Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T10:29:03.698Z Has data issue: false hasContentIssue false

Chapter 8 - Movement disorders in metabolic diseases in adulthood

from Section II - Movement disorders in systemic disease

Published online by Cambridge University Press:  05 April 2014

Miryam Carecchio
Affiliation:
Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, UK; Department of Neurology, Amedeo Avogadro University, Novara, Italy
Susanne A. Schneider
Affiliation:
Department of Neurology, Christian-Albrechts-University, Kiel, Germany
Kailash P. Bhatia
Affiliation:
Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, UK
Werner Poewe
Affiliation:
Medical University Innsbruck
Joseph Jankovic
Affiliation:
Baylor College of Medicine, Texas
Get access

Summary

Introduction

Inborn errors of metabolism (IEMs) are a wide and variegate, mostly recessively inherited group of multi-systemic diseases that often involve the central nervous system (CNS). Onset of symptoms in childhood or adolescence is generally the rule, but presentation in adulthood is not exceptional and should be taken into consideration in the differential diagnosis even in adult patients presenting with complex movement disorders.

Neurologists may face two scenarios in metabolic disorders of adulthood: late-onset metabolic diseases sometimes manifesting with neurological symptoms, including movement disorders or movement disorders developing later in the context of an earlier-onset and previously diagnosed IEM.

The latter circumstance is becoming increasingly frequent as early diagnosis, improvement of standards of care for patients diagnosed in early childhood, and a multidisciplinary approach in the treatment of these disorders, as well as the availability of new therapies, has considerably prolonged the life expectancy of these patients, so that several long-term neurological manifestations due to CNS involvement, including movement disorders, are now being observed with increasing frequency. Movement disorders in IEMs are clinically heterogeneous and include a wide spectrum of manifestations, from dystonia to ataxia, with different patterns and course; for this reason, considering metabolic diseases in the differential diagnosis is of primary importance in adults, especially when presenting with signs and symptoms of involvement of other organs. Most importantly, such diagnoses should not be missed as some of these disorders (for example, Wilson’s disease) are treatable and some of the movement disorders themselves can also be treated symptomatically.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, A., Schneider, S. A., Houlden, H., Silverdale, M., Paudel, R., Paisan-Ruiz, C., et al. (2010). “Indian-subcontinent NBIA: unusual phenotypes, novel PANK2 mutations, and undetermined genetic forms,” Mov. Disord. 25: 1424–31.CrossRefGoogle ScholarPubMed
Alonso-Canovas, A., Katschnig, P., Tucci, A., Carecchio, M., Wood, N. W., Edwards, M., et al. (2010). “Atypical parkinsonism with apraxia and supranuclear gaze abnormalities in type 1 Gaucher disease. Expanding the spectrum: case report and literature review,” Mov. Disord. 25: 1506–9.CrossRefGoogle ScholarPubMed
Anheim, M., Maillart, E., Vuillaumier-Barrot, S., Flamand-Rouvière, C., Pineau, F., Ewenczyk, C., et al. (2011). “Excellent response to acetazolamide in a case of paroxysmal dyskinesias due to GLUT1-deficiency,” J. Neurol. 258: 316–17.CrossRefGoogle Scholar
Anheim, M., Elbaz, A., Lesage, S., Durr, A., Condroyer, C., Viallet, F., et al. (2012) “French Parkinson Disease Genetic Group. Penetrance of Parkinson disease in glucocerebrosidase gene mutation carriers,” Neurology 78: 417–20.CrossRefGoogle ScholarPubMed
Antonini, A., Goldwurm, S., Benti, R., Prokisch, H., Ebhardt, M., Cilia, R., et al. (2006). “Genetic, clinical, and imaging characterization of one patient with late-onset, slowly progressive, pantothenate kinase-associated neurodegeneration,” Mov. Disord. 21: 417–18.CrossRefGoogle ScholarPubMed
Basel-Vanagaite, L., Muncher, L., Straussberg, R., Pasmanik-Chor, M., Yahav, M., Rainshtein, L., et al. (2006). “Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis,” Ann. Neurol. 60: 214–22.CrossRefGoogle ScholarPubMed
Bembi, B., Zambito Marsala, S., Sidransky, E., Ciana, G., Carrozzi, M., Zorzon, M., et al. (2003). “Gaucher’s disease with Parkinson’s disease: clinical and pathological aspects,” Neurology 61: 99–101.CrossRefGoogle ScholarPubMed
Bhatia, K. P. (1999). “The paroxysmal dyskinesias,” J. Neurol. 246: 149–55.CrossRefGoogle ScholarPubMed
Bosch, A. M., Ijlst, L., Oostheim, W., Mulders, J., Bakker, H. D., Wijburg, F. A., et al. (2005). “Identification of novel mutations in classical galactosemia,” Hum. Mutat. 25: 502.CrossRefGoogle ScholarPubMed
Brewer, G. J., Terry, C. A., Aisen, A. M., and Hill, G. M. (1987). “Worsening of neurologic syndrome in patients with Wilson’s disease with initial penicillamine therapy,” Arch. Neurol. 44: 490–3.CrossRefGoogle ScholarPubMed
Brewer, G. J., Yuzbasiyan-Gurkan, V., and Lee, D. Y. (1990). “Use of zinc-copper metabolic interactions in the treatment of Wilson’s disease,” J. Am. Coll. Nutr. 9: 487–91.
Brockmann, K. (2009). “The expanding phenotype of GLUT1-deficiency syndrome,” Brain Dev. 31: 545–52.CrossRefGoogle ScholarPubMed
Brüggemann, N., Hagenah, J., Reetz, K., Schmidt, A., Kasten, M., Buchmann, I., et al. (2010). “Recessively inherited parkinsonism: effect of ATP13A2 mutations on the clinical and neuroimaging phenotype,” Arch. Neurol. 67: 1357–63.CrossRefGoogle ScholarPubMed
Brüggemann, N., Spiegler, J., Hellenbroich, Y., Opladen, T., Schneider, S. A., Stephani, U., et al. (2012). “Beneficial prenatal levodopa therapy in autosomal recessive guanosine triphosphate cyclohydrolase 1 deficiency,” Arch. Neurol. 69: 1071–5.CrossRefGoogle ScholarPubMed
Bultron, G., Kacena, K., Pearson, D., Boxer, M., Yang, R., Sathe, S., et al. (2010). “The risk of Parkinson’s disease in type 1 Gaucher disease,” J. Inherit. Metab. Dis. 33: 167–73.CrossRefGoogle ScholarPubMed
Capablo, J. L., Saenz de Cabezón, A., Fraile, J., Alfonso, P., Pocovi, M., and Giraldo, P. (2008). “Spanish Group on Gaucher Disease. Neurological evaluation of patients with Gaucher disease diagnosed as type 1,” J. Neurol. Neurosurg. Psychiatry 79: 219–22.CrossRefGoogle ScholarPubMed
Carecchio, M., Schneider, S. A., Chan, H., Lachmann, R., Lee, P. J., Murphy, E., and Bhatia, K. P. (2011). “Movement disorders in adult surviving patients with maple syrup urine disease,” Mov. Disord. 26: 1324–8.CrossRefGoogle ScholarPubMed
Cario, H., Bode, H., Debatin, K. M., Opladen, T., and Schwarz, K. (2009). “Congenital null mutations of the FOLR1 gene: a progressive neurologic disease and its treatment,” Neurology 73: 2127–9.CrossRefGoogle ScholarPubMed
Chien, H. F., Bonifati, V., and Barbosa, E. R. (2011). “ATP13A2-related neurodegeneration (PARK9) without evidence of brain iron accumulation,” Mov. Disord. 26: 1364–5.CrossRefGoogle ScholarPubMed
Chinnery, P. F., Crompton, D. E., Birchall, D., Jackson, M. J., Coulthard, A., Lombès, A., et al. (2007). “Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation,” Brain 130: 110–19.CrossRefGoogle ScholarPubMed
Clot, F., Grabli, D., Cazeneuve, C., Roze, E., Castelnau, P., Chabrol, B., et al. (2009). “Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia,” Brain 132: 1753–63.CrossRefGoogle ScholarPubMed
Debs, R., Depienne, C., Rastetter, A., Bellanger, A., Degos, B., Galanaud, D., et al. (2010). “Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations,” Arch. Neurol. 67: 126–30.CrossRefGoogle ScholarPubMed
De Grandis, E., Mir, P., Edwards, M. J., Quinn, N. P., and Bhatia, K. P. (2008). “Paroxysmal dyskinesia with interictal myoclonus and dystonia: a report of two cases,” Parkinsonism Relat. Disord. 14: 250–2.CrossRefGoogle ScholarPubMed
Di Fonzo, A., Chien, H. F., Socal, M., Giraudo, S., Tassorelli, C., Iliceto, G., et al. (2007). “ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease,” Neurology 68: 1557–62.CrossRefGoogle ScholarPubMed
Dick, K. J., Eckhardt, M., Paisan-Ruiz, C., Alshehhi, A. A., Proukakis, C., Sibtain, N. A. (2010). “Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35),” Hum. Mutat. 31: E1251-60.CrossRefGoogle Scholar
Dorfman, L. J., Pedley, T. A., Tharp, B. R., and Scheithauer, B. W. (1978). “Juvenile neuroaxonal dystrophy: clinical, electrophysiological, and neuropathological features,” Ann. Neurol. 3: 419–28.CrossRefGoogle ScholarPubMed
Dubroff, J. G., Ficicioglu, C., Segal, S., Wintering, N. A., Alavi, A., and Newberg, A. B. (2008). “FDG-PET findings in patients with galactosaemia,” J. Inherit. Metab. Dis. 31: 533–9.CrossRefGoogle ScholarPubMed
Edvardson, S., Hama, H., Shaag, A., Gomori, J. M., Berger, I., Soffer, D., et al. (2008). “Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia,” Am. J. Hum. Genet. 83: 643–8.CrossRefGoogle ScholarPubMed
Ekinci, B., Apaydin, H., Vural, M., and Ozekmekçi, S. (2004). “Two siblings with homocystinuria presenting with dystonia and parkinsonism,” Mov. Disord. 19: 962–4.CrossRefGoogle ScholarPubMed
Fernandes, J., Saudubray, J. M., van de Berghe, G., and Walter, J. H. (eds.), Inborn Metabolic Diseases: Diagnosis and Treatment, 4th edn. (New York: Springer).
Friedman, J., Roze, E., Abdenur, J. E., Chang, R., Gasperini, S., Saletti, V., et al. (2012). “Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy,” Ann. Neurol. 71: 520–30.CrossRefGoogle ScholarPubMed
Giagheddu, A., Demelia, L., Puggioni, G., Nurchi, A. M., Contu, L., Pirari, G., et al. (1985). “Epidemiologic study of hepatolenticular degeneration (Wilson’s disease) in Sardinia (1902–1983),” Acta Neurol. Scand. 72: 43–55.CrossRefGoogle Scholar
Gitiaux, C., Roze, E., Kinugawa, K., Flamand-Rouvière, C., Boddaert, N., Apartis, E., et al. (2008). “Spectrum of movement disorders associated with glutaric aciduria type 1: a study of 16 patients,” Mov. Disord. 23: 2392–7.CrossRefGoogle ScholarPubMed
Goker-Alpan, O., Lopez, G., Vithayathil, J., Davis, J., Hallett, M., and Sidransky, E. (2008). “The spectrum of parkinsonian manifestations associated with glucocerebrosidase mutations,” Arch. Neurol. 65: 1353–7.CrossRefGoogle ScholarPubMed
Gregory, A., Westaway, S. K., Holm, I. E., Kotzbauer, P. T., Hogarth, P., Sonek, S., et al. (2008). “Neurodegeneration associated with genetic defects in phospholipase A(2),” Neurology 71: 1402–9.CrossRefGoogle Scholar
Gregory, A. and Hayflick, S. (2009). “Clinical and genetic delineation of neurodegeneration with brain iron accumulation,” J. Med. Genet. 46: 73–80.CrossRefGoogle ScholarPubMed
Hartig, M. B., Iuso, A., Haack, T., Kmiec, T., Jurkiewicz, E., Heim, K., et al. (2011). “Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation,” Am. J. Hum. Genet. 89: 543–50.CrossRefGoogle ScholarPubMed
Hayflick, S. J., Westaway, S. K., Levinson, B., Zhou, B., Johnson, M. A., Ching, K. H., et al. (2003). “Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome,” N. Engl. J. Med. 348: 33–40.CrossRefGoogle ScholarPubMed
Holton, J. B., Walter, J. H., and Tyfield, L. A. (2001). “Galactosemia,” in Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds.), The Metabolic and Molecular Bases of Inherited Disease (New York: McGraw-Hill).Google Scholar
Horvath, G. A., Stockler-Ipsiroglu, S. G., Salvarinova-Zivkovic, R., Lillquist, Y. P., Connolly, M., Hyland, K., et al. (2008). “Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms,” Mol. Genet. Metab. 94: 127–31.CrossRefGoogle ScholarPubMed
Imrie, J., Vijayaraghaven, S., Whitehouse, C., Harris, S., Heptinstall, L., Church, H., et al. (2002). “Niemann-Pick disease type C in adults,” J. Inherit. Metab. Dis. 25: 491–500.CrossRefGoogle ScholarPubMed
Irie, S., Kanazawa, N., Ryoh, M., Mochizuki, H., Nomura, Y., and Segawa, M. (2011). “A case of parkinsonism and dopa-induced severe dyskinesia associated with novel mutation in the GTP cyclohydrolase I gene,” Parkinsonism Relat. Disord. 17: 769–70.CrossRefGoogle ScholarPubMed
Kalman, B., Lautenschlaeger, R., Kohlmayer, F., Büchner, B., Kmiec, T., Klopstock, T., et al. (2012). “An international registry for neurodegeneration with brain iron accumulation,” Orphanet J. Rare Dis. 17(7): 66, .CrossRefGoogle Scholar
Klünemann, H. H., Elleder, M., Kaminski, W. E., Snow, K., Peyser, J. M., O’Brien, J. F., et al. (2002). “Frontal lobe atrophy due to a mutation in the cholesterol binding protein HE1/NPC2,” Ann. Neurol. 52: 743–9.CrossRefGoogle ScholarPubMed
Kono, S., Miyajima, H., Yoshida, K., Togawa, A., Shirakawa, K., and Suzuki, H. (2009). “Mutations in a thiamine-transporter gene and Wernicke’s-like encephalopathy,” New. Engl. J. Med. 360: 1792–4.CrossRefGoogle Scholar
Kruer, M. C., Hiken, M., Gregory, A., Malandrini, A., Clark, D., Hogarth, P., et al. (2011). “Novel histopathologic findings in molecularly-confirmed pantothenate kinase-associated neurodegeneration,” Brain 134: 947–58.CrossRefGoogle ScholarPubMed
Kruer, M. C., Paisan-Ruiz, C., Boddaert, N., Yoon, M. Y., Hama, H., Gregory, A., et al. (2010). “Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA),” Ann. Neurol. 68: 610–18.CrossRefGoogle Scholar
Külkens, S., Harting, I., Sauer, S., Zschocke, J., Hoffmann, G. F., Gruber, S., et al. (2005). “Late-onset neurologic disease in glutaryl-CoA dehydrogenase deficiency,” Neurology 64: 2142–4.CrossRefGoogle ScholarPubMed
Lachmann, R. H. (2011). “Enzyme replacement therapy for lysosomal storage diseases,” Curr. Opin. Pediatr. 23: 588–93.CrossRefGoogle ScholarPubMed
López-Laso, E., Beyer, K., Opladen, T., Artuch, R., and Saunders-Pullman, R. (2012). “Dyskinesias as a limiting factor in the treatment of Segawa disease,” Pediatr. Neurol. 46: 404–6.CrossRefGoogle ScholarPubMed
Lorincz, M. T. (2010). “Neurologic Wilson’s disease,” Ann. NY Acad. Sci. 1184: 173–87.CrossRefGoogle ScholarPubMed
Love, S., Bridges, L. R., and Case, C. P. (1995). “Neurofibrillary tangles in Niemann-Pick disease type C,” Brain 118: 119–29.CrossRefGoogle ScholarPubMed
Machado, A., Chien, H. F., Deguti, M. M., Cançado, E., Azevedo, R. S., Scaff, M., et al. (2006). “Neurological manifestations in Wilson’s disease: report of 119 cases,” Mov. Disord. 21: 2192–6.CrossRefGoogle ScholarPubMed
Mangold, S., Blau, N., Opladen, T., Steinfeld, R., Wessling, B., Zerres, K., et al. (2011). “Cerebral folate deficiency: a neurometabolic syndrome?”Mol. Genet. Metab. 104: 369–72.CrossRefGoogle Scholar
McNeill, A., Birchall, D., Hayflick, S. J., Gregory, A., Schenk, J. F., Zimmerman, E. A., et al. (2008). “T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation,” Neurology 70: 1614–19.CrossRefGoogle ScholarPubMed
Merle, U., Schaefer, M., Ferenci, P., and Stremmel, W. (2007). “Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study,” Gut 56: 115–20.CrossRefGoogle ScholarPubMed
Muthane, U., Chickabasaviah, Y., Kaneski, C., Shankar, S. K., Narayanappa, G., Christopher, R., et al. (2004). “Clinical features of adult GM1 gangliosidosis: report of three Indian patients and review of 40 cases,” Mov. Disord. 19: 1334–41.CrossRefGoogle ScholarPubMed
Nelson, M. D., Jr., Wolff, J. A., Cross, C. A., Donnell, G. N., and Kaufman, F. R. (1992). “Galactosemia: evaluation with MR imaging,” Radiology 184: 255–61.CrossRefGoogle ScholarPubMed
Ozand, P. T., Gascon, G. G., Al Essa, M., Joshi, S., Al Jishi, E., Bakheet, S., et al. (1998). “Biotin-responsive basal ganglia disease: a novel entity,” Brain 121: 1267–79.CrossRefGoogle ScholarPubMed
Paisan-Ruiz, C., Bhatia, K. P., Li, A., Hernandez, D., Davis, M., Wood, N. W., et al. (2009). “Characterization of PLA2G6 as a locus for dystonia-parkinsonism,” Ann. Neurol. 65: 19–23.CrossRefGoogle ScholarPubMed
Paisan-Ruiz, C., Li, A., Schneider, S. A., Holton, J. L., Johnson, R., Kidd, D., Chataway, J., et al. (2012). “Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations,” Neurobiol. Aging 33: 814–23.CrossRefGoogle ScholarPubMed
Pineda, M., Wraith, J. E., Mengel, E., Sedel, F., Hwu, W. L., Rohrbach, M., et al. (2009). “Miglustat in patients with Niemann-Pick disease type C (NP-C): a multicentre observational retrospective cohort study,” Mol. Genet. Metab. 98: 243–9.CrossRefGoogle Scholar
Pons, R., Collins, A., Rotstein, M., Engelstad, K., and De Vivo, D. C. (2010). “The spectrum of movement disorders in Glut-1 deficiency,” Mov. Disord. 15: 275–81.CrossRefGoogle Scholar
Prashanth, L. K., Sinha, S., Taly, A. B., and Vasudev, M. K. (2010). “Do MRI features distinguish Wilson’s disease from other early onset extrapyramidal disorders? An analysis of 100 cases,” Mov. Disord. 25: 672–8.CrossRefGoogle ScholarPubMed
Quadri, M., Federico, A., Zhao, T., Breedveld, G. J., Battisti, C., Delnooz, C., et al. (2012). “Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease,” Am. J. Hum. Genet. 90: 467–77.CrossRefGoogle ScholarPubMed
Rosenbloom, B., Balwani, M., Bronstein, J. M., Kolodny, E., Sathe, S., Gwosdow, A. R., et al. (2011). “The incidence of Parkinsonism in patients with type 1 Gaucher disease: data from the ICGG Gaucher Registry,” Blood Cells Mol. Dis. 46: 95–102.CrossRefGoogle ScholarPubMed
Roze, E., Paschke, E., Lopez, N., Eck, T., Yoshida, K., Maurel-Ollivier, A., et al. (2005). “Dystonia and parkinsonism in GM1 type 3 gangliosidosis,” Mov. Disord. 20: 1366–9.CrossRefGoogle ScholarPubMed
Sadighi, Z., Butler, I. J., and Koenig, M. K. (2012). “Adult-onset cerebral folate deficiency,” Arch. Neurol. 69: 778–9.CrossRefGoogle ScholarPubMed
Schneider, S. A., Aggarwal, A., Bhatt, M., Dupont, E., Tisch, S., Limousin, P., et al. (2006). “Severe tongue protrusion dystonia: clinical syndromes and possible treatment,” Neurology 67: 940–3.CrossRefGoogle ScholarPubMed
Schneider, S. A., Paisan-Ruiz, C., Garcia-Gorostiaga, I., Quinn, N. P., Weber, Y. G., Lerche, H., et al. (2009). “GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias,” Mov. Disord. 24: 1684–8.CrossRefGoogle ScholarPubMed
Schneider, S. A., Paisan-Ruiz, C., Quinn, N. P., Lees, A. J., Houlden, H., Hardy, J., et al. (2010). “ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation,” Mov. Disord. 25: 979–84.CrossRefGoogle ScholarPubMed
Schneider, S. A., Hardy, J., and Bhatia, K. P. (2012). “Syndromes of neurodegeneration with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings, and treatment considerations,” Mov. Disord. 27: 42–53.CrossRefGoogle ScholarPubMed
Schweitzer, S., Shin, Y., Jakobs, C., and Brodehl, J. (1993). “Long-term outcome in 134 patients with galactosaemia,” Eur. J. Pediatr. 152: 36–43.CrossRefGoogle ScholarPubMed
Sethi, K. D., Ray, R., Roesel, R. A., Carter, A. L., Gallagher, B. B., Loring, D. W., et al. (1989). “Adult-onset chorea and dementia with propionic acidemia,” Neurology 39: 1343–5.CrossRefGoogle ScholarPubMed
Sévin, M., Lesca, G., Baumann, N., Millat, G., Lyon-Caen, O., Vanier, M. T., et al. (2007). “The adult form of Niemann-Pick disease type C,” Brain 130: 120–33.CrossRefGoogle ScholarPubMed
Shachar, T., Lo Bianco, C., Recchia, A., Wiessner, C., Raas-Rothschild, A., and Futerman, A. H. (2011). “Lysosomal storage disorders and Parkinson’s disease: Gaucher disease and beyond,” Mov. Disord. 26: 1593–604.CrossRefGoogle ScholarPubMed
Shivakumar, R. and Thomas, S. V. (2009). “Teaching NeuroImages: face of the giant panda and her cub: MRI correlates of Wilson disease,” Neurology 72: e50.CrossRefGoogle ScholarPubMed
Shulman, L. M., David, N. J., and Weiner, W. J. (1995). “Psychosis as the initial manifestation of adult-onset Niemann-Pick disease type C,” Neurology 45: 1739–43.CrossRefGoogle ScholarPubMed
Sidransky, E., Nalls, M. A., Aasly, J. O., Aharon-Peretz, J., Annesi, G., Barbosa, E. R., et al. (2009). “Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease,” N. Engl. J. Med. 361: 1651–61.CrossRefGoogle ScholarPubMed
Simon, E., Flaschker, N., Schadewaldt, P., Langenbeck, U., and Wendel, U. (2006). “Variant maple syrup urine disease (MSUD) – the entire spectrum,” J. Inherit. Metab. Dis. 29: 716–24.
Steinberger, D., Topka, H., Fischer, D., and Muller, U. (1999). “GCH1 mutation in a patient with adult-onset oromandibular dystonia,” Neurology 52: 877–9.CrossRefGoogle Scholar
Steinfeld, R., Grapp, M., Kraetzner, R., Dreha-Kulaczewski, S., Helms, G., Dechent, P., et al. (2009). “Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism,” Am. J. Hum. Genet. 85: 354–63.CrossRefGoogle ScholarPubMed
Su, C. S., Chang, W. N., Huang, S. H., Lui, C. C., Pan, T. L., Lu, C. H., et al. (2010). “Cerebrotendinous xanthomatosis patients with and without parkinsonism: clinical characteristics and neuroimaging findings,” Mov. Disord. 25: 452–8.CrossRefGoogle ScholarPubMed
Suls, A., Dedeken, P., Goffin, K., Van Esch, H., Dupont, P., Cassiman, D., et al. (2008). “Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1,” Brain 131: 1831–44.CrossRefGoogle ScholarPubMed
Szlago, M., Gallus, G. N., Schenone, A., Patiño, M. E., Sfaelo, Z., Rufa, A., et al. (2008). “The first cerebrotendinous xanthomatosis family from Argentina: a new mutation in CYP27A1 gene,” Neurology 70: 402–4.CrossRefGoogle ScholarPubMed
Taly, A. B., Meenakshi-Sundaram, S., Sinha, S., Swamy, H. S., and Arunodaya, G. R. (2007). “Wilson disease: description of 282 patients evaluated over 3 decades,” Medicine (Baltimore) 86: 112–21.CrossRefGoogle ScholarPubMed
Timmermann, L., Pauls, K. A., Wieland, K., Jech, R., Kurlemann, G., Sharma, N., et al. (2010). “Dystonia in neurodegeneration with brain iron accumulation: outcome of bilateral pallidal stimulation,” Brain 133: 701–12.CrossRefGoogle ScholarPubMed
Trender-Gerhard, I., Sweeney, M. G., Schwingenschuh, P., Mir, P., Edwards, M. J., Gerhard, A., et al. (2009). “Autosomal-dominant GTPCH1-deficient DRD: clinical characteristics and long-term outcome of 34 patients,” J. Neurol. Neurosurg. Psychiatry 80: 839–45.CrossRefGoogle ScholarPubMed
Tuschl, K., Clayton, P. T., Gospe, S. M., Gulab, S., Ibrahim, S., Singhi, P., et al. (2012). “Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man,” Am. J. Hum. Genet. 90: 457–66.CrossRefGoogle ScholarPubMed
Van Hove, J. L., Steyaert, J., Matthijs, G., Legius, E., Theys, P., Wevers, R., et al. (2006). “Expanded motor and psychiatric phenotype in autosomal dominant Segawa syndrome due to GTP cyclohydrolase deficiency,” J. Neurol. Neurosurg. Psychiatry 77: 18–23.CrossRefGoogle ScholarPubMed
Velayati, A., Yu, W. H., and Sidransky, E. (2010). “The role of glucocerebrosidase mutations in Parkinson disease and Lewy body disorders,” Curr. Neurol. Neurosci. Rep. 10: 190–8.CrossRefGoogle ScholarPubMed
Viau, K., Ernst, S. L., Vanzo, R. J., Botto, L. D., Pasquali, M., and Longo, N. (2012). “Glutaric acidemia type 1: outcomes before and after expanded newborn screening,” Mol. Genet. Metab. 106: 430–8.CrossRefGoogle ScholarPubMed
Vinters, H., Farrell, M., Mischel, P., and Anders, K. (1998). Diagnostic Neuropathology (New York: Marcel Dekker Inc.), p. 502.Google Scholar
Vrabelova, S., Letocha, O., Borsky, M., and Kozak, L. (2005). “Mutation analysis of the ATP7B gene and genotype/phenotype correlation in 227 patients with Wilson disease,” Mol. Genet. Metab. 86: 277–85.CrossRefGoogle ScholarPubMed
Waggoner, D. D., Buist, N. R. M., and Donnell, G. N. (1990). “Long-term prognosis in galactosemia: results of a survey of 350 cases,” J. Inherit. Metab. Dis. 13: 802–18.CrossRefGoogle ScholarPubMed
Walshe, J. M. and Yealland, M. (1992). “Wilson’s disease: the problem of delayed diagnosis,” J. Neurol. Neurosurg. Psychiatry 55: 692–6.CrossRefGoogle ScholarPubMed
Weber, Y. G., Storch, A., Wuttke, T. V., Brockmann, K., Kempfle, J., Maljevic, S., et al. (2008). “GLUT1 mutations are a cause of paroxysmal exercise-induced dyskinesias and induce hemolytic anemia by a cation leak,” J. Clin. Invest. 118: 2157–68.Google Scholar
Williams, D. R., Hadeed, A., al Din, A. S., Wreikat, A. L., and Lees, A. J. (2005). “Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia,” Mov. Disord. 20: 1264–71.CrossRefGoogle ScholarPubMed
Zeng, W.-Q., Al-Yamani, E., Acierno, J. S., Slaugenhaupt, S., Gillis, T., MacDonald, M. E., et al. (2005). “Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3,” Am. J. Hum. Genet. 77: 16–26.CrossRefGoogle ScholarPubMed
Zhou, B., Westaway, S. K., Levinson, B., Johnson, M. A., Gitschier, J., and Hayflick, S. J. (2001). “A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome,” Nat. Genet. 28: 345–9.CrossRefGoogle ScholarPubMed
Zorzi, G., Zibordi, F., Chiapparini, L., Bertini, E., Russo, L., Piga, A., et al. (2011). “Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: results of a phase II pilot trial,” Mov. Disord. 26: 1756–69.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Movement disorders in metabolic diseases in adulthood
    • By Miryam Carecchio, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, UK; Department of Neurology, Amedeo Avogadro University, Novara, Italy, Susanne A. Schneider, Department of Neurology, Christian-Albrechts-University, Kiel, Germany, Kailash P. Bhatia, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, UK
  • Edited by Werner Poewe, Joseph Jankovic, Baylor College of Medicine, Texas
  • Book: Movement Disorders in Neurologic and Systemic Disease
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139175845.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Movement disorders in metabolic diseases in adulthood
    • By Miryam Carecchio, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, UK; Department of Neurology, Amedeo Avogadro University, Novara, Italy, Susanne A. Schneider, Department of Neurology, Christian-Albrechts-University, Kiel, Germany, Kailash P. Bhatia, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, UK
  • Edited by Werner Poewe, Joseph Jankovic, Baylor College of Medicine, Texas
  • Book: Movement Disorders in Neurologic and Systemic Disease
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139175845.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Movement disorders in metabolic diseases in adulthood
    • By Miryam Carecchio, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, UK; Department of Neurology, Amedeo Avogadro University, Novara, Italy, Susanne A. Schneider, Department of Neurology, Christian-Albrechts-University, Kiel, Germany, Kailash P. Bhatia, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, UK
  • Edited by Werner Poewe, Joseph Jankovic, Baylor College of Medicine, Texas
  • Book: Movement Disorders in Neurologic and Systemic Disease
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139175845.009
Available formats
×