;26(6):611–2.Google Scholar
Barisic, N, Logan, P, Pikija, S, Skarpa, D, Blau, N. R208X mutation in CLN2 gene associated with reduced cerebrospinal fluid pterins in a girl with classic late infantile neuronal ceroid lipofuscinosis. Croat Med J. 2003;44(4):489–93.Google Scholar
Le, NM, Parikh, S. Late infantile neuronal ceroid lipofuscinosis and dopamine deficiency. J Child Neurol. 2012;27(2):234–7.Google Scholar
Cialone, J, Blackburn, J, Mink, J. Trihexyphenidyl has cognitive side effects in children with DYT1 dystonia (IN10-2.003). Neurology. 2012;78(1Supplement):P02.177.Google Scholar
Hasegawa, H, Alkufri, F, Munro, N, et al. GPi deep brain stimulation for palliation of hemidystonia and hemibody jerking in a patient with suspected adult onset neuronal ceroid lipofuscinosis. J Neurol Sci. 2016;362:228–9.Google Scholar
Schulz, A, Ajayi, T, Specchio, N, et al. Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med. 2018;378(20):1898–907.Google Scholar
Kim, J, Hu, C, Moufawad El Achkar, C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med 2019;381:1644–52.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×