Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-07T13:10:21.374Z Has data issue: false hasContentIssue false

17 - Trace minerals

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
K. Michael Hambidge
Affiliation:
University of Colorado School of Medicine and The Children's Hospital, Denver, CO
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Introduction

A trace element, by definition, contributes less than 0.01% to the total body weight. It is a term that, by common usage, applies to those elements that are consistently present in human tissues and have one or more definite, probable, or possible physiologic roles. The total body content of trace elements is small, but concentrations in individual tissues can range up to many parts per thousand. For example, the high iron concentration in erythrocytes results frequently, but mistakenly, in categorizing it as a major mineral. Trace elements that have a known or probable/possible role in human nutrition are listed in Table 17.1. This list may vary a little according to the author, reflecting the extent of current uncertainty, and it may not yet be complete. Since the publication of the last edition of this book, there has been progress, in some instances remarkable progress, in our understanding of the biology and clinical importance of those minerals that had already attracted clinical interest, while relatively little or no progress has been made with those of marginal or uncertain clinical relevance. Iron, zinc, and iodine and, to a lesser extent at this time, selenium and copper are the minerals that merit most attention in this chapter.

Though the trace elements are present in the human body in such small quantities, they are analogous to their organic counterparts, the vitamins, in that they have multiple, indispensable roles in a variety of important metabolic pathways.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Krebs, N. F., Westcott, J. Zinc and breastfed infants: if and when is there a risk of deficiency? In Davis, M. K., Isaacs, C. E., Hanson, L. A., Wright, A. L., eds. Integrating Population Outcomes, Biological Mechanisms and Research Methods in the Study of Human Milk and Lactation. New York, NY: Kluwer Academic/Plenum Press; 2002:69–76.CrossRef
Hambidge, K. M., Walravens, P. A.Disorders of mineral metabolism. Clin. Gastroenterol. 1982;11:87–117.Google ScholarPubMed
Danks, D. M. Heredity disorders of copper metabolism in Wilson's disease and Menkes' disease. In Stanbury, J. B., Wyngaarden, J. B., Frederickson, D. S.et al., eds. The Metabolic Basis of Inherited Disease. 5th edn. New York, NY: McGraw-Hill Book Co; 1983:1251–6.Google Scholar
Easley, D., Krebs, N., Jefferson, M.et al.Effect of pancreatic enzymes on zinc absorption in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 1998;26:136–9.CrossRefGoogle ScholarPubMed
Hambidge, K. M., Krebs, N. F., Lilly, J. R., Zerbe, G. O.Plasma and urine zinc in infants and children with extrahepatic biliary atresia. J. Pediatr. Gastroenterol. Nutr. 1987;6:872–7.CrossRefGoogle ScholarPubMed
Knisely, A. S., O'Shea, P. A., Stocks, J. F., Dimmick, J. E.Oropharyngeal and upper respiratory tract mucosal-gland siderosis in neonatal hemochromatosis: an approach to biopsy diagnosis. J. Pediatr. 1988;113:871–4.CrossRefGoogle ScholarPubMed
Hambidge, K. M., Sokol, R. J., Fidanza, S. J., Goodall, M. A.Plasma manganese concentrations in infants and children receiving parenteral nutrition. J. Parenter. Enteral. Nutr. 1989;13:168–71.CrossRefGoogle ScholarPubMed
Klein, C. J.Nutrient requirements for preterm infant formulas. J. Nutr. 2002;132:1395S–7S.CrossRefGoogle ScholarPubMed
Bader, D., Blondheim, O., Jonas, R.et al.Decreased ferritin levels, despite iron supplementation, during erythropoietin therapy in anaemia of prematurity. Acta Paediatr. 1996;85:496–501.CrossRefGoogle ScholarPubMed
Dallman, P. R.Biochemical basis for the manifestations of iron deficiency. Annu. Rev. Nutr. 1986;6:13–40.CrossRefGoogle ScholarPubMed
Beard, J. L., Dawson, H., Pinero, D. J.Iron metabolism: a comprehensive review. Nutr. Rev. 1996;54:295–317.CrossRefGoogle ScholarPubMed
Dallman, P. R. Nutritional anemia of infancy: iron, folic acid, and vitamin B12. In Tsang, R. C., Nicholas, B. L., eds. Nutrition during infancy. Philadelphia, PA: Hanley & Belfus, Inc; 1988:216–35.Google Scholar
Rios, E., Hunter, R. E., Cook, J. D., Smith, N. J., Finch, C. A.The absorption of iron as supplements in infant cereal and infant formulas. Pediatrics 1975;55:686–93.Google ScholarPubMed
Oski, F. A. Iron requirements of the premature infant. In Tsang, R. C., ed. Vitamin and Mineral Requirements in Preterm Infants. New York, NY: Marcel Dekker; 1985:9–22.Google Scholar
Vyas, D., Chandra, R. K. Functional implications of iron deficiency. In Stekel, A., ed. Iron Nutrition in Infancy and Childhood. New York, NY: Raven Press; 1984:45–59.Google Scholar
Nokes, C., Bosch, C., Bundy, D.The Effects of Iron Deficiency and Anemia on Mental and Motor Performance, Educational Achievement, and Behavior in Children. A Report of the INACG. Washington, DC: International Life Sciences Institute; 1998.Google Scholar
Lozoff, B., Jimenez, E., Wolf, A. W.Long-term developmental outcome of infants with iron deficiency. N. Engl. J. Med. 1991;325:687–94.CrossRefGoogle ScholarPubMed
Pollitt, E.Iron deficiency and cognitive function. Annu. Rev. Nutr. 1993;13:521–37.CrossRefGoogle ScholarPubMed
Chockalingam, U., Murphy, E., Ophoven, J. C., Georgieff, M. K.The influence of gestational age, size for dates, and prenatal steroids on cord transferrin levels in newborn infants. J. Pediatr. Gastroenterol. Nutr. 1987;6:276–80.CrossRefGoogle ScholarPubMed
Whittaker, P.Iron and zinc interactions in humans. Am. J. Clin. Nutr. 1998;68:442S–6S.CrossRefGoogle ScholarPubMed
Ehrenkranz, R. A., Gettner, P. A., Nelli, C. M.et al.Iron absorption and incorporation into red blood cells by very low birth weight infants: studies with the stable isotope 58Fe. J. Pediatr. Gastroenterol. Nutr. 1992;15:270–8.CrossRefGoogle ScholarPubMed
Hambidge, K. M., Krebs, N. F. Zinc in the fetus and the neonate. In Polin, R. A., Fox, W. W., Abman, S. H., eds. Fetal and Neonatal Physiology. 3rd edn. Philadelphia, PA: W. B. Saunders; 2003:342–7.Google Scholar
Williams, R. J. P. An introduction to the biochemistry of zinc. In Mills, C. F., ed. Zinc in Human Biology. London: Springer-Verlag; 1989:15–31.CrossRefGoogle Scholar
Maret, W.Editorial. Biometals 2001;14:187–90.CrossRef
Cousins, R. J., Blanchard, R. K., Moore, J. B.et al.Regulation of zinc metabolism and genomic outcomes. J. Nutr. 2003;133:1521S–6S.CrossRefGoogle ScholarPubMed
Frederickson, C. J., Bush, A. I.Synaptically released zinc: physiologic functions and pathologic effects. Biometals 2001;14:335–66.CrossRefGoogle Scholar
Falchuk, K. H., Montorzi, M.Zinc physiology and biochemistry in oocytes and embryos. Biometals 2001;14:385–95.CrossRefGoogle ScholarPubMed
Steele, L., Cousins, R. J.Kinetics of zinc absorption by luminally and vascularly perfused rat intestine. Am. J. Physiol. 1985;248:G46–53.Google Scholar
Cragg, R. A., Christie, G. R., Phillips, S. R.et al.A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J. Biol. Chem. 2002;277:22789–97.CrossRefGoogle ScholarPubMed
Cousins, R. J., McMahon, R. J.Integrative aspects of zinc transporters. J. Nutr. 2000;130:1384S–7S.CrossRefGoogle ScholarPubMed
Hambidge, K. M., Krebs, N. F., Miller, L.Evaluation of zinc metabolism with use of stable-isotope techniques: implications for the assessment of zinc status. Am. J. Clin. Nutr. 1998;68:410S–13S.CrossRefGoogle ScholarPubMed
Krebs, N. F., Hambidge, K. M.Zinc requirements and zinc intakes of breast-fed infants. Am. J. Clin. Nutr. 1986;43:288–92.CrossRefGoogle ScholarPubMed
Widdowson, E. M., Southgate, D. A. T., Hey, E. Fetal growth and body composition. In Lindblad, B. S., ed. Perinatal Nutrition. New York, NY: Academic Press;1998:3–14.Google Scholar
Zlotkin, S. H., Cherian, M. G.Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatr Res. 1988;24:326–9.CrossRefGoogle ScholarPubMed
Wastney, M. E., Angelus, P., Barnes, R. M., Subramanian, K. N.Zinc kinetics in preterm infants: a compartmental model based on stable isotope data. Am. J. Physiol. 1996;271:R1452–9.Google ScholarPubMed
Jalla, S., Krebs, N. F., Rodden, D. J., Hambidge, K. M.Zinc homeostasis in premature infants does not differ between those fed preterm formula or fortified human milk. Pediatr. Res. 2004; 56:615–20.CrossRefGoogle ScholarPubMed
Black, M. M.Zinc deficiency and child development. Am. J. Clin. Nutr. 1998;68:464S–9S.CrossRefGoogle ScholarPubMed
Hambidge, M.Human zinc deficiency. J. Nutr. 2000;130:1344S–49S.CrossRefGoogle ScholarPubMed
Jones, G., Steketee, R. W., Black, R. E., Bhutta, Z. A., Morris, S. S.How many child deaths can we prevent this year?Lancet 2003;362:65–71.CrossRefGoogle ScholarPubMed
Ibs, K. H., Rink, L.Zinc-altered immune function. J. Nutr. 2003;133:1452S–6S.CrossRefGoogle ScholarPubMed
Hambidge, K. M. Mild zinc deficiency in human subjects. In Mills, C., ed. Zinc in Human Biology. London: Springer-Verlag; 1989.CrossRefGoogle Scholar
Brown, K. H., Peerson, J. M., Rivera, J., Allen, L. H.Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2002;75:1062–71.CrossRefGoogle ScholarPubMed
Black, M. M.The evidence linking zinc deficiency with children's cognitive and motor functioning. J. Nutr. 2003;133:1473S–6S.CrossRefGoogle ScholarPubMed
Sandstead, H. H., Penland, J. G., Alcock, N. W.et al.Effects of repletion with zinc and other micronutrients on neuropsychological performance and growth of Chinese children. Am. J. Clin. Nutr. 1998;68:470S–5S.CrossRefGoogle Scholar
Friel, J. K., Andrews, W. L., Matthew, J. D.et al.Zinc supplementation in very-low-birth-weight infants. J. Pediatr. Gastroenterol. Nutr. 1993;17:97–104.CrossRefGoogle ScholarPubMed
Castillo-Duran, C., Rodriguez, A., Venegas, G., Alvarez, P., Icaza, G.Zinc supplementation and growth of infants born small for gestational age. J. Pediatr. 1995;127:206–11.CrossRefGoogle ScholarPubMed
Sazawal, S., Black, R. E., Menon, V. P.et al.Zinc supplementation in infants born small for gestational age reduces mortality: a prospective, randomized, controlled trial. Pediatrics 2001;108:1280–86.CrossRefGoogle ScholarPubMed
Krebs, N. F., Bartlett, A., Westcott, J. E.et al.Exchangeable zinc pool size is smaller at birth in small for gestational age infants. Pediatr. Res. 2003;53:394A.Google Scholar
Arlette, J. P., Johnston, M. M.Zinc deficiency dermatosis in premature infants receiving prolonged parenteral alimentation. J. Am. Acad. Dermatol. 1981;5:37–42.CrossRefGoogle ScholarPubMed
Wang, K., Zhou, B., Kuo, Y. M., Zemansky, J., Gitschier, J.A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am. J. Hum. Genet. 2002;71:66–73.CrossRefGoogle ScholarPubMed
Huang, L., Gitschier, J.Novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat. Genetics. 1997;17:292–7.CrossRefGoogle ScholarPubMed
Zimmerman, A. W., Hambidge, K. M., Lepow, M. L.et al.Acrodermatitis in breast-fed premature infants: evidence for a defect of mammary zinc secretion. Pediatrics 1982;69:176–83.Google ScholarPubMed
Hambidge, K. M.Zinc deficiency in the premature infant. Pediatr. Rev. 1985;6:209–16.CrossRefGoogle Scholar
Koo, W. W., Succop, P., Hambidge, K. M.Serum alkaline phosphatase and serum zinc concentrations in preterm infants with rickets and fractures. Am. J. Dis. Child. 1989;143:1342–5.Google ScholarPubMed
Kleinman, L. I., Petering, H. G., Sutherland, J. M.Blood carbonic anhydrase activity and zinc concentration in infants with respiratory-distress syndrome. N. Engl. J. Med. 1967;277:1157–61.CrossRefGoogle ScholarPubMed
Greene, H. L., Hambidge, K. M., Schanler, R., Tsang, R. C.Guidelines for the use of vitamins, trace elements, calcium, magnesium, and phosphorus in infants and children receiving total parenteral nutrition: report of the Subcommittee on Pediatric Parenteral Nutrient Requirements from the Committee on Clinical Practice Issues of the American Society for Clinical Nutrition. Am. J. Clin. Nutr. 1988;48:1324–42.CrossRefGoogle Scholar
Zlotkin, S. H., Buchanan, B. E.Meeting zinc and copper intake requirements in the parenterally fed preterm and full-term infant. J. Pediatr. 1983;103:441–6.CrossRefGoogle ScholarPubMed
Lohman, T. G., Roche, A. F., Martorell, R.Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics Books; 1988.Google Scholar
Festa, M. D., Anderson, H. L., Dowdy, R. P., Ellersieck, M. R.Effect of zinc intake on copper excretion and retention in men. Am. J. Clin. Nutr. 1985;41:285–92.CrossRefGoogle ScholarPubMed
Hambidge, K. M., Walravens, P. A., Neldner, K. H. Zinc, copper and fatty acids in acrodermatitis enteropathica. In Kirchgessner, M., ed. International Symposium on Trace Element Metabolism in Man and Animals. 3rd edn. Freising-Weihenstephan, Germany: Arbeitskreis für Tierenahrungsforschung, Institut für Ernährungsphysiologie, Technische Universität München; 1978:413–17.Google Scholar
Hoekstra, W. G.Biochemical function of selenium and its relation to vitamin E. Fed Proc. 1975;34:2083–9.Google ScholarPubMed
Machlin, L. J., Bendich, A.Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1987;1:441–5.CrossRefGoogle ScholarPubMed
Levander, O. A., Burk, R. F. Selenium. In Present Knowledge in Nutrition. 7th edn. Washington, DC: ILSI Press; 1996:320–8.
Levander, O. A. The importance of selenium in total parenteral nutrition. Proceedings: Working Conference on Parenteral Trace Elements 2. New York, NY: New York Academy of Science; 1984:144–55.Google Scholar
McGuire, M. K., Burgert, S. L., Picciano, M. F.et al.Selenium nutriture of infants fed human milk or bovine milk-based formula with or without selenium. FASEB J. 1989;3:1309.Google Scholar
Keshan Disease Research Group. Epidemiologic studies on the etiologic relationship of selenium and Keshan disease. Chin. Med. J. (Engl). 1979;92:477–82.
Keshan Disease Research Group. Observations of effects of sodium selenite in prevention of Keshan disease. Chin. Med. J. (Engl). 1979;92:471–6.
Johnson, R. A., Baker, S. S., Fallon, J. T.et al.An occidental case of cardiomyopathy and selenium deficiency. N. Engl. J. Med. 1981;304:1210–12.CrossRefGoogle ScholarPubMed
Kien, C. L., Ganther, H. E.Manifestations of chronic selenium deficiency in a child receiving total parenteral nutrition. Am. J. Clin. Nutr. 1983;37:319–28.CrossRefGoogle Scholar
Vinton, N. E., Dahlstrom, K. A., Strobel, C. T., Ament, M. E.Macrocytosis and pseudoalbinism: manifestations of selenium deficiency. J. Pediatr. 1987;111:711–17.CrossRefGoogle ScholarPubMed
Golden, M. H. N., Ramdath, D. Free radicals in the pathogenesis of kwashiokor. In Taylor, T. G., Jenkins, N. K., eds. Proceedings of the XIII Congress of International Nutrition. London: Libbey, J; 1985:597–8.Google Scholar
Gross, S.Hemolytic anemia in premature infants: relationship to vitamin E, selenium, glutathione peroxidase, and erythrocyte lipids. Semin. Hematol. 1976;13:187–99.Google ScholarPubMed
Lombeck, I., Kasperek, K., Harbisch, H. D.et al.The selenium state of children. II. Selenium content of serum, whole blood, hair and the activity of erythrocyte glutathione peroxidase in dietetically treated patients with phenylketonuria and maple-syrup-urine disease. Eur. J. Pediatr. 1978;128:213–23.CrossRefGoogle ScholarPubMed
Darlow, B. A., Inder, T. E., Graham, P. J.et al.The relationship of selenium status to respiratory outcome in the very low birth weight infant. Pediatrics 1995;96:314–19.Google ScholarPubMed
Lockitch, G., Jacobson, B., Quigley, G., Dison, P., Pendray, M.Selenium deficiency in low birth weight neonates: an unrecognized problem. J. Pediatr. 1989;114:865–70.CrossRefGoogle ScholarPubMed
Whanger, P. D., Beilstein, M. A., Thomson, C. D., Robinson, M. F., Howe, M.Blood selenium and glutathione peroxidase activity of populations in New Zealand, Oregon, and South Dakota. FASEB J. 1988;2:2996–3002.CrossRefGoogle ScholarPubMed
Kumpulainen, J., Salmenpera, L., Siimes, M. A.et al.Formula feeding results in lower selenium status than breast-feeding or selenium supplemented formula feeding: a longitudinal study. Am. J. Clin. Nutr. 1987;45:49–53.CrossRefGoogle ScholarPubMed
Caillie-Bertrand, M., Degenhart, H. J., Fernandes, J.Influence of age on the selenium status in Belgium and The Netherlands. Pediatr. Res. 1986;20:574–6.CrossRefGoogle ScholarPubMed
Yang, G. Q., Ge, K. Y., Chen, J. S., Chen, X. S.Selenium-related endemic diseases and the daily selenium requirement of humans. World Rev. Nutr. Diet. 1988;55:98–152.CrossRefGoogle ScholarPubMed
Frieden, E. Ceruloplasmin – a multifunctional cupro-protein of vertebrate plasma. In Sorenson, J., ed. Inflammatory Diseases and Copper. Clifton, NJ: Humana Press; 1982:159–69.CrossRefGoogle Scholar
Solomons, N. W.Biochemical, metabolic, and clinical role of copper in human nutrition. J. Am. Coll. Nutr. 1985;4:83–105.CrossRefGoogle ScholarPubMed
Widdowson, E. M.Trace elements in foetal and early postnatal development. Proc. Nutr. Soc. 1974;33:275–84.CrossRefGoogle ScholarPubMed
Bakka, A., Webb, M.Metabolism of zinc and copper in the neonate: changes in the concentrations and contents of thionein-bound Zn and Cu with age in the livers of the newborn of various mammalian species. Biochem. Pharmacol. 1981;30:721–5.CrossRefGoogle ScholarPubMed
Seely, J. R., Humphrey, G. B., Matter, B. J.Copper deficiency in a premature infant fed on iron-fortified formula. N. Engl. J. Med. 1972;286:109–10.Google Scholar
al-Rashid, R. A., Spangler, J.Neonatal copper deficiency. N. Engl. J. Med. 1971;285:841–3.CrossRefGoogle ScholarPubMed
Tokuda, Y., Yokoyama, S., Tsuji, M.et al.Copper deficiency in an infant on prolonged total parenteral nutrition. J. Parenter. Enteral Nutr. 1986;10:242–4.CrossRefGoogle Scholar
Ashkenazi, A., Levin, S., Djaldetti, M., Fishel, E., Benvenisti, D.The syndrome of neonatal copper deficiency. Pediatrics 1973;52:525–33.Google ScholarPubMed
Sutton, A. M., Harvie, A., Cockburn, F., Farquharson, J., Logan, R. W.Copper deficiency in the preterm infant of very low birthweight. Four cases and a reference range for plasma copper. Arch. Dis. Child. 1985;60:644–51.CrossRefGoogle Scholar
Casey, C. E., Hambidge, K. M. Trace element requirements. In Tsang, R., ed. Vitamin and Mineral Requirements of Preterm Infants. New York, NY: Marcel Dekker; 1985:153–84.Google Scholar
Escobar del Rey, F., Pastor, R., Mallol, J., Escobar, Morreale G.Effects of maternal iodine deficiency on the L-thyroxine and 3,5,3'-triiodo-L-thyronine contents of rat embryonic tissues before and after onset of fetal thyroid function. Endocrinology 1986;118:1259–65.CrossRefGoogle ScholarPubMed
Report of the Subcommittee for the Study of Endemic Goitre and Iodine Deficiency of the European Thyroid Association. Goitre and iodine deficiency in Europe. Lancet 1985;1:1289–93.
Schonberger, W., Grimm, W., Emmrich, P., Gempp, W.Thyroid administration lowers mortality in premature infants. Lancet 1979;2:1181.Google ScholarPubMed
Committee on Nutrition. Fluoride supplementation: revised dosage schedule. Pediatrics 1979;63:150–2.
Mena, L. Manganese. In Bronner, F., Coburn, J. W., eds. Disorders of Mineral Metabolism. New York, NY: Academic Press; 1981:223–70.Google Scholar
Miller, S. T., Cotzias, G. C., Evert, H. A.Control of tissue manganese: initial absence and sudden emergence of excretion in the neonatal mouse. Am. J. Physiol. 1975;229:1080–4.Google ScholarPubMed
Davidson, L., Sederblad, A., Lonnerdal, B. et al. Manganese absorption from human milk, cow's milk and infant formulas. In Hurley, L. S., ed. Trace Elements in Man and Animals. 6th edn. New York, NY: Plenum Publishing; 1988:511–12.CrossRefGoogle Scholar
Casey, C. E., Hambidge, K. M., Neville, M. C.Studies in human lactation: zinc, copper, manganese and chromium in human milk in the first month of lactation. Am. J. Clin. Nutr. 1985;41:1193–200.CrossRefGoogle ScholarPubMed
Mertz, W.The essential trace elements. Science. 1981;213:1330.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Trace minerals
    • By K. Michael Hambidge, University of Colorado School of Medicine and The Children's Hospital, Denver, CO
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Trace minerals
    • By K. Michael Hambidge, University of Colorado School of Medicine and The Children's Hospital, Denver, CO
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Trace minerals
    • By K. Michael Hambidge, University of Colorado School of Medicine and The Children's Hospital, Denver, CO
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.018
Available formats
×