Skip to main content Accessibility help
×
  • Cited by 13
Publisher:
Cambridge University Press
Online publication date:
August 2012
Print publication year:
2010
Online ISBN:
9780511782138

Book description

An extensively revised third edition of this introduction to neuroethology - the neuronal basis of animal behaviour - for zoology, biology and psychology undergraduate students. The book focuses on the roles of individual nerve cells in behaviour, from simple startle responses to complex behaviours such as route learning by rats and singing by crickets and birds. It begins by examining the relationship between brains and behaviour, and showing how study of specialised behaviours reveals neuronal mechanisms that control behaviour. Information processing by nerve cells is introduced using specific examples, and the establishing roles of neurons in behaviour is described for a predator-prey interaction, toads versus cockroaches. New material includes: vision by insects, which describes sensory filtering; hunting by owls and bats, which describes sensory maps; and rhythmical movements including swimming and flying, which describes how sequences of movements are generated. Includes stunning photographs which capture the detail of the behaviour.

Reviews

"This introduction is easy to read and makes the book accessible to anyone with at least a basic understanding of biology who wants to be introduced to neuroethology. Nerve Cells and Animal Behaviour is a great introduction to behavioral science."
Nicolas Dray, Yale Journal of Biology and Medicine

"Throughout, the prose is lively and the discussions of even complex phenomenaare lucid. The figures are carefully crafted to be clear and uncluttered, and there are just enough of them to keep the explanations moving along. Nerve Cells and Animal Behaviour is an interesting and pleasant read that conveys the thrill of studying the neural basis of animal behavior; it would be ideal for triggering interesting discussions in a relatively small biology or psychology course.
William B. Kristan, Jr., The Quarterly Review of Biology

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Amaral, D. G. and Witter, M. P. (1995). Hippocampal formation. In The Rat Nervous System (ed. Paxinos, G.), pp. 443–493. London: Academic Press.
Anstey, M. L., Rogers, S. M., Ott, S. R., Burrows, M. and Simpson, S. J. (2008). Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 323, 627–630.
Antonsen, B. and Edwards, D. (2007). Mechanisms of serotonergic facilitation of a command neuron. J. Neurophysiol. 98, 3494–3504.
Aronov, D., Andalman, A. S. and Fee, M. S. (2008). A specialized forebrain circuit for vocal babbling in the juvenile song bird. Science 320, 630–634.
Bacon, J. and Möhl, B. (1983a). The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust. 1. Its activity in straight flight. J. Comp. Physiol. 150, 439–452.
Bacon, J. and Möhl, B. (1983b). The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust. 2. Directional sensitivity and role in flight stabilisation. J. Comp. Physiol. 150, 453–465.
Bacon, J. and Tyrer, N. M. (1978). The tritocerebral commissure giant (TCG): a bimodal interneurone in the locust, Schistocerca gregaria. J. Comp. Physiol. 126, 317–325.
Barlow, R. B., Hitt, J. M. and Dodge, J. A. (2001). Limulus vision in the marine environment. Biol. Bull. 200, 169–176.
Barnett, P. D., Nordström, K. and O'Carroll, D. C. (2007). Retinotopic organization of small-field-target-detecting neurons in the insect visual system. Curr. Biol. 17, 569–578.
Bartelmez, G. W. (1915). Mauthner's cell and the nucleus motorius tegmenti. J. Comp. Neurol. 25, 87–128.
Bentley, D. R. and Hoy, R. R. (1972). Genetic control of the neuronal network generating cricket (Teleogryllus) song patterns. Anim. Behav. 20, 478–492.
Bicker, G. and Pearson, K. G. (1983). Initiation of flight by stimulation of a single identified wind sensitive neurone (TCG) in the locust. J. Exp. Biol. 104, 289–294.
Bitterman, M. E., Menzel, R., Fietz, A. and Schäfer, S. (1983). Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97, 107–119.
Bliss, T. V. P. and Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356.
Bodenhamer, R., Pollak, G. D. and Marsh, D. S. (1979). Coding of fine frequency information by echoranging neurons in the inferior colliculus of the Mexican free-tailed bat. Brain Res. 171, 530–535.
Boice, R. (1977). Burrows of wild and albino rats: effects of domestication, outdoor raising, age, experience, and maternal state. J. Comp. Physiol. Psychol. 91, 649–661.
Bolhuis, J. and Verhulst, S. (2008). Tinbergen's Legacy: Function and Mechanism in Behavioural Biology. Cambridge: Cambridge University Press.
Borst, A. (2007). Correlation versus gradient type motion detectors: the pros and cons. Phil. Trans. Royal Soc. B 362, 369–374.
Borst, A. and Haag, J. (2002). Neural networks in the cockpit of the fly. J. Comp. Physiol. 188, 419–437.
Borst, A. and Haag, J. (2007). Optic flow processing in the cockpit of the fly. In Invertebrate Neurobiology (ed. North, G. and Greenspan, R. J.), pp. 101–122. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Bottjer, S. W., Miesner, E. A. and Arnold, A. P. (1984). Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224, 901–903.
Brainard, M. S. and Knudsen, E. I. (1993). Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. J. Neurosci. 13, 4589–4608.
Brun, V. H., Otnæss, M. K., Molden, S., et al. (2002). Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243–2246.
Bruns, V. and Schmieszek, E. (1980). Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea. Hearing Res. 3, 27–43.
Bullock, T. H. and Horridge, G. A. (1965). Structure and Function in the Nervous Systems of Invertebrates. San Francisco, CA: W.H. Freeman.
Burrows, M. (1975). Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. J. Exp. Biol. 62, 189–219.
Burrows, M. (1989). Processing of mechanosensory signals in local reflex pathways of the locust. J. Exp. Biol. 146, 209–227.
Burrows, M. (1992). Reliability and effectiveness of transmission from exteroceptive sensory neurons to spiking local interneurons in the locust. J. Neurosci. 12, 1477–l499.
Burrows, M. (1996). The Neurobiology of an Insect Brain. Oxford: Oxford University Press.
Burrows, M. and Newland, P. L. (1993). Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. J. Comp. Neurol. 329, 412–426.
Burrows, M. and Siegler, M. V. S. (1978). Graded synaptic transmission between local interneurones and motor neurones in the metathoracic ganglion of the locust. J. Physiol. (London) 285, 231–255.
Burrows, M. and Siegler, M. V. S. (1985). The organization of receptive fields of spiking local interneurons in the locust with inputs from hair afferents. J. Neurophysiol. 53, 1147–1157.
Burton, B. G., Tatler, B. W. and Laughlin, S. B. (2001). Variations in photoreceptor response dynamics across the fly retina. J. Neurophysiol. 86, 950–960.
Camhi, J. M. and Tom, W. (1978). The escape system of the cockroach Periplaneta americana. I. The turning response to wind puffs. J. Comp. Physiol. 128, 193–201.
Canfield, J. G. and Rose, G. J. (1993). Activation of Mauthner neurons during prey capture. J. Comp. Physiol. A 172, 611–618.
Carew, T. J. (2001). Behavioral Neurobiology: The Cellular Organization of Natural Behavior. Sunderland, MA: Sinauer Associates.
Carr, C. E. and Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10, 3227–3246.
Catania, K. C. (1999). A nose that looks like a hand and acts like an eye: the unusual mechanosensory system of the star-nosed mole. J. Comp. Physiol. A 185, 367–372.
Catania, K. C. and Kaas, J. H. (1996). The unusual nose and brain of the star-nosed mole. BioScience 46, 578–586.
Catania, K. C. and Kaas, J. H. (1997). Somatosensory fovea in the star-nosed mole: behavioral use of the star in relation to innervation patterns and cortical representation. J. Comp. Neurol. 387, 215–233.
Catania, K. C. and Remple, F. E. (2005). Asymptotic prey profitability drives star-nosed moles to the foraging speed limit. Nature 442, 519–522.
Catchpole, C. K. and Slater, P. J. B. (2008). Bird Song: Biological Themes and Variations. 2nd edition. Cambridge: Cambridge University Press.
Clemens, S. and Katz, P. S. (2001). Identified serotonergic neurons in the Tritonia swim CPG activate both ionotropic and metabotropic receptors. J. Neurophysiol. 85, 476–479.
Clyne, J. D. and Miesenböck, G. (2008). Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354–363.
Collett, T. S. (2007). Insect navigation: visual panoramas and the sky compass. Curr. Biol. 18, R1058–R1060.
Collett, T. S. and Land, M. F. (1975). Visual control of flight behaviour in the hoverfly Syritta pipiens, L. J. Comp. Physiol. 99, 1–66.
Comer, C. (1985). Analyzing cockroach escape behavior with lesions of individual giant interneurons. Brain Res. 335, 342–346.
Comer, C. M. and Dowd, J. P. (1993). Multisensory processing for movement: antennal and cercal mediation of escape turning in the cockroach. In Biological Neural Networks in Invertebrate Neuroethology and Robotics (ed. Beer, R. D., Ritzmann, R. E. and McKenna, T.), pp. 89–112. Boston, MA: Academic Press.
Dagan, D. and Camhi, J. M. (1979). Responses to wind recorded from the cercal nerve of the cockroach Periplaneta americana. II. Directional selectivity of the sensory nerves innervating single columns of filiform hairs. J. Comp. Physiol. A 133, 103–110.
Dambach, M. and Rausche, G. (1985). Low frequency airborne vibrations in crickets and feedback control of calling song. In Acoustic Vibrational Communication in Insects (ed. Kalmring, K. and Elsner, N.), pp. 177–182. Berlin: Paul Parey.
Davis, R. L. (2005). Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu. Rev. Neurosci. 28, 275–302.
Dawson, J. W., Kutsch, W. and Robertson, R. M. (2004). Auditory-evoked evasive manoeuvres in free-flying locusts and moths. J. Comp. Physiol. A 190, 69–84.
Ruyter van Steveninck, R. and Laughlin, S. B. (1996). The rate of information transfer at graded-potential synapses. Nature 379, 642–645.
Demir, E. and Dickson, B. J. (2005). fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785–794.
Diamond, J. (1968). The activation and distribution of gaba and L-glutamate receptors on goldfish Mauthner neurons: an analysis of dendritic remote inhibition. J. Physiol. 194, 669–723.
Douglass, J. K. and Strausfeld, N. J. (2003). Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies. Microsc. Res. Techniq. 62, 132–150.
Doupe, A. J. (1997). Song- and order-selective neurons in the song bird anterior forebrain and their emergence during vocal development. J. Neurosci. 17, 1147–1167.
Dowling, J. and Boycott, B. (1966). Organization of the primate retina: electron microscopy. Proc. Roy. Soc. Lond. B 166, 80–111.
Dowling, J. E. and Werblin, F. S. (1969). Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. J. Neurophysiol. 32, 315–338.
Dvorak, D. R., Bishop, L. G. and Eckert, H. E. (1975). On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. 100, 5–23.
Eaton, R. C. and Emberley, D. S. (1991). How stimulus direction determines the angle of the Mauthner initiated response in teleost fish. J. Exp. Biol. 161, 469–487.
Eaton, R. C., Lavender, W. A. and Wieland, C. M. (1981). Identification of Mauthner-initiated response patterns in goldfish: evidence from simultaneous cinematography and electrophysiology. J. Comp. Physiol. 144, 521–531.
Eaton, R., Lavender, W. and Wieland, C. (1982). Alternative neural pathways initiate fast-start responses following lesions of the Mauthner neuron in goldfish. J. Comp. Physiol. A 145, 485–496.
Eccles, J. C. (1957). The Physiology of Nerve Cells. Baltimore, MD: Johns Hopkins Press.
Eccles, J. C. (1977). The Understanding of the Brain. New York: McGraw Hill.
Edwards, D., Yeh, S.-R. and Krasne, F. (1998). Neuronal coincidence detection by voltage-sensitive electrical synapses. Proc. Natl. Acad. Sci. USA 95, 1745–1750.
Egelhaaf, M. (1985). On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed by the neuronal network and the role of the optomotor system. Biol. Cybern. 52, 123–140.
Egelhaaf, M. and Borst, A. (1993). Motion computation and visual orientation in flies. Comp. Biochem. Physiol. 104A, 659–673.
Elyada, Y. M., Haag, J. and Borst, A. (2009). Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons. Nat. Neurosci. 12, 327–332.
Erber, J., Masuhr, T. and Menzel, R. (1980). Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol. Entomol. 5, 343–358.
Espinoza, S., Breen, L., Varghese, N. and Faulkes, Z. (2006). Loss of escape-related giant neurons in a spiny lobster, Panulirus argus. Biol. Bull. 211, 223–231.
Ewert, J.-P. (1980). Neuroethology. Berlin: Springer-Verlag.
Ewert, J.-P. (1985). Concepts in vertebrate neuroethology. Anim. Behav. 33, 1–29.
Ewert, J.-P. (1987). Neuroethology of releasing mechanisms: prey-catching in toads. Behav. Brain Sci. 10, 337–403.
Farooqui, T., Robinson, K., Vaessin, H. and Smith, B. H. (2003). Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J. Neurosci. 23, 5370–5380.
Finkenstädt, T. and Ewert, J. (1988). Stimulus-specific long-term habituation of visually guided orienting behavior toward prey in toads: a 14C-2DG study. J. Comp. Physiol. A 163, 1–11.
Fischer, H. and Kutsch, W. (2000). Relationships between body mass, motor output and flight variables during free flight of juvenile and mature adult locusts, Schistocerca gregaria. J. Exp. Biol. 203, 2723–2735.
Fortune, E. S. (2006). The decoding of electrosensory systems. Curr. Opin. Neurobiol. 16, 474–480.
Franceschini, N., Hardie, R. C., Ribi, W. and Kirschfeld, K. (1981). Sexual dimorphism in a photoreceptor. Nature 291, 241–244.
Franceschini, N., Riehle, A. and Nestour, A. (1989). Directionally selective motion detection by insect neurons. In Facets of Vision (ed. Stavenga, D. G. and Hardie, R. C.), pp. 360–390. Berlin: Springer.
Frost, W. N. and Katz, P. S. (1996). Single neuron control over a complex motor pattern. Proc. Natl. Acad. Sci. USA 93, 422–426.
Fry, S. N., Sayaman, R. and Dickinson, M. H. (2003). The aerodynamics of free-flight maneuvers in Drosophila. Science 300, 495–498.
Furshpan, E. J. and Potter, D. D. (1959). Transmission at the giant motor synapses of the crayfish. J. Physiol. 145, 289–325.
Gahtan, E., Sankrithi, N., Campos, J. and O'Malley, D. (2002). Evidence for a widespread brain stem escape network in larval zebrafish. J. Neurophysiol. 87, 608–614.
Gallese, V., Fadiga, L., Fogassi, L. and Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain 119, 593–609.
Gentner, T. Q. and Margoliash, D. (2003). Neuronal populations and single cells representing learned auditory objects. Nature 424, 669–674.
Gentner, T. Q., Hulse, S. H., Duffy, D. and Ball, G. F. (2001). Response biases in auditory forebrain regions of female song birds following exposure to sexually relevant variation in male song. J. Neurobiol. 46, 48–58.
Grinnell, A. D. and Hagiwara, S. (1972). Studies of auditory neurophysiology in non-echolocating bats, and adaptations for echolocation in one genus, Rousettus. Z. vergl. Physiol. 76, 82–96.
Grinnell, A. D. and Schnitzler, H.-U. (1977). Directional sensitivity of echolocation in the horseshoe bat, Rhinolophus ferrumequinum. II. Behavioural directionality of hearing. J. Comp. Physiol. 116, 63–76.
Grothe, B. (2003). New roles for synaptic inhibition in sound localization. Nat. Rev. Neurosci. 4, 540–550.
Haag, J. and Borst, A. (2004). Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons. Nature Neurosci. 7, 628–634.
Habersetzer, J. and Vogler, B. (1983). Discrimination of surface-structured targets by the echolocating bat Myotis myotis during flight. J. Comp. Physiol. 152, 275–282.
Hafting, T., Fyhn, M., Molden, S., Moser, M. B. and Moser, E. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806.
Hagedorn, M. and Heiligenberg, W. (1985). Court and spark: electric signals in the courtship and mating of gymnotoid fish. Anim. Behav. 33, 254–265.
Hammer, M. (1993). An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59–63.
Hammer, M. and Menzel, R. (1995). Learning and memory in the honeybee. J. Neurosci. 15, 1617–1630.
Hanson, A. (2004) History of the Norway rat (Rattus norvegicus). ‘Rat behavior’ and ‘Rat biology’. Online www.ratbehavior.org/history.htm. Accessed 25 August 2009.
Hardie, R. C. (1986). The photoreceptor array of the dipteran retina. Trends Neurosci. 9, 419–23.
Harrow, I. D., Hue, B., Pelhate, M. and Sattelle, D. B. (1980). Cockroach giant interneurones stained by cobalt-backfilling of dissected axons. J. Exp. Biol. 84, 341–343.
Hartline, H. K., Wagner, H. G. and Ratliff, F. (1956). Inhibition in the eye of Limulus. J. Gen. Physiol. 39, 651–673.
Hausen, K. and Egelhaaf, M. (1989). Neural mechanisms of visual course control in insects. In Facets of Vision (ed. Stavenga, D. G. and Hardie), R. C., pp. 391–424. Berlin: Springer.
Hedwig, B. (2000). Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. J. Neurophysiol. 83, 712–722.
Hedwig, B. (2006). Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets. J. Comp. Physiol. A 192, 677–689.
Hedwig, B. and Heinrich, R. (1997). Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper. J. Comp. Physiol. A 180, 285–294.
Hedwig, B. and Pearson, K. G. (1984). Patterns of synaptic input to identified flight motoneurons in the locust. J. Comp. Physiol. A 154, 745–760.
Hedwig, B. and Poulet, J. (2004). Complex auditory behaviour emerges from simple reactive steering. Nature 430, 781–785.
Heiligenberg, W. (1991). Neural Nets in Electric Fish. Boston, MA: MIT Press.
Heiligenberg, W. and Partridge, B. L. (1981). How electroreceptors encode JAR-eliciting stimulus regimes: reading trajectories in a phase-amplitude plane. J. Comp. Physiol. A 142, 295–308.
Heiligenberg, W. and Rose, G. (1985). Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia. J. Neurosci. 5, 515–531.
Heiligenberg, W., Baker, C. and Matsubara, J. (1978). The jamming avoidance response in Eigenmannia revisited: the structure of a neuronal democracy. J. Comp. Physiol. A 127, 267–286.
Heitler, W. J. and Fraser, K. (1993). Thoracic connections between crayfish giant fibres and motor giant neurones reverse abdominal patterns. J. Exp. Biol. 181, 329–333.
Heitler, W., Fraser, K. and Ferrero, E. (2000). Escape behaviour in the stomatopod crustacean Squilla mantis, and the evolution of the caridoid escape reaction. J. Exp. Biol. 203, 183–192.
Henneman, E., Somjen, G. and Carpenter, D. O. (1965). Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28, 560–580.
Hennig, R. M. (1990). Neuronal control of the forewings in two different behaviours: stridulation and flight in the cricket, Teleogryllus commodus. J. Comp. Physiol. A 167, 617–627.
Hensler, K. (1992). Neuronal co-processing of course deviation and head movements in locusts. I. Descending deviation detectors. J. Comp. Physiol. A 171, 257–271.
Herberholz, J., Issa, F. and Edwards, D. (2001). Patterns of neural circuit activation and behavior during dominance hierarchy formation in freely behaving crayfish. J. Neurosci. 21, 2759–2767.
Herberholz, J., Sen, M. and Edwards, D. (2004). Escape behavior and escape circuit activation in juvenile crayfish during prey–predator interactions. J. Exp. Biol. 207, 1855–1863.
Herrmann, K. and Arnold, A. P. (1991). The development of afferent projections to the robust archistriatal nucleus in male zebra finches: a quantitative electron microscopic study. J. Neurosci. 11, 2063–2074.
Higgins, C. M., Douglass, J. K. and Strausfeld, N. J. (2004). The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects. Visual Neurosci. 21, 567–586.
Hill, K. G. and Boyan, G. S. (1977). Sensitivity to frequency and direction of sound in the auditory system of crickets (Gryllidae). J. Comp. Physiol. A 121, 79–97.
Hopkins, C. D. (1999). Design features for electric communication. J. Exp. Biol. 202, 1217–1228.
Horsman, U., Heinzel, H.-G. and Wendler, G. (1983). The phasic influence of self-generated air current modulations on the locust flight motor. J. Comp. Physiol. 150, 427–438.
Huston, S. J. and Krapp, H. G. (2008). Visuomotor transformation in the fly gaze stabilization system. PLoS Biol. 6, 1468–1478.
Hyde, P. S. and Knudsen, E. I. (2002). The optic tectum controls visually guided adaptive plasticity in the owl's auditory space map. Nature 415, 73–76.
Issa, F., Adamson, D. and Edwards, D. (1999). Dominance hierarchy formation in juvenile crayfish Procambarus clarkii. J. Exp. Biol. 202, 3497–3506.
Jacobs, L. F. (2003). The evolution of the cognitive map. Brain Behav. Evol. 62, 128–139.
Jarvis, E. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 6, 151–159.
Jarvis, E. D. and Nottebohm, F. (1997). Motor-driven gene expression. Proc. Natl. Acad. Sci. USA 94, 4097–4102.
Jeffery, K. J. and Burgess, N. (2006). A metric for the cognitive map: found at last? Trends Cogn. Sci. 10, 1–3.
Jones, G. and Holderied, M. W. (2007). Bat echolocation calls: adaptation and convergent evolution. Proc. Roy. Soc. Lond. B 274, 905–912.
Judge, S. J. and Rind, F. C. (1997). The locust DCMD, a movement-detecting neurone tightly tuned to collision trajectories. J. Exp. Biol. 200, 2209–2216.
Kalko, E. K. V. and Schnitzler, H.-U. (1998). How echolocating bats approach and acquire food. In Bat Biology and Conservation (ed. Kunz, T. H. and Racey, P. A.), pp. 197–204. Washington, DC: Smithsonian Institution Press.
Kandel, E. R. (1979). The Behavioral Biology of Aplysia. San Francisco, CA: Freeman.
Katz, P. S., Getting, P. A. and Frost, W. N. (1994). Dynamic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit. Nature 367, 729–731.
Keil, T. (1997). Functional morphology of insect mechanoreceptors. Microsc. Res. Techniq. 39, 506–531.
Keller, G. B. and Hahnloser, H. R. (2009). Neural processing of auditory feedback during vocal practice in a song bird. Nature 457, 187–190.
Kern, R., Hateren, J. H., Michaelis, C., Lindemann, J. P. and Egelhaaf, M. (2005). Eye movements during natural flight shape the function of a blowfly motion sensitive neuron. PLoS Biol. 6, 1131–1138.
Kern, R., Hateren, J. H. and Egelhaaf, M. (2006). Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements. J. Exp. Biol. 209, 1251–1260.
Kimchi, T., Xu, J. and Dulac, C. (2007). A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014.
Kimmel, C. B. and Eaton, R. C. (1976). Development of the Mauthner cell. In Simpler Networks and behavior (ed. Fentress, J. C.), pp. 186–202. Sunderland, MA: Sinauer Associates.
Kimmerle, B., Warzecha, A.-K. and Egelhaaf, M. (1997). Object detection in the fly during simulated translatory flight. J. Comp. Physiol. A 181, 247–255.
Kirchner, W. H. and Srinivasan, M. V. (1989). Freely flying honeybees use image motion to estimate object distance. Naturwissenschaften 76, 281–282.
Knudsen, E. I. (1981). The hearing of the barn owl. Sci. Am. 245, 83–91.
Knudsen, E. I. (2002). Instructed learning in the auditory localization pathway of the barn owl. Nature 417, 322–328.
Knudsen, E. I. and Knudsen, P. F. (1990). Sensitive and critical periods for visual calibration of sound localization by barn owls. J. Neurosci. 10, 222–232.
Knudsen, E. I. and Konishi, M. (1979). Mechanisms of sound localisation in the barn owl (Tyto alba). J. Comp. Physiol 133, 13–21.
Kolton, L. and Camhi, J. M. (1995). Cartesian representation of stimulus direction: parallel processing by two sets of giant interneurons in the cockroach. J. Comp. Physiol. A 176, 691–702.
Konishi, M. (1965a). Effects of deafening on song development in American robins and black-headed grosbeaks. Z. Tierpsychol. 22, 584–599.
Konishi, M. (1965b). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol. 22, 770–783.
Konishi, M. (1992). The neural algorithm for sound localisation in the owl. Harvey Lect. 86, 47–64.
Konishi, M. (1993). Listening with two ears. Sci. Am. 268, 34–41.
Konishi, M. (2006). Behavioral guides for sensory neurophysiology. J. Comp. Physiol. 192, 671–676.
Koppl, C., Gleich, O. and Manley, G. A. (1993). An auditory fovea in the barn owl cochlea. J. Comp. Physiol. A. 171, 695–704.
Krapp, H. G., Hengstenberg, B. and Hengstenberg, R. (1998). Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J. Neurophysiol. 79, 1902–1917.
Krasne, F. B. (1969). Excitation and habituation of the crayfish escape reflex: the depolarising response in lateral giant fibres of the isolated abdomen. J. Exp. Biol. 50, 29–46.
Krasne, F. B. and Lee, S. (1988). Response-dedicated trigger neurons as control points for behavioral actions: selective inhibition of lateral giant command neurons during feeding in crayfish. J. Neurosci. 8, 3703–3712.
Krasne, F. B. and Wine, J. J. (1975). Extrinsic modulation of crayfish escape and behaviour. J. Exp. Biol. 63, 433–450.
Krasne, F. B. and Wine, J. J. (1977). Control of crayfish escape behavior. In Identified Neurons and Behavior of Arthropods (ed. Hoyle, G.), pp. 275–292. New York: Plenum.
Kupferman, I. and Weiss, K. R. (1978). The command neuron concept. Brain Behav. Sci. 1, 3–39.
Kutsch, W. (1969). Neuromuskuläre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten. Z. vergl. Physiol. 63, 335–378.
Kutsch, W., Schwarz, G., Fischer, H. and Kautz, H. (1993). Wireless transmission of muscle potentials during free flight of a locust. J. Exp. Biol. 185, 367–373.
Lambert, T. D., Howard, J., Plant, A., Soffe, S. R. and Roberts, A. (2004). Mechanisms and significance of reduced activity and responsiveness in resting frog tadpoles. J. Exp. Biol. 207, 1113–1125.
Laughlin, S. B. (1981). Neural principles in the peripheral visual systems of invertebrates. In Handbook of Sensory Physiology. Vol.VII/6B. Comparative Physiology and Evolution of Vision in Invertebrates: Invertebrate Visual Centers and Behavior (ed. Autrum, H.), pp. 133–280. Berlin: Springer Verlag.
Laughlin, S. B. and Hardie, R. C. (1978). Common strategies for light adaptation in the peripheral visual system of fly and dragonfly. J. Comp. Physiol. 128, 319–340.
Laughlin, S. B. and Weckström, M. (1993). Fast and slow photoreceptors: a comparative study of the functional diversity of coding and conductances in the Diptera. J. Comp. Physiol. A 172, 593–609.
Laughlin, S. B., Howard, J. and Blakeslee, B. (1987). Synaptic limitation to contrast coding in the retina of the blowfly Calliphora. Proc. Roy. Soc. Lond. B 231, 437–467.
Lee, R. and Eaton, R. C. (1991). Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio rerio. J. Comp. Neurol. 304, 34–52.
Lee, R., Eaton, R. and Zottoli, S. (1993). Segmental arrangement of reticulospinal neurons in the goldfish hindbrain. J. Comp. Neurol. 329, 539–556.
Letzkus, P., Ribi, W. A., Wood, J. T., Zhu, H., Zhang, S.-W. and Srinivasan, M. V. (2006). Lateralization of olfaction in the honeybee Apis mellifera. Curr. Biol. 16, 1471–1476.
Levi, R. and Camhi, J. M. (2000a). Population vector coding by the giant interneurons of the cockroach. J. Neurosci. 20, 3822–3829.
Levi, R. and Camhi, J. M. (2000b). Wind direction coding in the cockroach escape response: winner does not take all. J. Neurosci 20, 3814–3821.
Lewen, G. D., Ruyter van Steveninck, R. and Bialek, W. (2001). Neural coding of naturalistic motion stimuli. Network 12, 317–329.
Li, W.-C., Soffe, S. R., Wolf, E. and Roberts, A. (2006). Persistent responses to brief stimuli: feedback excitation among brainstem neurons. J. Neurosci. 26, 4026–4035.
Liebenthal, E., Uhlman, O. and Camhi, J. M. (1994). Critical parameters of the spike trains in a cell assembly: coding of turn direction by the giant interneurons of the cockroach. J. Comp. Physiol. A 174, 281–296.
Lillywhite, P. G. (1977). Single photon signals and transduction in an insect eye. J. Comp. Physiol. 122, 189–200.
Link, A., Marimuthu, G. and Neuweiler, G. (1986). Movement as a specific stimulus for prey catching behaviour in rhinolophid and hipposiderid bats. J. Comp. Physiol. A 159, 403–413.
Liu, K. S. and Fetcho, J. R. (1999). Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23, 325–335.
Livingstone, M., Harris-Warrick, R. and Kravitz, E. (1980). Serotonin and octopamine produce opposite postures in lobsters. Science 208, 76–79.
London, S. E. and Clayton, D. F. (2008). Functional identification of sensory mechanisms required for developmental song learning. Nat. Neurosci. 11, 579–586.
Lorenz, K. and Tinbergen, N. (1938). Taxis und Instinkthandlung in der Eirollbewegung der Graugans. Z. Tierpysychol. 2, 1–29.
Manley, G. A., Koppl, C. and Konishi, M. (1988). A neural map of interaural intensity differences in the brain stem of the barn owl. J. Neurosci. 8, 2665–2676.
Manoli, D. S. and Baker, B. S. (2004). Median bundle neurons coordinate behaviours during Drosophila male courtship. Nature 430, 564–569.
Manoli, D., Foss, M., Villella, M., et al. (2005). Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400.
Manoli, D., Meissner, G. and Baker, B. (2006). Blueprints for behavior: genetic specification of neural circuitry for innate behaviors. Trends Neurosci. 29, 444–451.
Marler, P. and Slabberkoorn, H. (2004). Nature's Music: The Science of Birdsong. San Diego, CA: Elsevier.
Masino, T. and Knudsen, E. I. (1990). Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl. Nature 345, 434–437.
Matheson, T., Rogers, S. M. and Krapp, H. G. (2004). Plasticity in the visual system is correlated with a change in lifestyle of solitarious and gregarious locusts. J. Neurophysiol. 91, 1–12.
Mauelshagen, J. (1993). Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. J. Neurophysiol. 69, 609–625.
McLean, D. L., Fan, J., Higashijima, S., Hale, M. E. and Fetcho, J. R. (2007). A topographic map of recruitment in spinal cord. Nature 446, 71–75.
McLean, D. L., Masino, M. A., Koh, I. Y. Y., Lindquist, W. B. and Fetcho, J. R. (2008). Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat. Neurosci. 11, 1419–1429.
Mello, C. V., Vicario, D. S. and Clayton, D. F. (1992). Song presentation induces gene expression in the song bird forebrain. Proc. Natl. Acad. Sci. USA 89, 6818–6822.
Menzel, R. (1999). Memory dynamics in the honeybee. J. Comp. Physiol. A 185, 323–340.
Menzel, R. and Erber, J. (1978). Learning and memory in bees. Sci. Am. 239, 80–87.
Menzel, R. and Giurfa, M. (2001). Cognitive architecture of a mini-brain: the honeybee. Trends Cogn. Sci. 5, 62–71.
Menzel, R., Marco, R. J. and Greggers, U. (2006). Spatial memory, navigation and dance behaviour in Apis mellifera. J. Comp. Physiol. A. 192, 889–903.
Metzner, W. (1993). The jamming avoidance response in Eigemannia is controlled by two separate motor pathways. J. Neurosci. 13, 1862–1878.
Metzner, W. (1999). Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J. Exp. Biol. 202, 1365–1375.
Meyrand, P., Simmers, A. J. and Moulins, M. (1991). Construction of a pattern generating circuit with neurons of different networks. Nature 351, 60–63.
Meyrand, P., Simmers, A. J. and Moulins, M. (1994). Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system. J. Neurosci. 14, 630–644.
Michelsen, A. and Nocke, H. (1974). Biophysical aspects of sound communication in insects. Adv. Insect Physiol. 10, 247–296.
Michelsen, A., Anderson, B. B., Kirchner, W. H. and Lindauer, M. (1989). Honeybees can be recruited by a mechanical model of a dancing bee. Naturwissenschaften 76, 277–280.
Miller, J. P. and Selverston, A. I. (1982) Mechanisms underlying pattern generation in lobster stomatogastic ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. J. Neurophysiol. 48, 1416–1432.
Mizunami, M., Weibrecht, J. M. and Strausfeld, N. J. (1998). Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402, 520–527.
Möhl, B. (1985). The role of proprioception in locust flight control. II. Information relayed by forewing stretch receptors during flight. J. Comp. Physiol. A 156, 103–116.
Möhl, B. (1988). Short-term learning during flight control inLocusta migratoria. J. Comp. Physiol. A 163, 803–812.
Möhl, B. (1993). The role of proprioception for motor learning in locust flight. J. Comp. Physiol. A 172, 325–332.
Moiseff, A. and Konishi, M. (1981). Neuronal and behavioural sensitivity to binaural time differences in the owl. J. Neurosci. 1, 40–48.
Moller, P. (1995). Electric Fishes: History and Behavior. London: Chapman and Hall.
Morris, R. M. (1981). Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60.
Morris, R., Anderson, E., Lynch, G. S. and Baudry, M. (1986). Selective impairment of learning and blockade of longterm potentiation by an N-methyl-d-aspartate receptor antagonist, ap5. Nature 319, 774–776.
Moser, E. I. and Moser, M. B. (2008). A metric for space. Hippocampus 18, 1142–1156.
Moser, E. I., Kropff, E. and Moser, M.-B. (2008). Place cells, grid cells, and the brain's spatial representation system. Ann. Rev. Neurosci. 31, 69–89.
Muller, R. U., Kubie, J. L. and Ranck, J. B. J. (1987). Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 7, 1935–1950.
Nabatiyan, A., Poulet, J. F. A., Polavieja, G. G. and Hedwig, B. (2003). Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system. J. Neurophysiol. 90, 2484–2493.
Nakayama, H. and Oda, Y. (2004). Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J. Neurosci. 24, 3199–3209.
Neuweiler, G. (1983). Echolocation and adaptivity to ecological constraints. In Neuroethology and Behavioural Physiology (ed. Huber, F. and Markl, H.), pp. 280–302. Berlin: Springer Verlag.
Neuweiler, G. (2000). The Biology of Bats. New York: Oxford University Press.
Neuweiler, G., Bruns, V. and Schuller, G. (1980). Ears adapted for the detection of motion, or how echolocating bats have exploited the capacities of the mammalian auditory system. J. Acoust. Soc. Am. 68, 741–753.
Neuweiler, G., Singh, S. and Sripathi, K. (1984). Audiograms of a South Indian bat community. J. Comp. Physiol. 154, 133–142.
Neuweiler, G., Metzner, W., Heilmann, U., et al. (1987). Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behav. Ecol. Sociobiol. 20, 53–67.
Neves, G., Cooke, S. F. and Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75.
Newland, P. L. (1991). Morphology and somatotopic organisation of the central projections of afferents from tactile hairs on the hind leg of the locust. J. Comp. Neurol. 311, 1–16.
Nicholl, R. A., Kauer, J. A. and Malenka, R. C. (1988). The current excitement in long term potentiation. Neuron 1, 97–103.
Nicol, D. and Meinertzhagen, I. A. (1982). An analysis of the number and composition of synaptic populations formed by photoreceptors of the fly. J. Comp. Neurol. 207, 29–44.
Nissanov, J., Eaton, R. C. and DiDomenico, R. (1990). The motor output of the Mauthner cell, a reticulospinal command neuron. Brain Res. 517, 88–98.
Nolen, T. G. and Hoy, R. R. (1984). Initiation of behavior by single neurons: the role of behavioral context. Science 226, 992–994.
Norberg, R. A. (1970). Hunting technique of Tengmalm's owl, Aegolius funereus (L.). Ornis Scand. 1, 51–64.
Norberg, R. A. (1977). Occurrence and independent evolution of bilateral ear asymmetry in owls and implications on owl taxonomy. Phil. Trans. R. Soc. Lond. B 280, 375–408.
Nordström, K., Barnett, P. D. and O'Carroll, D. C. (2006). Insect detection of small targets moving in visual clutter. PLoS Biol. 4, 378–386.
Nottebohm, F. (1989). From bird song to neurogenesis. Sci. Am. 260, 74–79.
Nottebohm, F., Stokes, T. and Leonard, C. (1976). Central control of song in the canary. J. Comp. Neurol. 165, 457–486.
Okada, R., Rybak, J., Manz, G. and Menzel, R. (2007). Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J. Neurosci. 27, 11 736 –11 747.
O'Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175.
Olson, G. C. and Krasne, F. B. (1981). The crayfish lateral giants are command neurons for escape behavior. Brain Res. 214, 89–100.
O'Malley, D., Kao, Y.-H. and Fetcho, J. R. (1996). Imaging the functional organization of zebrafish hindbrain segments during escape behaviours. Neuron 17, 1145–1155.
O'Neill, W. E., and Suga, N. (1982). Encoding of target range and its representation in the auditory cortex of the moustached bat. J. Neurosci. 2, 17–31.
O'Shea, M. and Rowell, C. H. F. (1976). The neuronal basis of a sensory analyser, the acridid movement detector system. II. Response decrement, convergence and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. J. Exp. Biol. 65, 289–308.
Payne, R. S. (1971). Acoustic location of prey by barn owls (Tyto alba). J. Exp. Biol. 54, 535–573.
Pearson, K. G. and Ramirez, J.-M. (1990). Influence of input from the forewing stretch receptors on motoneurones in flying locusts. J. Exp. Biol. 151, 317–340.
Pearson, K. G. and Wolf, H. (1987). Comparison of motor patterns in the intact and deafferented flight motor system of the locust. J. Comp. Physiol. A 160, 259–268.
Pearson, K. G. and Wolf, H. (1988). Connections of hindwing tegulae with flight neurones in the locust, Locusta migratoria. J. Exp. Biol. 135, 381–409.
Pearson, K. G., Reye, D. N., Parsons, D. W. and Bicker, G. (1985). Flight-initiating interneurons in the locust. J. Neurophysiol. 53, 910–923.
Pereda, A., Bell, T. and Faber, D. (1995). Retrograde synaptic communication via gap junctions coupling auditory afferents to the Mauthner cell. J. Neurosci. 15, 5943–5955.
Peron, S. and Gabbiani, F. (2009). Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nat. Neurosci. 12, 318–326.
Pires, A. and Hoy, R. R. (1992). Temperature coupling in cricket acoustic communication. 1. Field and laboratory studies of temperature effects on calling song production and recognition in Gryllus firmus. J. Comp. Physiol. A 171, 68–79.
Pittenger, C. and Kandel, E. R. (2003). In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Phil. Trans. Roy. Soc. Lond. B 358, 757–763.
Plummer, M. and Camhi, J. M. (1981). Discrimination of sensory signals from noise in the escape system of the cockroach: the role of wind acceleration. J. Comp. Physiol. 142, 347–357.
Pollack, G. S. (1988). Selective attention in an insect auditory neuron. J. Neurosci. 8, 2635–2639.
Pollak, G. D. (1980). Organizational and encoding features of single neurons in the inferior colliculus of bats. In Animal Sonar Systems (ed. Busnel, R. G., and Fish, J. F.), pp. 549–587. New York: Plenum Press.
Pollak, G. D. and Schuller, G. (1981). Tonotopic organization and encoding features of single units in inferior colliculus of horseshoe bats: functional implications for prey identification. J. Neurophysiol. 45, 208–226.
Pollak, G. D., Marsh, D., Bodenhamer, R. and Souther, A. (1977). Characteristics of phasic-on neurons in the inferior colliculus of unanaesthetised bats with observations relating to mechanisms of echo ranging. J. Neurophysiol. 40, 926–942.
Poulet, J. F. A. and Hedwig, B. (2003). Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket. J. Neurosci. 23, 4717–4725.
Poulet, J. F. A. and Hedwig, B. (2005). Auditory orientation in crickets: pattern recognition controls reactive steering. Proc. Natl. Acad. Sci. USA 102, 15 665–15 669.
Poulet, J. F. A. and Hedwig, B. (2006). The cellular basis of a corollary discharge. Science 311, 518–522.
Poulet, J. F. A. and Hedwig, B. (2007). New insights into corollary discharges mediated by identified neural pathways. Trends Neurosci. 30, 14–21.
Prather, J. F., Peters, S., Nowicki, S. and Mooney, R. (2008). Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature 451, 305–310.
Pringle, J. W. S. (1975). Insect Flight. Oxford Biology Readers 52. Glasgow: Oxford University Press.
Prugh, J. I., Kimmel, C. B. and Metcalfe, W. K. (1982). Noninvasive recording of the Mauthner neurone action potential in larval zebrafish. J. Exp. Biol. 101, 83–92.
Ramirez, J.-M. and Pearson, K. G. (1991). Octopaminergic modulation of interneurons in the flight system of the locust. J. Neurophysiol. 66, 1522–1537.
Ramon y Cajal, S. (1909). Histologie du système nerveux de l'homme et des vertébrés. Paris: Maloine.
Reichert, H. and Wine, J. J. (1983). Coordination of lateral giant and non-giant escape systems in crayfish escape behaviour. J. Comp. Physiol. 153, 3–15.
Reichert, H., Wine, J. J. and Hagiwara, G. (1981). Crayfish escape behaviour: behavioural analysis of phasic extension reveals dual systems for motor control. J. Comp. Physiol. 142, 281–294.
Rind, F. C. (1984). A chemical synapse between two motion detecting neurones in the locust brain. J. Exp. Biol. 110, 143–167.
Rind, F. C. (1996). Intracellular characterization of neurons in the locust brain signalling impending collision. J. Neurophysiol. 75, 986–995.
Rind, F. C. and Bramwell, D. I. (1996). A neural network based on the input organisation of an identified neuron signalling impending collision. J. Neurophysiol. 75, 967–985.
Rind, F. C. and Simmons, P. J. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. J. Neurophysiol. 68, 1654–1666.
Rind, F. C. and Simmons, P. J. (1998). A local circuit for the computation of object approach by an identified visual neuron in the locust. J. Comp. Neurol. 395, 405–415.
Rind, F. C., Santer, R. D. and Wright, G. A. (2008). Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust. J. Neurophysiol. 100, 670–680.
Riquimaroux, H., Gaioni, S. J. and Suga, N. (1991). Cortical computational maps control auditory perception. Science 251, 565–568.
Rister, J., Pauls, D., Schnell, B., et al. (2007). Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56, 155–170.
Ritzmann, R. E. (1993). The neural organization of cockroach escape and its role in context-dependent orientation. In Biological Neuronal Networks in Invertebrate Neuroethology and Robotics (ed. Beer, R. D., Ritzmann, R. E. and McKenna, T.), pp. 113–137. New York: Academic Press.
Robert, D. (1989). The auditory behaviour of flying locusts. J. Exp. Biol. 147, 279–301.
Roberts, A. (1990). How does a nervous system produce behaviour? A case study in neurobiology. Sci. Progr. 74, 31–51.
Roberts, A. (2000). Early functional organization of spinal neurons in developing lower vertebrates. Brain Res. Bull. 53, 585–593.
Roberts, A. and Tunstall, M. J. (1990). Mutual re-excitation with post-inhibitory rebound: a simulation study of the mechanisms or locomotor rhythm generation in the spinal cord of Xenopus embryos. Eur. J. Neurosci. 2, 11–23.
Roberts, A., Li, W.-C. and Soffe, S. R. (2008a). Roles for inhibition: studies on networks controlling swimming. J. Comp. Physiol. A 194, 185–193.
Roberts, A., Li, W.-C., Soffe, S. R. and Wolf, E. (2008b). Origin of excitatory drive to a spinal locomotor network. Brain Res. Rev. 57, 22–28.
Roberts, B. L. (1969). Spontaneous rhythms in the motoneurones of spinal dogfish (Scyliorhinus canicule). J. Mar. Biol. Assoc. UK. 49, 3349.
Robertson, R. M. and Pearson, K. G. (1982). A preparation for the intracellular analysis of neuronal activity during flight in the locust. J. Comp. Physiol. 146, 311–320.
Robertson, R. M. and Pearson, K. G. (1983). Interneurons in the flight system of the locust: distribution, properties and resetting properties. J. Comp. Neurol. 215, 33–50.
Robertson, R. M. and Pearson, K. G. (1985). Neural circuits in the flight system of the locust. J. Neurophysiol. 53, 110–128.
Rodríguez, F., Lópeza, J. C., Vargasa, J. P., et al. (2002). Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res. Bull. 57, 499–503.
Roeder, K. D. (1962). The behaviour of free flying moths in the presence of artificial ultrasonic pulses. Anim. Behav. 10, 300–304.
Roessingh, P., Simpson, S. J. and James, S. (1993). Analysis of phase-related changes in behaviour of desert locust nymphs. Proc. Roy. Soc. Lond. B 252, 43–49.
Roessingh, P., Bouaïchi, A. and Simpson, S. J. (1998). Effects of sensory stimuli on the behavioural phase state of the desert locust, Schistocerca gregaria. J. Insect Physiol. 44, 883–893.
Rogers, S. M., Matheson, T., Despland, E., et al. (2003). Mechanosensory-induced behavioural gregarization in the desert locust Schistocerca gregaria. J. Exp. Biol. 206, 3991–4002.
Rogers, S. M., Krapp, H. G., Burrows, M. and Matheson, T. (2007). Compensatory plasticity at an identified synapse tunes a visuomotor pathway. J. Neurosci. 27, 4621–4633.
Rose, G. J. (2004). Insights into neural mechanisms and evolution of behaviour from electric fish. Nat. Rev. Neurosci. 5, 943–951.
Rose, G. and Heiligenberg, W. (1985). Structure and function of electrosensory neurons in the torus semicircularis of Eigenmannia: morphological correlates of phase and amplitude sensitivity. J. Neurosci. 5, 2269–2280.
Rose, G. J., Kawasaki, M. and Heiligenberg, W. (1988). ‘Recognition units’ at the top of a neuronal hierarchy? – prepacemaker neurons in Eigenmannia code the sign of frequency differences unambiguously. J. Comp. Physiol. A 162, 759–772.
Rossell, S. (1979). Regional differences in photoreceptor performance in the eye of the praying mantis. J. Comp. Physiol. 131, 95–112.
Rowell, C. H. F. (1971). The orthopteran descending movement detector (DMD) neurones: a characterisation and review. J. Comp. Physiol. 73, 167–194.
Russell, J. C., Towns, D. R., Anderson, S. H. and Clout, M. N. (2005). Intercepting the first rat ashore. Nature 437, 1107.
Rydqvist, B., Lin, J.-H. and Swerup, C. (2007). Mechanotransduction and the crayfish stretch receptor. Physiol. Behav. 92, 21–28.
Sales, G. and Pye, D. (1974). Ultrasonic Communication by Animals. London: Chapman and Hall.
Santer, R. D., Simmons, P. J. and Rind, F. C. (2005) Gliding behaviour elicited by lateral looming stimuli in flying locusts. J. Comp. Physiol. A 191, 61–73.
Santer, R. D., Rind, F. C., Stafford, R. and Simmons, P. J. (2006). Role of an identified looming-sensitive neuron in triggering a flying locust's escape. J. Neurophysiol. 95, 3391–3400.
Sautois, B., Soffe, S. R., Li, W.-C. and Roberts, A. (2007). Role of type-specific neuron properties in a spinal cord motor network J. Comput. Neurosci. 23, 59–77.
Schilstra, C. and Hateren, J. H. (1998). Stabilizing gaze in flying blowflies. Nature 395, 654.
Schilstra, C. and Hateren, J. H. (1999). Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J. Exp. Biol. 202, 1481–1490.
Schmitz, B., Scharstein, H. and Wendler, G. (1983). Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae): II. Acoustic orientation of female crickets after occlusion of single sound entrances. J. Comp. Physiol. A 152, 257–264.
Schnitzler, H.-U. and Kalko, E. K. V. (2001). Echolocation by insect eating bats. BioScience 51, 557–569.
Schramek, J. E. (1970). Crayfish swimming: alternating motor output and giant fiber activity. Science 169, 698–700.
Schuller, G. (1984). Natural ultrasonic echoes from wing beating insects are encoded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. J. Comp. Physiol. 154, 121–128.
Selverston, A. I. and Miller, J. P. (1980). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. I. Pyloric system. J. Neurophysiol. 44, 1102–1121.
Sherman, A. and Dickinson, M. H. (2003). A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. J. Exp. Biol. 206, 295–302.
Shettleworth, S. J. (2003). Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognitionBrain Behav. Evol. 62, 108–116.
Sillar, K., Wedderburn, J. F. S. and Simmers, A. J. (1991). The postembryonic development of locomotor rhythmicity in Xenopus laevis tadpoles. Proc. Roy. Soc. Lond. B. 246, 147–153.
Silvey, G. and Wilson, I. (1979). Structure and function of the lateral giant neurone of the primitive crustacean Anaspides tasmaniae. J. Exp. Biol. 78, 121–136.
Simmons, P. J. (1980). A locust wind and ocellar brain neurone. J. Exp. Biol. 85, 281–294.
Simmons, P. J. (2002). Signal processing in a simple visual system: the locust ocellar system and its synapses. Microsc. Res. Techniq. 56, 270–280.
Simmons, P. J. and Rind, F. C. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving objects. II. Critical cues for detecting approaching objects. J. Neurophysiol. 68, 1667–1682.
Simmons, P. J. and Young, D. (1978). The tymbal mechanism and song patterns of the bladder cicada, Cystosoma saundersii. J. Exp. Biol. 76, 27–45.
Simpson, S. J., Despland, E., Hägele, B. F. and Dodgson, T. (2001). Gregarious behavior in desert locusts is evoked by touching their back legs. Proc. Natl. Acad. Sci. USA 98, 3895–3897.
Snodgrass, R. E. (1935). Principles of Insect Morphology. New York: McGraw-Hill.
Sokolowski, M. L. (2001). Drosophila: genetics meets behaviour. Nat. Rev. Genet. 2, 879–892.
Solis, M. M. and Doupe, A. J. (1997). Anterior forebrain neurons develop selectivity by an intermediate stage of birdsong learning. J. Neurosci. 17, 6447–6462.
Srinivasan, M. V. (1992). How bees exploit optic flow: behavioural experiments and neural models. Phil. Trans. Roy. Soc. B 337, 253–259.
Srinivasan, M. V., Laughlin, S. B. and Dubs, A. (1982). Predictive coding: a fresh view of inhibition in the retina. Proc. Roy. Soc. Lond. B. 216, 427–459.
Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. and Dickson, B. J. (2005). Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807.
Suga, N., Neuweiler, G. and Moller, J. (1976). Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J. Comp. Physiol. 106, 111–125.
Sullivan, W. E. (1982). Neural representation of target distance in auditory cortex of the echolocating bat, Myotis lucifugus. J. Neurophysiol. 48, 1011–1032.
Suthers, R. A. (1990). Contributions to birdsong from the left and right sides of the intact syrinx. Nature 347, 473–477.
Takahashi, T., Moiseff, A. and Konishi, M. (1984). Time and intensity cues are processed independently in the auditory system of the owl. J. Neurosci. 4, 1781–1786.
Taube, J. S. (2007). The head direction signal: origins and sensory-motor integration. Ann. Rev. Neurosci. 30, 181–207.
Taube, J. S., Muller, R. U. and Ranck, J. B. J. (1990a). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435.
Taube, J. S., Muller, R. U. and Ranck, J. B. J. (1990b). Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447.
Thompson, L. T. and Best, P. J. (1990). Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res. 509, 299–308.
Thorpe, W. H. (1958). The learning of song patterns by birds, with especial references to the song of the chaffinch, Fringilla coelebs. Ibis 100, 535–570.
Tinbergen, N. (1951). The Study of Instinct. Oxford: Clarendon Press.
Tinbergen, N. (1963). On aims and methods in Ethology. Z. für Tierpsychol. 20, 410–433.
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychol. Rev. 55, 189–208.
Tyrer, N. M., Turner, J. D. and Altman, J. (1984). Identifiable neurons in the locust central nervous system that react with antibodies to serotonin. J. Comp. Neurol. 227, 313–333.
Vater, M., Feng, A. S. and Betz, M. (1985). An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band. J. Comp. Physiol. A 157, 671–686.
Vicario, D. S. (1991). Organization of the zebrafinch song control system. II. Functional organization of the output from the nucleus robustus archistiriatalis. J. Comp. Neurol. 309, 486–494.
Frisch, K. (1967). The Dance Language and Orientation of Bees. Cambridge, MA: Harvard University Press.
Vrontou, E., Nilsen, S. P., Demir, E., Kravitz, E. A. and Dickson, B. J. (2006). fruitless regulates aggression and dominance in Drosophila. Nat. Neurosci. 9, 1469–1471.
Vu, E. and Krasne, F. (1993). The mechanism of tonic inhibition of crayfish escape behavior: distal inhibition and its functional significance. J. Neurosci. 13, 4394–4402.
Vu, E. T., Mazurek, M. E. and Kuo, Y.-C. (1994). Identification of a forebrain motor programming network for the learned song of zebra finches. J. Neurosci. 14, 6924–6934.
Wada, K.et al. (2006). A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc. Natl. Acad. Sci. USA 103, 15 212–15 217.
Wagner, H. (1986). Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.). I. Organization of the flight motor. Phil. Trans. Roy. Soc. B 312, 527–551.
Wallhausser-Franke, E., Nixdorf-Bergweiler, B. E. and DeVoogd, T. J. (1995). Song isolation is associated with maintaining high spine frequencies on zebrafinch lMAN neurons. Neurobiol. Learn. Mem. 64, 25–35.
Warzecha, A.-K., Egelhaaf, M. and Borst, A. (1993). Neural circuit tuning fly visual neurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. J. Neurophysiol. 69, 329–339.
Werblin, F. S. and Dowling, J. E. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355.
Wiersma, C. A. G. (1947). Giant nerve fiber system of the crayfish: a contribution to comparative physiology of the synapse. J. Neurophysiol. 10, 23–38.
Wiersma, C. A. G. and Ikeda, K. (1964). Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp. Biochem. Physiol. 12, 509–525.
Willows, A. O. D., Dorsett, D. A. and Hoyle, G. (1973). The neuronal basis of behavior in Tritonia. III. Neuronal mechanism of a fixed action pattern. J. Neurobiol. 4, 255–285.
Wilson, D. M. (1960). The central nervous control of flight in a locust. J. Exp. Biol. 38, 471–490.
Wilson, D. M. (1968). The flight control system of the locust. Sci. Am. 218, 83–90.
Wilson, M. (1978). The functional organization of locust ocelli. J. Comp. Physiol. 124, 297–316.
Wilson, M., Garrard, P. and McGiness, S. (1978). The unit structure of the locust compound eye. Cell Tiss. Res. 195, 205–226.
Wine, J. (1984). The structural basis of an innate behavioural pattern. J. Exp. Biol. 112, 283–319.
Wine, J. J. and Krasne, J. B. (1982). The cellular organization of crayfish escape behavior. In The Biology of Crustacea, vol. 4 (ed. Bliss, E. D.), pp. 241–292. New York: Academic Press.
Wine, J. J. and Mistick, D. C. (1977). Temporal organization of crayfish escape behavior: delayed recruitment of peripheral inhibition. J. Neurophysiol. 40, 904–925.
Witten, I. B., Bergan, J. F. and Knudsen, E. I. (2006). Dynamic shifts in the owl's auditory space map predict moving sound location. Nat. Neurosci. 11, 1439–1445.
Wohlers, D. W. and Huber, F. (1982). Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J. Comp. Physiol. A 146, 161–173.
Wong, D. (2004). The auditory cortex of the little brown bat, Myotis lucifugus. In Echolocation in Bats and Dolphins (ed. Thomas, J. A., Moss, C. F. and Vater, M.), pp. 185–189. Chicago, IL: Chicago University Press.
Wong, D., Maekawa, M. and Tanaka, H. (1992). The effect of pulse repetition rate on the delay sensitivity of neurons in the auditory cortex of the FM bat, Myotis lucifugus. J. Comp. Physiol. 170, 393–402.
Yazaki-Sugiyama, Y. and Mooney, R. (2004). Sequential learning from multiple tutors and serial retuning of auditory neurons in a brain area important to birdsong learning. J. Neurophysiol. 92, 2771–2788.
Yeh, S., Musolf, B. and Edwards, D. (1997). Neuronal adaptations to changes in the social dominance status of crayfish. J. Neurosci. 17, 697–708.
Young, D. and Ball, E. (1974). Structure and development of the tracheal organ in the mesothoracic leg of the cricket Teleogryllus commodus (Walker). Z. Zellforsch. 147, 325–334.
Young, D. and Bennett–Clark, H. C. (1995). The role of the tymbal in cicada song production. J. Exp. Biol. 198, 1001–1019.
Yu, A. C. and Margoliash, D. (1996). Temporal hierarchical control of singing in birds. Science 273, 1871–1875.
Zottoli, S. J. (1977). Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish. J. Exp. Biol. 66, 243–254.
Zottoli, S. J. (1978). Comparative morphology of the Mauthner cell in fish and amphibians. In Neurobiology of the Mauthner Cell (ed. Faber, D. S., and Korn, H.), pp. 13–45. New York: Raven Press.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.