Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T09:43:23.691Z Has data issue: false hasContentIssue false

7 - Neonatal hemolysis

from Section II - Erythrocyte disorders

Published online by Cambridge University Press:  05 February 2013

Pedro de Alarcón
Affiliation:
University of Illinois College of Medicine
Eric Werner
Affiliation:
Children's Hospital of the King's Daughters
Robert D. Christensen
Affiliation:
McKay-Dee Hospital, Utah
Get access

Summary

This chapter focuses on the recognition and management of hemolysis in newborn infants (Table 7.1). Some of the common hemolytic anemias of childhood first appear in the newborn period, while others do not present until several months of age, and a few rare hemolytic disorders occur only in the neonatal period. These variations in the age that hemolytic anemia first presents reflect differences in neonatal erythropoiesis, hemoglobin synthesis, and the metabolism of newborn erythrocytes. When approaching an infant with a potential hemolytic disorder, the first issue to be addressed is whether there is evidence of increased red cell destruction and accelerated production. If yes, then the next question is to consider whether the cause of neonatal hemolysis is due to extracellular (acquired) factors or an intrinsic (genetic) red cell defect. Acquired disorders are those that are immune-mediated, associated with infection, or accompany some other underlying pathology. Inherited red cell disorders are due to defects in the cell membrane, abnormalities in red blood cell (RBC) metabolism, or a consequence of a hemoglobin defect.

Evaluation of a neonate for hemolysis must be considered in the context of normal newborn physiology. The RBC lifespan in term neonates (80–100 days) and in premature infants (60–80 days) is shorter than in older children and adults (100–120 days) (1). The reason for the reduced RBC survival observed in newborns is not known, although there are many biochemical differences between adult and neonatal RBCs (2–4). Increased oxidant sensitivity of newborn red cells and relative instability of fetal hemoglobin have been considered as possible causes for this shortened lifespan (5). To date, a definitive explanation of the “normal” shortened RBC lifespan of infant red cells remains elusive.

Type
Chapter
Information
Neonatal Hematology
Pathogenesis, Diagnosis, and Management of Hematologic Problems
, pp. 91 - 117
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pearson, HA.Life-span of the fetal red blood cell. J Pediatr 1967;70:166–71.CrossRefGoogle ScholarPubMed
Matovcik, LM, Chiu, D, Lubin B, et al. The aging process of human neonatal erythrocytes. Pediatr Res 1986; 20:1091–6.CrossRefGoogle ScholarPubMed
Matovcik, LM, Mentzer, WC.The membrane of the human neonatal red cell. Clin Haematol 1985;14:203–21.Google ScholarPubMed
Oski, FA, Naiman, JL.Hematologic problems in the newborn. 3rd edn. Major Probl Clin Pediatr 1982;4:1–360.Google ScholarPubMed
Advani, R, Mentzer, W, Andrews D, Schrier S. Oxidation of hemoglobin F is associated with the aging process of neonatal red blood cells. Pediatr Res 1992;32:165–8.CrossRefGoogle ScholarPubMed
Geaghan, SM.Hematologic values and appearances in the healthy fetus, neonate, and child. Clin Lab Med 1999;19:1–37, v.Google Scholar
Holroyde, CP, Oski, FA, Gardner, FH. The “pocked” erythrocyte. Red-cell surface alterations in reticuloendothelial immaturity of the neonate. N Engl J Med 1969;281:516–20.CrossRefGoogle ScholarPubMed
Padmanabhan, J, Risemberg, HM, Rowe, RD. Howell-Jolly bodies in the peripheral blood of full-term and premature neonates. Johns Hopkins Med J 1973;132:146–50.Google ScholarPubMed
Maisels, MJ, Pathak, A, et al. Endogenous production of carbon monoxide in normal and erythroblastotic newborn infants. J Clin Invest 1971;50:1–8.CrossRefGoogle ScholarPubMed
Arias, IM.The pathogenesis of “physiologic” jaundice of the newborn: a reevaluation. Birth Defects Orig Artic Ser 1970;6:55–9.Google Scholar
Bhutani, VK, Johnson, L, et al. Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics 1999;103:6–14.CrossRefGoogle ScholarPubMed
Necheles, TF, Rai, US, et al. The role of haemolysis in neonatal hyperbilirubinaemia as reflected in carboxyhaemoglobin levels. Acta Paediatr Scand 1976;65:361–7.CrossRefGoogle ScholarPubMed
Coburn, RF.Endogenous carbon monoxide production. N Engl J Med 1970;282:207–9.CrossRefGoogle ScholarPubMed
Coburn, RF, Williams, WJ, et al. Endogenous carbon monoxide production in patients with hemolytic anemia. J Clin Invest 1966;45:460–8.CrossRefGoogle ScholarPubMed
Smith, DW, Inguillo, D, et al. Use of noninvasive tests to predict significant jaundice in full-term infants: preliminary studies. Pediatrics 1985;75:278–80.Google ScholarPubMed
Stevenson, DK, Vreman, HJ.Carbon monoxide and bilirubin production in neonates. Pediatrics 1997;100:252–4.CrossRefGoogle ScholarPubMed
Salmi, TT.Haptoglobin levels in the plasma of newborn infants with special reference to infections. Acta Paediatr Scand Suppl 1973;241:1–55.Google ScholarPubMed
Freda, VJ, Gorman, JG, et al. Prevention of Rh hemolytic disease – ten years’ clinical experience with Rh immune globulin. N Engl J Med 1975;292:1014–16.CrossRefGoogle ScholarPubMed
Baumann, R, Rubin, H.Autoimmune hemolytic anemia during pregnancy with hemolytic disease in the newborn. Blood 1973;41:293–7.Google ScholarPubMed
Kahn, G.Dapsone is safe during pregnancy. J Am Acad Dermatol 1985;13:838–9.CrossRefGoogle ScholarPubMed
Tuffanelli, DL.Successful pregnancy in a patient with dermatitis herpetiformis treated with low-dose dapsone. Arch Dermatol 1982;118:876.CrossRefGoogle Scholar
Hocking, DR.Neonatal haemolytic disease due to dapsone. Med J Aust 1968;1:1130–1.Google ScholarPubMed
Sanders, SW, Zone, JJ, et al. Hemolytic anemia induced by dapsone transmitted through breast milk. Ann Intern Med 1982;96:465–6.CrossRefGoogle ScholarPubMed
Batton, DG, Amanullah, A, et al. Fetal schistocytic hemolytic anemia and umbilical vein varix. J Pediatr Hematol Oncol 2000;22:259–61.CrossRefGoogle ScholarPubMed
Ramasethu, J, Luban, N.T activation. Br J Haematol 2001;112:259–63.CrossRefGoogle ScholarPubMed
Klein, RL, Novak, RW, et al. T-cryptantigen exposure in neonatal necrotizing enterocolitis. J Pediatr Surg 1986;21:1155–8.CrossRefGoogle ScholarPubMed
Williams, RA, Brown, EF, et al. Transfusion of infants with activation of erythrocyte T antigen. J Pediatr 1989;115:949–53.CrossRefGoogle ScholarPubMed
Novak, RW.The pathobiology of red cell cryptantigen exposure. Pediatr Pathol 1990;10:867–75.CrossRefGoogle ScholarPubMed
Osborn, DA, Lui, K, et al. T and Tk antigen activation in necrotising enterocolitis: manifestations, severity of illness, and effectiveness of testing. Arch Dis Child Fetal Neonatal Ed 1999;80:F192–7.CrossRefGoogle Scholar
Kirsten, GF, Smith, J, et al. The necessity for T-cryptantigen activation screening in babies with necrotising enterocolitis. S Afr Med J 1996;86:546–8.Google ScholarPubMed
Rodwell, R, Tudehope, DI.Screening for cryptantigen exposure and polyagglutination in neonates with suspected necrotizing enterocolitis. J Paediatr Child Hlth 1993;29:16–18.CrossRefGoogle ScholarPubMed
Eder, AF, Manno, CS.Does red-cell T activation matter?Br J Haematol 2001;114:25–30.CrossRefGoogle Scholar
Oski, FA, Barness, LA.Vitamin E deficiency: a previously unrecognized cause of hemolytic anemia in the premature infant. J Pediatr 1967;70:211–20.CrossRefGoogle ScholarPubMed
Ritchie, JH, Fish, MB, et al. Edema and hemolytic anemia in premature infants. A vitamin E deficiency syndrome. N Engl J Med 1968;279:1185–90.CrossRefGoogle ScholarPubMed
Zipursky, A, Brown, EJ, et al. Oral vitamin E supplementation for the prevention of anemia in premature infants: a controlled trial. Pediatrics 1987;79:61–68.Google ScholarPubMed
Smith, H.Normal values and appearances. In Diagnosis in Paediatric Haematology. New York: Churchchill Livingstone, 1996:338.Google Scholar
Tuffy, P, Brown, AK, et al. Infantile pyknocytosis; a common erythrocyte abnormality of the first trimester. AMA J Dis Child 1959;98:227–41.CrossRefGoogle ScholarPubMed
Ackerman, BD.Infantile pyknocytosis in Mexican-American infants. Am J Dis Child 1969;117:417–23.Google ScholarPubMed
Dabbous, IA, El Bahlawan, L.Infantile pyknocytosis: a forgotten or a dead diagnosis?J Pediatr Hematol Oncol 2002;24:507.CrossRefGoogle ScholarPubMed
Dahoui, HA, Abboud, MR, et al. Familial infantile pyknocytosis in association with pulmonary hypertension. Pediatr Blood Cancer 2008;51:290–2.CrossRefGoogle ScholarPubMed
Eyssette-Guerreau, S, Bader-Meunier, B, et al. Infantile pyknocytosis: a cause of haemolytic anaemia of the newborn. Br J Haematol 2006;133:439–42.CrossRefGoogle ScholarPubMed
Keimowitz, R, Desforges, JF.Infantile pyknocytosis. N Engl J Med 1965;273:1152–4.CrossRefGoogle ScholarPubMed
Maxwell, DJ, Seshadri, R, et al. Infantile pyknocytosis: a cause of intrauterine haemolysis in 2 siblings. Aust N Z J Obstet Gynaecol 1983;23:182–5.CrossRefGoogle ScholarPubMed
Zannos-Mariolea, L, Kattamis, C, et al. Infantile pyknocytosis and glucose-6-phosphate dehydrogenase deficiency. Br J Haematol 1962;8:258–65.CrossRefGoogle ScholarPubMed
Amendola, G, Di Concilio, R, et al. Erythropoietin treatment can prevent blood transfusion in infantile pyknocytosis. Br J Haematol 2008;143:593–5.Google ScholarPubMed
Grace, RF, Lux, SE. Disorders of the red cell membrane. In: Orkin, SH, Nathan, DG, Ginsburg, D, Look, AT, Fisher, DE, Lux, SE, eds. Nathan and Oski’s Hematology of Infancy and Childhood. Philadelphia Saunders/Elsevier; 2009.Google Scholar
Gallagher, PG, Glader, B. Hereditary spherocytosis, hereditary elliptocytosis, and other disorders associated with abnormalities of the erythrocyte membrane. In Greer, JP, Foerster, J, Rodgers, GM, et al., eds. Wintrobe’s Clinical Hematology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2009.Google Scholar
Walensky, L, Lux, SE. Disorders of red blood cell membrane. In Handin, RI, Lux, SE, Stossel, TP, eds. Blood: Principles and Practice of Hematology (ed 2). Philadelphia: Lippincott Williams & Wilkins, 2003.Google Scholar
Morton, NE, Mackinney, AA, et al. Genetics of spherocytosis. Am J Hum Genet 1962;14:170–84.Google ScholarPubMed
Agre, P, Asimos, A, et al. Inheritance pattern and clinical response to splenectomy as a reflection of erythrocyte spectrin deficiency in hereditary spherocytosis. N Engl J Med 1986;315:1579–83.CrossRefGoogle ScholarPubMed
Eber, SW, Pekrun, A, et al. Prevalence of increased osmotic fragility of erythrocytes in German blood donors: screening using a modified glycerol lysis test. Ann Hematol 1992;64:88–92.CrossRefGoogle ScholarPubMed
Stamey, CC, Diamond, LK.Congenital hemolytic anemia in the newborn; relationship to kernicterus. AMA J Dis Child 1957;94:616–22.CrossRefGoogle ScholarPubMed
Trucco, JI, Brown, AK.Neonatal manifestations of hereditary spherocytosis. Am J Dis Child 1967;113:263–70.Google ScholarPubMed
Rubins, J, Young, LE.Hereditary spherocytosis and glucose-6-phosphate dehydrogenase deficiency. JAMA 1977;237:797–8.CrossRefGoogle ScholarPubMed
Korones, D, Pearson, HA.Normal erythrocyte osmotic fragility in hereditary spherocytosis. J Pediatr 1989;114:264–6.CrossRefGoogle ScholarPubMed
Schroter, W, Kahsnitz, E.Diagnosis of hereditary spherocytosis in newborn infants. J Pediatr 1983;103:460–3.CrossRefGoogle ScholarPubMed
King, MJ, Behrens, J, et al. Rapid flow cytometric test for the diagnosis of membrane cytoskeleton-associated haemolytic anaemia. Br J Haematol 2000;111:924–33.Google Scholar
Iolascon, A, Faienza, MF, et al. UGT1 promoter polymorphism accounts for increased neonatal appearance of hereditary spherocytosis. Blood 1998;91:1093.Google ScholarPubMed
Gallagher, PG, Petruzzi, MJ, et al. Mutation of a highly conserved residue of betaI spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest 1997;99:267–77.CrossRefGoogle ScholarPubMed
Delhommeau, F, Cynober, T, et al. Natural history of hereditary spherocytosis during the first year of life. Blood 2000;95:393–7.Google ScholarPubMed
Diamond, LK.Splenectomy in childhood and the hazard of overwhelming infection. Pediatrics 1969;43:886–9.Google ScholarPubMed
Tracy, ET, Rice, HE.Partial splenectomy for hereditary spherocytosis. Pediatr Clin North Am 2008;55:503–19, x.CrossRefGoogle ScholarPubMed
Palek, J, Jarolim, P.Clinical expression and laboratory detection of red blood cell membrane protein mutations. Semin Hematol 1993;30:249–83.Google ScholarPubMed
Austin, RF, Desforges, JF.Hereditary elliptocytosis: an unusual presentation of hemolysis in the newborn associated with transient morphologic abnormalities. Pediatrics 1969;44:196–200.Google ScholarPubMed
MacDougall, LG, Moodley, G, et al. The pyropoikilocytosis–elliptocytosis syndrome in a black South African infant: clinical and hematological features. Am J Pediatr Hematol Oncol 1982;4:344–9.Google Scholar
Mentzer, WC, Jr., Iarocci, TA, et al. Modulation of erythrocyte membrane mechanical stability by 2,3-diphosphoglycerate in the neonatal poikilocytosis/elliptocytosis syndrome. J Clin Invest 1987;79:943–9.CrossRefGoogle ScholarPubMed
Glader, B. Hereditary hemolytic anemias due to red blood cell enzyme disorders. In Greer, JP, Foerster, J, Rodgers, GM, et al., eds. Wintrobe’s Clinical Hematology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2009.Google Scholar
Luzzatto, L, Poggi, V. Glucose-6-phosphate dehydrogenase deficiency. In Orkin, SH, Nathan, DG, Ginsburg, D, Look, AT, Fisher, DE, Lux, SE, eds. Nathan and Oski’s Hematology of Infancy and Childhood. Philadelphia: Saunders/Elsevier, 2009.Google Scholar
Cappellini, MD, Fiorelli, G.Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008;371:64–74.CrossRefGoogle ScholarPubMed
Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group. Bull World Health Organ 1989;67:601–11.
Beutler, E. The molecular biology of enzymes of erythrocyte metabolism. In Stamatoyannopoulos, G, ed. The molecular basis of blood diseases. Philadelphia: W.B. Saunders, 2001.Google Scholar
Valaes, T.Severe neonatal jaundice associated with glucose-6-phosphate dehydrogenase deficiency: pathogenesis and global epidemiology. Acta Paediatr Suppl 1994;394:58–76.CrossRefGoogle ScholarPubMed
Kaplan, M, Algur, N, et al. Onset of jaundice in glucose-6-phosphate dehydrogenase-deficient neonates. Pediatrics 2001;108:956–9.CrossRefGoogle ScholarPubMed
Bienzle, U, Effiong, C, et al. Erythrocyte glucose 6-phosphate dehydrogenase deficiency (G6PD type A-) and neonatal jaundice. Acta Paediatr Scand 1976;65:701–3.CrossRefGoogle ScholarPubMed
Kaplan, M, Hammerman, C, et al. Hyperbilirubinaemia, glucose-6-phosphate dehydrogenase deficiency and Gilbert syndrome. Eur J Pediatr 2001;160:195.CrossRefGoogle ScholarPubMed
Kaplan, M, Hammerman, C, et al. Predischarge bilirubin screening in glucose-6-phosphate dehydrogenase-deficient neonates. Pediatrics 2000;105:533–7.CrossRefGoogle ScholarPubMed
Slusher, TM, Vreman, HJ, et al. Glucose-6-phosphate dehydrogenase deficiency and carboxyhemoglobin concentrations associated with bilirubin-related morbidity and death in Nigerian infants. J Pediatr 1995;126:102–8.CrossRefGoogle ScholarPubMed
Oyebola, DD.Care of the neonate and management of neonatal jaundice as practised by Yoruba traditional healers of Nigeria. J Trop Pediatr 1983;29:18–22.CrossRefGoogle ScholarPubMed
Drew, JH, Kitchen, WH.Jaundice in infants of Greek parentage: the unknown factor may be environmental. J Pediatr 1976;89:248–52.CrossRefGoogle ScholarPubMed
Mentzer, WC, Collier, E.Hydrops fetalis associated with erythrocyte G-6-PD deficiency and maternal ingestion of fava beans and ascorbic acid. J Pediatr 1975;86:565–7.CrossRefGoogle ScholarPubMed
Kaplan, M, Vreman, HJ, et al. Contribution of haemolysis to jaundice in Sephardic Jewish glucose-6-phosphate dehydrogenase deficient neonates. Br J Haematol 1996;93:822–7.CrossRefGoogle ScholarPubMed
Kappas, A, Drummond, GS, et al. A single dose of Sn-mesoporphyrin prevents development of severe hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient newborns. Pediatrics 2001;108:25–30.CrossRefGoogle ScholarPubMed
MacDonald, MG.Hidden risks: early discharge and bilirubin toxicity due to glucose 6-phosphate dehydrogenase deficiency. Pediatrics 1995;96:734–8.Google ScholarPubMed
Johnson, L, Bhutani, VK, et al. Clinical report from the pilot USA Kernicterus Registry (1992 to 2004). J Perinatol 2009;29 Suppl 1:S25–45.CrossRefGoogle Scholar
Kaplan, M, Hammerman, C.The need for neonatal glucose-6-phosphate dehydrogenase screening: a global perspective. J Perinatol 2009;29 Suppl 1: S46–52.CrossRefGoogle ScholarPubMed
Meloni, T, Forteleoni, G, et al. Marked decline of favism after neonatal glucose-6-phosphate dehydrogenase screening and health education: the northern Sardinian experience. Acta Haematol 1992;87:29–31.CrossRefGoogle ScholarPubMed
McCurdy, PR, Morse, EE.Glucose-6-phosphate dehydrogenase deficiency and blood transfusion. Vox Sang 1975;28:230–7.CrossRefGoogle ScholarPubMed
Mimouni, F, Shohat, S, et al. G6PD-deficient donor blood as a cause of hemolysis in two preterm infants. Isr J Med Sci 1986;22:120–2.Google ScholarPubMed
Kumar, P, Sarkar, S, et al. Acute intravascular haemolysis following exchange transfusion with G-6-PD deficient blood. Eur J Pediatr 1994;153:98–9.CrossRefGoogle ScholarPubMed
Zanella, A, Fermo, E, et al. Pyruvate kinase deficiency: the genotype–phenotype association. Blood Rev 2007;21:217–31.CrossRefGoogle ScholarPubMed
Bowman, HS, McKusick, VA, et al. Pyruvate kinase deficient hemolytic anemia in an Amish isolate. Am J Hum Genet 1965;17:1–8.Google Scholar
Matthay, KK, Mentzer, WC.Erythrocyte enzymopathies in the newborn. Clin Haematol 1981;10:31–55.Google ScholarPubMed
Hutton, JJ, Chilcote, RR.Glucose phosphate isomerase deficiency with hereditary nonspherocytic hemolytic anemia. J Pediatr 1974;85:494–7.CrossRefGoogle ScholarPubMed
Schroter, W, Koch, HH, et al. Glucose phosphate isomerase deficiency with congenital nonspherocytic hemolytic anemia: a new variant (type Nordhorn). I. Clinical and genetic studies. Pediatr Res 1974;8:18–25.CrossRefGoogle ScholarPubMed
Ravindranath, Y, Paglia, DE, et al. Glucose phosphate isomerase deficiency as a cause of hydrops fetalis. N Engl J Med 1987;316:258–61.CrossRefGoogle ScholarPubMed
Van Biervliet, JP, Van Milligen-Boersma, L, et al. A new variant of glucose phosphate isomerase deficiency (GPI-Utrecht). Clin Chim Acta 1975;65:157–65.CrossRefGoogle Scholar
Xu, W, Beutler, E.The characterization of gene mutations for human glucose phosphate isomerase deficiency associated with chronic hemolytic anemia. J Clin Invest 1994;94:2326–9.CrossRefGoogle ScholarPubMed
Vora, S.Isozymes of phosphofructokinase. Isozymes Curr Top Biol Med Res 1982;6:119–67.Google ScholarPubMed
Vora, S, DiMauro, S, et al. Characterization of the enzymatic defect in late-onset muscle phosphofructokinase deficiency. New subtype of glycogen storage disease type VII. J Clin Invest 1987;80:1479–85.CrossRefGoogle ScholarPubMed
Schneider, A, Westwood, B, et al. Triose phosphate isomerase deficiency: repetitive occurrence of point mutation in amino acid 104 in multiple apparently unrelated families. Am J Hematol 1995;50:263–8.CrossRefGoogle ScholarPubMed
Schneider, AS, Valentine, WN, et al. Hereditary hemolytic anemia with triose phosphate isomerase deficiency. N Engl J Med 1965;272:229–35.CrossRefGoogle Scholar
Valentine, WN, Hsieh, HS, et al. Hereditary hemolytic anemia: association with phosphoglycerate kinase deficiency in erythrocytes and leukocytes. Trans Assoc Am Physicians 1968;81:49–65.Google ScholarPubMed
Kanno, H.Hexokinase: gene structure and mutations. Baillieres Best Pract Res Clin Haematol 2000;13:83–8.CrossRefGoogle ScholarPubMed
Valentine, WN, Oski, FA, et al. Hereditary hemolytic anemia with hexokinase deficiency. Role of hexokinase in erythrocyte aging. N Engl J Med 1967;276:1–11.CrossRefGoogle ScholarPubMed
Beutler, E.Red cell enzyme defects as nondiseases and as diseases. Blood 1979;54:1–7.Google ScholarPubMed
Beutler, E, Baranko, PV, et al. Hemolytic anemia due to pyrimidine-5′-nucleotidase deficiency: report of eight cases in six families. Blood 1980;56:251–5.Google ScholarPubMed
Paglia, DE, Valentine, WN.Hereditary and acquired defects in the pyrimidine nucleotidase of human erythrocytes. Curr Top Hematol 1980;3:75–109.Google ScholarPubMed
Paglia, DE, Valentine, WN, et al. Pyrimidine nucleotidase deficiency with active dephosphorylation of dTMP: evidence for existence of thymidine nucleotidase in human erythrocytes. Blood 1983;62:1147–9.Google ScholarPubMed
Chui, DH, Waye, JS.Hydrops fetalis caused by alpha-thalassemia: an emerging health care problem. Blood 1998;91:2213–22.Google ScholarPubMed
Liang, ST, Wong, VC, et al. Homozygous alpha-thalassaemia: clinical presentation, diagnosis and management. A review of 46 cases. Br J Obstet Gynaecol 1985;92:680–4.CrossRefGoogle ScholarPubMed
Beaudry, MA, Ferguson, DJ, et al. Survival of a hydropic infant with homozygous alpha-thalassemia-1. J Pediatr 1986;108:713–16.CrossRefGoogle ScholarPubMed
Bianchi, DW, Beyer, EC, et al. Normal long-term survival with alpha-thalassemia. J Pediatr 1986;108:716–18.CrossRefGoogle ScholarPubMed
Singer, ST, Styles, L, et al. Changing outcome of homozygous alpha-thalassemia: cautious optimism. J Pediatr Hematol Oncol 2000;22:539–42.CrossRefGoogle ScholarPubMed
Chik, KW, Shing, MM, et al. Treatment of hemoglobin Bart’s hydrops with bone marrow transplantation. J Pediatr 1998;132:1039–42.CrossRefGoogle ScholarPubMed
Hsieh, FJ, Ko, TM, et al. Hydrops fetalis caused by severe alpha-thalassemia. Early Hum Dev 1992;29:233–6.CrossRefGoogle ScholarPubMed
Guy, G, Coady, DJ, et al. alpha-Thalassemia hydrops fetalis: clinical and ultrasonographic considerations. Am J Obstet Gynecol 1985;153:500–4.CrossRefGoogle ScholarPubMed
Stein, J, Berg, C, et al. A screening protocol for a prenatal population at risk for inherited hemoglobin disorders: results of its application to a group of Southeast Asians and blacks. Am J Obstet Gynecol 1984;150:333–41.CrossRefGoogle ScholarPubMed
Glader, BE.Screening for anemia and erythrocyte disorders in children. Pediatrics 1986;78:368–9.Google ScholarPubMed
Chan, V, Ghosh, A, et al. Prenatal diagnosis of homozygous alpha thalassaemia by direct DNA analysis of uncultured amniotic fluid cells. Br Med J (Clin Res Ed) 1984;288:1327–9.CrossRefGoogle ScholarPubMed
Fucharoen, S, Winichagoon, P, et al. Prenatal diagnosis of thalassemia and hemoglobinopathies in Thailand: experience from 100 pregnancies. Southeast Asian J Trop Med Public Hlth 1991;22:16–29.Google ScholarPubMed
Hsieh, FJ, Chang, FM, et al. Percutaneous ultrasound-guided fetal blood sampling in the management of nonimmune hydrops fetalis. Am J Obstet Gynecol 1987;157:44–9.CrossRefGoogle ScholarPubMed
Ho, SS, Chong, SS, et al. Noninvasive prenatal exclusion of haemoglobin Bart’s using foetal DNA from maternal plasma. Prenat Diagn 2009;30:65–73.Google Scholar
Tungwiwat, W, Fucharoen, S, et al. Development and application of a real-time quantitative PCR for prenatal detection of fetal alpha(0)-thalassemia from maternal plasma. Ann N Y Acad Sci 2006;1075:103–7.CrossRefGoogle Scholar
Winichagoon, P, Sithongdee, S, et al. Noninvasive prenatal diagnosis for hemoglobin Bart’s hydrops fetalis. Int J Hematol 2005;81:396–9.CrossRefGoogle ScholarPubMed
Lucke, T, Pfister, S, et al. Neurodevelopmental outcome and haematological course of a long-time survivor with homozygous alpha-thalassaemia: case report and review of the literature. Acta Paediatr 2005;94:1330–3.CrossRefGoogle ScholarPubMed
Thornley, I, Lehmann, L, et al. Homozygous alpha-thalassemia treated with intrauterine transfusions and postnatal hematopoietic stem cell transplantation. Bone Marrow Transpl 2003;32:341–2.CrossRefGoogle ScholarPubMed
Yi, JS, Moertel, CL, et al. Homozygous alpha-thalassemia treated with intrauterine transfusions and unrelated donor hematopoietic cell transplantation. J Pediatr 2009;154:766–8.CrossRefGoogle ScholarPubMed
Higgs, DR, Weatherall, DJ.The alpha thalassaemias. Cell Mol Life Sci 2009;66:1154–62.CrossRefGoogle ScholarPubMed
Cunningham, MJ, Sankaran, VG, et al. The thalassemias. In Orkin, SH, Nathan, DG, Ginsburg, D, Look, AT, Fisher, DE, Lux, SE, eds. Nathan and Oski’s Hematology of Infancy and Childhood. Philadelphia: Saunders/Elsevier, 2009.Google Scholar
Olivieri, NF.The beta-thalassemias. N Engl J Med 1999;341:99–109.CrossRefGoogle ScholarPubMed
Cao, A, Rosatelli, MC, et al. Screening for thalassemia: a model of success. Obstet Gynecol Clin North Am 2002;29:305–28, vi–vii.CrossRefGoogle Scholar
Olivieri, NF, Muraca, GM, et al. Studies in haemoglobin E beta-thalassaemia. Br J Haematol 2008;141:388–97.CrossRefGoogle ScholarPubMed
Sirichotiyakul, S, Saetung, R, et al. Prenatal diagnosis of beta-thalassemia/Hb E by hemoglobin typing compared to DNA analysis. Hemoglobin 2009;33:17–23.CrossRefGoogle Scholar
Vichinsky, EP, MacKlin, EA, et al. Changes in the epidemiology of thalassemia in North America: a new minority disease. Pediatrics 2005;116:e818–25.CrossRefGoogle ScholarPubMed
Lorey, F, Cunningham, G, et al. Universal screening for hemoglobinopathies using high-performance liquid chromatography: clinical results of 2.2 million screens. Eur J Hum Genet 1994;2:262–71.CrossRefGoogle ScholarPubMed
Lenfant, C.The Management of Sickle Cell Disease (4th ed.). Bethesda: National Institutes of Health, 2002.Google Scholar
Gaston, MH, Verter, JI, et al. Prophylaxis with oral penicillin in children with sickle cell anemia. A randomized trial. N Engl J Med 1986;314:1593–9.CrossRefGoogle ScholarPubMed
Reed, W, Lane, PA, et al. Sickle-cell disease not identified by newborn screening because of prior transfusion. J Pediatr 2000;136:248–50.CrossRefGoogle Scholar
Pass K, Harris K, Lorey F, et al. Update: newborn screening for sickle cell disease – California, Illinois, and New York, 1998. MMWR Morb Mortal Wkly Rep 2000;49:729–31.
Michlitsch, J, Azimi, M, et al. Newborn screening for hemoglobinopathies in California. Pediatr Blood Cancer 2009;52:486–90.CrossRefGoogle ScholarPubMed
Wethers, D, Pearson, HA, et al. Newborn screening for sickle cell disease and other hemoglobinopathies. Pediatrics 1989;89:813–14.Google Scholar
Koshy, M, Burd, L. Obstetric and gynecologic issues. In Embury, S, Hebbel, RP, eds. Sickle Cell Disease: Basic Principles and Clinical Practice. New York: Raven Press; 1995:689.Google Scholar
Villers, MS, Jamison, MG, et al. Morbidity associated with sickle cell disease in pregnancy. Am J Obstet Gynecol 2008;199:125 and 121–5.CrossRefGoogle ScholarPubMed
Veiga, S, Vaithianathan, T.Massive intravascular sickling after exchange transfusion with sickle cell trait blood. Transfusion 1963;3:387–91.CrossRefGoogle ScholarPubMed
Williamson, D.The unstable haemoglobins. Blood Rev 1993;7:146–63.CrossRefGoogle ScholarPubMed
Carrell, RW, Kay, R.A simple method for the detection of unstable haemoglobins. Br J Haematol 1972;23:615–19.CrossRefGoogle ScholarPubMed
Lee-Potter, JP, Deacon-Smith, RA, et al. A new cause of haemolytic anaemia in the newborn. A description of an unstable fetal haemoglobin: F Poole, alpha2-G-gamma2 130 tryptophan yields glycine. J Clin Pathol 1975;28:317–20.CrossRefGoogle Scholar
Charache, S, Mondzac, AM, et al. Hemoglobin Hasharon (alpha-2–47 his(CD5)beta-2): a hemoglobin found in low concentration. J Clin Invest 1969;48:834–47.CrossRefGoogle ScholarPubMed
Levine, RL, Lincoln, DR, et al. Hemoglobin Hasharon in a premature infant with hemolytic anemia. Pediatric Research 1975;9:7–11.CrossRefGoogle Scholar
Bender, JW, Reilly, MP, et al. Molecular stability and function of hemoglobins Hasharon (alpha(2)47 (CD5)Asp – – His beta 2) and Hasharon (alpha(2)47 (CD5)Asp – – His delta 2). Hemoglobin 1984;8:61–73.CrossRefGoogle Scholar
Martin, H, Huisman, TH.Formation of ferrihaemoglobin of isolated human haemoglobin types by sodium nitrite. Nature 1963;200:898–9.CrossRefGoogle ScholarPubMed
Bartos, HR, Desforges, JF.Erythrocyte DPNH dependent diaphorase levels in infants. Pediatrics 1966;37:991–3.Google ScholarPubMed
Comly, HH.Cyanosis in infants caused by nitrates in well water. J Am Med Assoc 1945;129:112–16.CrossRefGoogle Scholar
Gelperin, A, Jacobs, EE, et al. The development of methemoglobin in mothers and newborn infants from nitrate in water supplies. IMJ Ill Med J 1971;140:42–4 passim.Google ScholarPubMed
Keating, JP, Lell, ME, et al. Infantile methemoglobinemia caused by carrot juice. N Engl J Med 1973;288:824–6.CrossRefGoogle ScholarPubMed
Avner, JR, Henretig, FM, et al. Acquired methemoglobinemia. The relationship of cause to course of illness. Am J Dis Child 1990;144:1229–30.CrossRefGoogle ScholarPubMed
Hanukoglu, A, Danon, PN.Endogenous methemoglobinemia associated with diarrheal disease in infancy. J Pediatr Gastroenterol Nutr 1996;23:1–7.CrossRefGoogle ScholarPubMed
Kay, MA, O’Brien, W, et al. Transient organic aciduria and methemoglobinemia with acute gastroenteritis. Pediatrics 1990;85:589–92.Google ScholarPubMed
Pollack, ES, Pollack, CV, Jr. Incidence of subclinical methemoglobinemia in infants with diarrhea. Ann Emerg Med 1994;24:652–6.CrossRefGoogle ScholarPubMed
Yano, SS, Danish, EH, et al. Transient methemoglobinemia with acidosis in infants. J Pediatr 1982;100:415–18.CrossRefGoogle ScholarPubMed
Wessel, DL, Adatia, I, et al. Improved oxygenation in a randomized trial of inhaled nitric oxide for persistent pulmonary hypertension of the newborn. Pediatrics 1997;100:E7.CrossRefGoogle Scholar
Sager, S, Grayson, GH, et al. Methemoglobinemia associated with acidosis of probable renal origin. J Pediatr 1995;126:59–61.CrossRefGoogle ScholarPubMed
Climie, CR, McLean, S, et al. Methaemoglobinaemia in mother and foetus following continuous epidural analgesia with prilocaine. Clinical and experimental data. Br J Anaesth 1967;39:155–60.CrossRefGoogle ScholarPubMed
Brisman, M, Ljung, BM, et al. Methaemoglobin formation after the use of EMLA cream in term neonates. Acta Paediatr 1998;87:1191–94.CrossRefGoogle ScholarPubMed
Essink-Tebbes, CM, Wuis, EW, et al. Safety of lidocaine-prilocaine cream application four times a day in premature neonates: a pilot study. Eur J Pediatr 1999;158:421–3.CrossRefGoogle Scholar
Law, RM, Halpern, S, et al. Measurement of methemoglobin after EMLA analgesia for newborn circumcision. Biol Neonate 1996;70:213–17.CrossRefGoogle ScholarPubMed
Tush, GM, Kuhn, RJ.Methemoglobinemia induced by an over-the-counter medication. Ann Pharmacother 1996;30:1251–4.CrossRefGoogle ScholarPubMed
Kearns, GL, Fiser, DH.Metoclopramide-induced methemoglobinemia. Pediatrics 1988;82:364–6.Google ScholarPubMed
Hjelt, K, Lund, JT, et al. Methaemoglobinaemia among neonates in a neonatal intensive care unit. Acta Paediatr 1995;84:365–70.CrossRefGoogle Scholar
Kutlar, F, Hilliard, LM, et al. Hb M Dothan [beta 25/26 (B7/B8)/(GGT/GAG) – >GAG//Gly/Glu – >Glu]; a new mechanism of unstable methemoglobin variant and molecular characteristics. Blood Cells Mol Dis 2009;43:235–8.CrossRefGoogle ScholarPubMed
Percy, MJ, Lappin, TR.Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency. Br J Haematol 2008;141:298–308.Google ScholarPubMed
Percy, MJ, McFerran, NV, et al. Disorders of oxidised haemoglobin. Blood Rev 2005;19:61–8.CrossRefGoogle ScholarPubMed
Glader, BE, Zwerdling, D, et al. Hb F-M-Osaka or alpha 2G gamma 2(63)(E7)His – – Tyr in a Caucasian male infant. Hemoglobin 1989;13:769–73.CrossRefGoogle Scholar
Hayashi, A, Fujita, T, et al. A new abnormal fetal hemoglobin, Hb FM-Osaka (alpha 2 gamma 2 63His replaced by Tyr). Hemoglobin 1980;4:447–8.CrossRefGoogle Scholar
Priest, JR, Watterson, J, et al. Mutant fetal hemoglobin causing cyanosis in a newborn. Pediatrics 1989;83:734–6.Google Scholar
Harley, JD, Celermajer, JM.Neonatal methaemoglobinaemia and the “red-brown” screening-test. Lancet 1970;2:1223–5.CrossRefGoogle ScholarPubMed
Glader, B. Hereditary hemolytic anemias due to red blood cell enzyme disorders. In Greer, JP, Foerster, J, Lukens, JN, Rodgers, GM, Paraskevas, F, Glader, B, eds. Wintrobe’s Clinical Hematology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2003.Google Scholar
Stockman, JAR, Pochedly C. Developmental and Neonatal Hematology. New York: Raven Press, 1988.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×