Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-22T15:09:51.604Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

References

Douglas W. Zochodne
Affiliation:
University of Calgary
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

The Nerve Growth Cone (1991). ed. P. C. Letourneau, S. B. Kater, & E. R. Macagno. New York: Raven Press.
Abe, I., Ochiai, N., Ichimura, H.et al. (2004). Internodes can nearly double in length with gradual elongation of the adult rat sciatic nerve. J. Orthop. Res., 22, 571–577.CrossRefGoogle ScholarPubMed
Adams, W. E. (1942). The blood supply of nerves. I. Historical review. J. Anat., 76, 323–341.Google ScholarPubMed
Ahmed, Z., Brown, R. A., Ljungberg, C., Wiberg, M., & Terenghi, G. (1999). Nerve growth factor enhances peripheral nerve regeneration in non-human primates. Scand. J. Plast.Reconstr. Surg. Hand Surg., 33, 393–401.Google ScholarPubMed
Ahmed, Z., Dent, R. G., Suggate, E. L.et al. (2005). Disinhibition of neurotrophin-induced dorsal root ganglion cell neurite outgrowth on CNS myelin by siRNA-mediated knockdown of NgR, p75NTR and Rho-A. Mol. Cell Neurosci., 28, 509–523.CrossRefGoogle ScholarPubMed
Ahmed, Z., Suggate, E. L., Brown, E. R.et al. (2006). Schwann cell-derived factor-induced modulation of the NgR/p75NTR/EGFR axis disinhibits axon growth through CNS myelin in vivo and in vitro. Brain, 129, 1517–1533.CrossRefGoogle ScholarPubMed
Al-Majed, A. A., Neumann, C. M., Brushart, T. M., & Gordon, T. (2000). Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci., 20, 2602–2608.CrossRefGoogle ScholarPubMed
Alabed, Y. Z., Pool, M., Tone, S. O., & Fournier, A. E. (2007). Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J. Neurosci., 27, 1702–1711.CrossRefGoogle ScholarPubMed
Alluin, O., Feron, F., Desouches, C.et al. (2006). Metabosensitive afferent fiber responses after peripheral nerve injury and transplantation of an acellular muscle graft in association with schwann cells. J. Neurotrauma, 23, 1883–1894.CrossRefGoogle ScholarPubMed
Aloyo, V. J., Zwiers, H., & Gispen, W. H. (1982). B-50 protein kinase and kinase C in rat brain. Prog. Brain Res., 56, 303–315.CrossRefGoogle ScholarPubMed
Althini, S., Usoskin, D., Kylberg, A., Kaplan, P. L., & Ebendal, T. (2004). Blocked MAP kinase activity selectively enhances neurotrophic growth responses. Mol. Cell Neurosci., 25, 345–354.CrossRefGoogle ScholarPubMed
Amir, R., Michaelis, M., & Devor, M. (2000). Ectopic discharge in primary sensory neurons depends on intrinsic membrane potential oscillations. In Proceedings of the 9th World Congress on Pain, ed. Devor, M., Rowbotham, M. C., & Wiesenfeld-Hallin, Z., Seattle: IASP Press, pp. 93–100.Google Scholar
Amoh, Y., Li, L., Campillo, R.et al. (2005). Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc. Natl. Acad. Sci. USA, 102, 17734–17738.CrossRefGoogle ScholarPubMed
Anderson, K. D., Merhege, M. A., Morin, M., Bolognani, F., & Perrone-Bizzozero, N. I. (2003). Increased expression and localization of the RNA-binding protein HuD and GAP-43 mRNA to cytoplasmic granules in DRG neurons during nerve regeneration. Exp. Neurol., 183, 100–108.CrossRefGoogle ScholarPubMed
Angeletti, R. H. & Bradshaw, R. A. (1971). Nerve growth factor from mouse submaxillary gland: amino acid sequence. Proc. Natl. Acad. Sci. USA, 68, 2417–2420.CrossRefGoogle ScholarPubMed
Angeletti, R. H., Bradshaw, R. A., & Wade, R. D. (1971). Subunit structure and amino acid composition of mouse submaxillary gland nerve growth factor. Biochemistry, 10, 463–469.Google ScholarPubMed
Angelov, D. N., Walther, M., Streppel, M.et al. (1998). Tenascin-R is antiadhesive for activated microglia that induce downregulation of the protein after peripheral nerve injury: a new role in neuronal protection. J. Neurosci., 18, 6218–6229.CrossRefGoogle ScholarPubMed
Anton, E. S., Hadjiargyrou, M., Patterson, P. H., & Matthew, W. D. (1995). CD9 plays a role in Schwann cell migration in vitro. J. Neurosci., 15, 584–595.CrossRefGoogle Scholar
Anton, E. S., Weskamp, G., Reichardt, L. F., & Matthew, W. D. (1994). Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc. Natl. Acad. Sci. USA, 91, 2795–2799.CrossRefGoogle ScholarPubMed
Appenzeller, O., Dhital, K. K., Cowen, T., & Burnstock, G. (1984). The nerves to blood vessels supplying blood to nerves: the innervation of vasa nervorum. Brain Res., 304, 383–386.CrossRefGoogle ScholarPubMed
Araki, T., Sasaki, Y., & Milbrandt, J. (2004). Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science, 5686, 1010–1013.CrossRefGoogle Scholar
Arevalo, M. A. & Rodriguez-Tebar, A. (2006). Activation of casein kinase II and inhibition of phosphatase and tensin homologue deleted on chromosome 10 phosphatase by nerve growth factor/p75NTR inhibit glycogen synthase kinase-3beta and stimulate axonal growth. Mol. Biol. Cell., 17, 3369–3377.CrossRefGoogle Scholar
Armati, P. J. (2007). The Biology of Schwann Cells, ed. Armati, P. J., Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Arvidson, B. (1979). Distribution of protein tracers in peripheral ganglia. A light and electron microscopic study in rodents after various modes of tracer administration. Acta Univ. Ups., 344, 1–72.Google Scholar
Asbury, A. K. & Fields, H. L. (1984). Pain due to peripheral nerve damage: an hypothesis. Neurology, 34, 1587–1590.CrossRefGoogle Scholar
Atanasoski, S., Boller, D., Ventura, L.et al. (2006). Cell cycle inhibitors p21 and p16 are required for the regulation of Schwann cell proliferation. Glia, 53, 147–157.CrossRefGoogle ScholarPubMed
Atanasoski, S., Scherer, S. S., Sirkowski, E.et al. (2006). ErbB2 signaling in Schwann cells is mostly dispensable for maintenance of myelinated peripheral nerves and proliferation of adult Schwann cells after injury. J. Neurosci., 26, 2124–2131.CrossRefGoogle ScholarPubMed
Averill, S., Michael, G. J., Shortland, P. J.et al. (2004). NGF and GDNF ameliorate the increase in ATF3 expression which occurs in dorsal root ganglion cells in response to peripheral nerve injury. Eur. J. Neurosci., 19, 1437–1445.CrossRefGoogle ScholarPubMed
Bajestan, S. N., Umehara, F., Shirahama, Y.et al. (2006). Desert hedgehog-patched 2 expression in peripheral nerves during Wallerian degeneration and regeneration. J. Neurobiol., 66, 243–255.CrossRefGoogle ScholarPubMed
Baloh, R. H., Enomoto, H., Johnson, E. M., & Milbrandt, J. (2000). The GDNF family ligands and receptors – implications for neural development. Curr. Opin. Neurobiol., 10, 103–110.CrossRefGoogle ScholarPubMed
Barde, Y. A., Edgar, D., & Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO, 1, 549–553.Google ScholarPubMed
Barker, A. R., Rosson, G. D., & Dellon, A. L. (2006). Wound healing in denervated tissue. Ann. Plast. Surg., 57, 339–342.CrossRefGoogle ScholarPubMed
Barr, M. L. & Kiernan, J. A. (1983). The Human Nervous System, 4th edn. Philadelphia: Harper and Row.Google Scholar
Bausen, M., Fuhrmann, J. C., Betz, H., & O'sullivan, G. A. (2006). The state of the actin cytoskeleton determines its association with gephyrin: role of ena/VASP family members. Mol. Cell Neurosci., 31, 376–386.CrossRefGoogle ScholarPubMed
Belkas, J. S., Munro, C. A., Shoichet, M. S., & Midha, R. (2005). Peripheral nerve regeneration through a synthetic hydrogel nerve tube. Restor. Neurol. Neurosci., 23, 19–29.Google ScholarPubMed
Belkas, J. S., Shoichet, M. S., & Midha, R. (2004). Peripheral nerve regeneration through guidance tubes. Neurol. Res., 26, 151–160.CrossRefGoogle ScholarPubMed
Bell, M. A. & Weddell, A. G. (1984). A morphometric study of intrafascicular vessels of mammalian sciatic nerve. Muscle Nerve, 7, 524–534.CrossRefGoogle ScholarPubMed
Bendszus, M. & Stoll, G. (2003). Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. J. Neurosci., 23, 10892–10896.CrossRefGoogle ScholarPubMed
Benn, S. C., Perrelet, D., Kato, A. C.et al. (2002). Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron, 36, 45–56.CrossRefGoogle ScholarPubMed
Bennett, D. L., Boucher, T. J., Michael, G. J.et al. (2006). Artemin has potent neurotrophic actions on injured C-fibres. J. Peripher. Nerv. Syst., 11, 330–345.CrossRefGoogle ScholarPubMed
Bennett, G. J. & Xie, Y. K. (1988). A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain, 33, 87–107.CrossRefGoogle ScholarPubMed
Berkemeier, L. R., Winslow, J. W., Kaplan, D. R.et al. (1991). Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron, 7, 857–866.CrossRefGoogle ScholarPubMed
Berthold, C.-H., Fraher, J. P., King, R. H. M., & Rydmark, M. (2005). Microscopic anatomy of the peripheral nervous system. In Peripheral Neuropathy, 4th edn., ed. Dyck, P. J. & Thomas, P. K.. Philadelphia: Elsevier Saunders, pp. 35–91.CrossRefGoogle Scholar
Bertrand, J., Winton, M. J., Rodriguez-Hernandez, N., Campenot, R. B., & McKerracher, L. (2005). Application of rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats. J. Neurosci., 25, 1113–1121.CrossRefGoogle ScholarPubMed
Bharali, L. A. & Lisney, S. J. (1992). The relationship between unmyelinated afferent type and neurogenic plasma extravasation in normal and reinnervated rat skin. Neuroscience, 47, 703–712.CrossRefGoogle ScholarPubMed
Bisby, M. A. (1980). Axonal transport of labeled protein and regeneration rate in nerves of streptozocin-diabetic rats. Exp. Neurol., 69, 74–84.CrossRefGoogle ScholarPubMed
Bisby, M. A. (1995). Regeneration of peripheral nervous systems axons. In The Axon: Structure, Function and Patholphysiology, ed. Waxman, S. G., Kocsis, J. D., & Stys, P. K.. New York: Oxford University Press, pp. 553–578.CrossRefGoogle Scholar
Bito, H. (2003). Dynamic control of neuronal morphogenesis by rho signaling. J. Biochem. (Tokyo), 134, 315–319.CrossRefGoogle ScholarPubMed
Blondet, B., Carpentier, G., Lafdil, F., & Courty, J. (2005). Pleiotrophin cellular localization in nerve regeneration after peripheral nerve injury. J. Histochem. Cytochem., 53, 971–977.CrossRefGoogle ScholarPubMed
Bohn, M. C. (2004). Motoneurons crave glial cell line-derived neurotrophic factor. Exp. Neurol., 190, 263–275.CrossRefGoogle ScholarPubMed
Bolsover, S. R. (2005). Calcium signalling in growth cone migration. Cell Calcium, 37, 395–402.CrossRefGoogle ScholarPubMed
Borisoff, J. F., Chan, C. C., Hiebert, G. W.et al. (2003). Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates. Mol. Cell Neurosci., 22, 405–416.CrossRefGoogle ScholarPubMed
Bove, G. M. & Light, A. R. (1997). The nervi nervorum, missing link for neuropathic pain? Pain Forum, 6, 181–190.CrossRefGoogle Scholar
Bovolenta, P. & Mason, C. (1987). Growth cone morphology varies with position in the developing mouse visual pathway from retina to first targets. J. Neurosci., 7, 1447–1460.CrossRefGoogle ScholarPubMed
Boyd, J. G. & Gordon, T. (2001). The neurotrophin receptors, trkB and p75, differentially regulate motor axonal regeneration. J. Neurobiol., 49, 314–325.CrossRefGoogle ScholarPubMed
Boyd, J. G. & Gordon, T. (2002). A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur. J. Neurosci., 15, 613–626.CrossRefGoogle ScholarPubMed
Boyd, J. G. & Gordon, T. (2003). Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp. Neurol., 183, 610–619.CrossRefGoogle ScholarPubMed
Boyd, J. G. & Gordon, T. (2003). Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol. Neurobiol., 27, 277–324.CrossRefGoogle ScholarPubMed
Bradbury, E. J., Burnstock, G., & McMahon, S. B. (1998). The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol. Cell Neurosci., 12, 256–268.CrossRefGoogle ScholarPubMed
Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R., & MacIntyre, I. (1985). Calcitonin gene-related peptide is a potent vasodilator. Nature, 313, 54–56.CrossRefGoogle ScholarPubMed
Brakebusch, C. & Fassler, R. (2003). The integrin-actin connection, an eternal love affair. EMBO J., 22, 2324–2333.CrossRefGoogle ScholarPubMed
Brannstrom, T., Havton, L., & Kellerth, J. O. (1992). Changes in size and dendritic arborization patterns of adult cat spinal alpha-motoneurons following permanent axotomy. J. Comp. Neurol., 318, 439–451.CrossRefGoogle ScholarPubMed
Brannstrom, T., Havton, L., & Kellerth, J. O. (1992). Restorative effects of reinnervation on the size and dendritic arborization patterns of axotomized cat spinal alpha-motoneurons. J. Comp. Neurol., 318, 452–461.CrossRefGoogle ScholarPubMed
Brannstrom, T. & Kellerth, J. O. (1998). Changes in synaptology of adult cat spinal alpha-motoneurons after axotomy. Exp. Brain Res., 118, 1–13.Google ScholarPubMed
Brannstrom, T. & Kellerth, J. O. (1999). Recovery of synapses in axotomized adult cat spinal motoneurons after reinnervation into muscle. Exp. Brain Res., 125, 19–27.Google ScholarPubMed
Bray, R. C., Fisher, A. W., & Frank, C. B. (1990). Fine vascular anatomy of adult rabbit knee ligaments. J. Anat., 172, 69–79.Google ScholarPubMed
Brown, M., Jacobs, T., Eickholt, B.et al. (2004). Alpha2-chimaerin, cyclin-dependent Kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J. Neurosci., 24, 8994–9004.CrossRefGoogle ScholarPubMed
Brown, W. F. & Chan, K. M. (1997). Quantitative methods for estimating the number of motor units in human muscles. Muscle Nerve, Supplement 5, S70–S73.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Bruck, W. (1997). The role of macrophages in Wallerian degeneration. Brain Pathol., 7, 741–752.CrossRefGoogle ScholarPubMed
Brunet, A., Datta, S. R., & Greenberg, M. E. (2001). Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol., 11, 297–305.CrossRefGoogle ScholarPubMed
Brushart, T. M. (1988). Preferential reinnervation of motor nerves by regenerating motor axons. J. Neurosci., 8, 1026–1031.CrossRefGoogle ScholarPubMed
Brushart, T. M. (1993). Motor axons preferentially reinnervate motor pathways. J. Neurosci., 13, 2730–2738.CrossRefGoogle ScholarPubMed
Brushart, T. M., Hoffman, P. N., Royall, R. M.et al. (2002). Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J. Neurosci., 22, 6631–6638.CrossRefGoogle ScholarPubMed
Brushart, T. M., Jari, R., Verge, V., Rohde, C., & Gordon, T. (2005). Electrical stimulation restores the specificity of sensory axon regeneration. Exp. Neurol., 194, 221–229.CrossRefGoogle ScholarPubMed
Brussee, V., Cunningham, F. A., & Zochodne, D. W. (2004). Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes, 53, 1824–1830.CrossRefGoogle ScholarPubMed
Buchman, V. L., Sporn, M., & Davies, A. M. (1994). Role of transforming growth factor-beta isoforms in regulating the expression of nerve growth factor and neurotrophin-3 mRNA levels in embryonic cutaneous cells at different stages of development. Development, 120, 1621–1629.Google ScholarPubMed
Bunge, M. B., Wood, P. M., Tynan, L. B., Bates, M. L., & Sanes, J. R. (1989). Perineurium originates from fibroblasts: demonstration in vitro with a retroviral marker. Science, 243, 229–231.CrossRefGoogle ScholarPubMed
Bunge, R. P. & Bunge, M. B. (1984). Tissue culture observations relating to peripheral nerve development, regeneration, and disease. In Peripheral Neuropathy, ed. Dyck, P. J.Thomas, P. K., Lambert, E., & Bunge, R. P.. Toronto: Saunders, pp. 378–399.Google Scholar
Bunge, R. P., Bunge, M. B., & Bates, M. (1989). Movements of the Schwann cell nucleus implicate progression of the inner (axon-related) Schwann cell process during myelination. J. Cell Biol., 109, 273–284.CrossRefGoogle ScholarPubMed
Buonanno, A. & Fischbach, G. D. (2001). Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr. Opin. Neurobiol., 11, 287–296.CrossRefGoogle Scholar
Burant, C. F., Lemmon, S. K., Treutelaar, M. K., & Buse, M. G. (1984). Insulin resistance of denervated rat muscle: a model for impaired receptor-function coupling. Am. J. Physiol., 247, E657–E666.Google ScholarPubMed
Burstyn-Cohen, T., Frumkin, A., Xu, Y. T., Scherer, S. S., & Klar, A. (1998). Accumulation of F-spondin in injured peripheral nerve promotes the outgrowth of sensory axons. J. Neurosci., 18, 8875–8885.CrossRefGoogle ScholarPubMed
Cai, D., Deng, K., Mellado, W.et al. (2002). Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron, 35, 711–719.CrossRefGoogle ScholarPubMed
Cai, D., Shen, Y., De, B. M., Tang, S., & Filbin, M. T. (1999). Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron, 22, 89–101.CrossRefGoogle Scholar
Cameron, N. E. & Cotter, M. A. (2001). Diabetes causes an early reduction in autonomic ganglion blood flow in rats. J. Diabetes Complications, 15, 198–202.CrossRefGoogle ScholarPubMed
Campana, W. M., Li, X., Dragojlovic, N.et al. (2006). The low-density lipoprotein receptor-related protein is a pro-survival receptor in Schwann cells: possible implications in peripheral nerve injury 1195. J. Neurosci., 26, 11197–11207.CrossRefGoogle Scholar
Campana, W. M. & Myers, R. R. (2001). Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury. FASEB J., 15, 1804–1806.CrossRefGoogle ScholarPubMed
Campana, W. M. & Myers, R. R. (2003). Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur. J. Neurosci., 18, 1497–1506.CrossRefGoogle ScholarPubMed
Campenot, R. B. (1979). Independent control of the local environment of somas and neurites. Methods Enzymol., 58, 302–307.CrossRefGoogle ScholarPubMed
Campenot, R. B. & MacInnis, B. L. (2004). Retrograde transport of neurotrophins: fact and function. J. Neurobiol., 58, 217–229.CrossRefGoogle ScholarPubMed
Cao, X. & Shoichet, M. S. (2003). Investigating the synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth. Neuroscience, 122, 381–389.CrossRefGoogle ScholarPubMed
Cao, Z., Gao, Y., Bryson, J. B.et al. (2006). The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J. Neurosci., 26, 5565–5573.CrossRefGoogle Scholar
Carmeliet, P. & Storkebaum, E. (2002). Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin. Cell Dev. Biol., 13, 39–53.CrossRefGoogle ScholarPubMed
Caudy, M. & Bentley, D. (1986). Pioneer growth cone morphologies reveal proximal increases in substrate affinity within leg segments of grasshopper embryos. J. Neurosci., 6, 364–379.CrossRefGoogle ScholarPubMed
Chadborn, N. H., Ahmed, A. I., Holt, M. R.et al. (2006). PTEN couples Sema3A signalling to growth cone collapse. J. Cell Sci., 119, 951–957.CrossRefGoogle ScholarPubMed
Chan, J. R., Watkins, T. A., Cosgaya, J. M.et al. (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron, 43, 183–191.CrossRefGoogle ScholarPubMed
Chan, K. M., Stashuk, D. W., & Brown, W. F. (1998). A longitudinal study of the pathophysiological changes in single human thenar motor units in amyotrophic lateral sclerosis. Muscle Nerve, 21, 1714–1723.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Chan, S. O., Wong, K. F., Chung, K. Y., & Yung, W. H. (1998). Changes in morphology and behaviour of retinal growth cones before and after crossing the midline of the mouse chiasm – a confocal microscopy study. Eur. J. Neurosci., 10, 2511–2522.CrossRefGoogle ScholarPubMed
Chang, K., Ido, Y., LeJeune, W., Williamson, J. R., & Tilton, R. G. (1997). Increased sciatic nerve blood flow in diabetic rats: assessment by “molecular” vs. particulate microspheres. Am. J. Physiol., 273, E164–E173.Google ScholarPubMed
Cheema, S. S., Richards, L. J., Murphy, M., & Bartlett, P. F. (1994). Leukaemia inhibitory factor rescues motoneurones from axotomy- induced cell death. NeuroReport, 5, 989–992.CrossRefGoogle ScholarPubMed
Chen, S., Rio, C., Ji, R. R.et al. (2003). Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nat. Neurosci., 6, 1186–1193.CrossRefGoogle ScholarPubMed
Chen, Y. S., Chung, S. S., & Chung, S. K. (2005). Noninvasive monitoring of diabetes-induced cutaneous nerve fiber loss and hypoalgesia in thy1-YFP transgenic mice. Diabetes, 54, 3112–3118.CrossRefGoogle ScholarPubMed
Chen, Y. Y., McDonald, D., Cheng, C.et al. (2005). Axon and Schwann cell partnership during nerve regrowth. J. Neuropathol. Exp. Neurol., 64, 613–622.CrossRefGoogle ScholarPubMed
Chen, Z. L. & Strickland, S. (2003). Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J. Cell Biol., 163, 889–899.CrossRefGoogle ScholarPubMed
Cheng, C., Webber, C. A., Wang, J.et al. (2008). Activated RhoA and peripheral axon regeneration. Exp. Neurol. (in press).CrossRefGoogle ScholarPubMed
Cheng, C. & Zochodne, D. W. (2000). Proliferation, migration and phenotypic changes in vivo of Schwann cells in the presence of myelinated fibers [abstract]. Soc. Neurosci.Abs., 26, 612.Google Scholar
Cheng, C. & Zochodne, D. W. (2001). Dorsal root ganglia contain populations of proliferating cells [abstract]. Soc. Neurosci. Abs., 31, 315.Google Scholar
Cheng, C. & Zochodne, D. W. (2002). In vivo proliferation, migration & phenotypic changes of Schwann cells in the presence of myelinated fibers. Neuroscience, 115, 321–329.CrossRefGoogle ScholarPubMed
Cheng, H. L., Randolph, A., Yee, D.et al. (1996). Characterization of insulin-like growth factor-I and its receptor and binding proteins in transected nerves and cultured Schwann cells. J. Neurochem., 66, 525–536.CrossRefGoogle ScholarPubMed
Cheng, H. L., Russell, J. W., & Feldman, E. L. (1999). IGF-I promotes peripheral nervous system myelination. Ann. N.Y. Acad. Sci., 883, 124–130.CrossRefGoogle ScholarPubMed
Cheng, L., Khan, M., & Mudge, A. W. (1995). Calcitonin gene-related peptide promotes Schwann cell proliferation. J. Cell Biol., 129, 789–796.CrossRefGoogle ScholarPubMed
Chernousov, M. A., Rothblum, K., Stahl, R. C.et al. (2006). Glypican-1 and alpha4(V) collagen are required for Schwann cell myelination. J Neurosci., 26, 508–517.CrossRefGoogle ScholarPubMed
Chin, P. C., Majdzadeh, N., & D'Mello, S. R. (2005). Inhibition of GSK3beta is a common event in neuroprotection by different survival factors. Brain Res. Mol Brain Res., 137, 193–201.CrossRefGoogle ScholarPubMed
Chiquet-Ehrismann, R. (1995). Inhibition of cell adhesion by anti-adhesive molecules. Curr. Opin. Cell Biol., 7, 715–719.CrossRefGoogle ScholarPubMed
Chung, K., Kim, H. J., Na, H. S., Park, M. J., & Chung, J. M. (1993). Abnormalities of sympathetic innervation in the area of an injured peripheral nerve in a rat model of neuropathic pain. Neurosci. Lett., 162, 85–88.CrossRefGoogle Scholar
Cockett, S. A. & Kiernan, J. A. (1973). Acceleration of peripheral nervous regeneration in the rat by exogenous triiodothyronine. Exp. Neurol., 39, 389–394.CrossRefGoogle ScholarPubMed
Coggeshall, R. E. & Lekan, H. A. (1996). Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J. Comp. Neurol., 364, 6–15.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Coggeshall, R. E., Lekan, H. A., Doubell, T. P., Allchorne, A., & Woolf, C. J. (1997). Central changes in primary afferent fibers following peripheral nerve lesions. Neuroscience, 77, 1115–1122.CrossRefGoogle ScholarPubMed
Coggins, P. J. & Zwiers, H. (1991). B-50 (GAP-43): biochemistry and functional neurochemistry of a neuron-specific phosphoprotein. J. Neurochem., 56, 1095–1106.CrossRefGoogle ScholarPubMed
Cole, A. R., Causeret, F., Yadirgi, G.et al. (2006). Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J. Biol. Chem., 281, 16591–16598.CrossRefGoogle ScholarPubMed
Colman, D. R. & Filbin, M. T. (2006). Cell adhesion molecules. In Basic Neurochemistry, 7th edn., ed. Siegel, G. J., Albers, R. W., Brady, S. T., & Price, D. L.. Burlington: Academic Press, pp. 111–122.Google Scholar
Conrad, S., Schluesener, H. J., Trautmann, K.et al. (2005). Prolonged lesional expression of RhoA and RhoB following spinal cord injury. J. Comp. Neurol., 487, 166–175.CrossRefGoogle ScholarPubMed
Costigan, M., Mannion, R. J., Kendall, G.et al. (1998). Heat shock protein 27: developmental regulation and expression after peripheral nerve injury. J. Neurosci., 18, 5891–5900.CrossRefGoogle ScholarPubMed
Court, F. A. & Alvarez, J. (2005). Local regulation of the axonal phenotype, a case of merotrophism. Biol. Res., 38, 365–374.CrossRefGoogle ScholarPubMed
Craner, M. J., Klein, J. P., Black, J. A., & Waxman, S. G. (2002). Preferential expression of IGF-I in small DRG neurons and down-regulation following injury. NeuroReport, 13, 1649–1652.CrossRefGoogle ScholarPubMed
Curtis, R., Stewart, H. J., Hall, S. M.et al. (1992). GAP-43 is expressed by nonmyelin-forming Schwann cells of the peripheral nervous system. J. Cell Biol., 116, 1455–1464.CrossRefGoogle ScholarPubMed
Daniels, R. H. & Bokoch, G. M. (1999). p21-activated protein kinase: a crucial component of morphological signaling?Trends Biochem. Sci., 24, 350–355.CrossRefGoogle ScholarPubMed
Day, T. J., Lagerlund, T. D., & Low, P. A. (1989). Analysis of H2 clearance curves used to measure blood flow in rat sciatic nerve. J. Physiol., 414, 35–54.CrossRefGoogle ScholarPubMed
Day, T. J., Schmelzer, J. D., & Low, P. A. (1989). Aortic occlusion and reperfusion and conduction, blood flow and the blood–nerve barrier of rat sciatic nerve. Exp. Neurol., 103, 173–178.CrossRefGoogle ScholarPubMed
Day, W. A., Koishi, K., & McLennan, I. S. (2003). Transforming growth factor beta 1 may regulate the stability of mature myelin sheaths. Exp. Neurol., 184, 857–864.CrossRefGoogle ScholarPubMed
Medinaceli, L., Freed, W. J., & Wyatt, R. J. (1982). An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp. Neurol., 77, 634–643.CrossRefGoogle ScholarPubMed
Degn, J., Tandrup, T., & Jakobsen, J. (1999). Effect of nerve crush on perikaryal number and volume of neurons in adult rat dorsal root ganglion. J. Comp. Neurol., 412, 186–192.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Dent, E. W. & Gertler, F. B. (2003). Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron, 40, 209–227.CrossRefGoogle ScholarPubMed
Dergham, P., Ellezam, B., Essagian, C.et al. (2002). Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci., 22, 6570–6577.CrossRefGoogle ScholarPubMed
Devor, M., Govrin-Lippmann, R., & Angelides, K. (1993). Na+ channel immunolocalization in peripheral mammalian axons and changes following nerve injury and neuroma formation. J. Neurosci., 13, 1976–1992.CrossRefGoogle ScholarPubMed
Devor, M., Govrin-Lippmann, R., Frank, I., & Raber, P. (1985). Proliferation of primary sensory neurons in adult rat dorsal root ganglion and the kinetics of retrograde cell loss after sciatic nerve section. Somatosens. Res., 3, 139–167.CrossRefGoogle ScholarPubMed
Dhital, K. K. & Appenzeller, O. (1988). Innervation of vasa nervorum. In Nonadrenergic Innervation of Blood Vessels, ed. Burnstock, G., & Griffith, S. G.. Boca Raton, FL.CRC Press, pp. 191–211.Google Scholar
Diamond, J. & Foerster, A. (1992). Recovery of sensory function in skin deprived of its innervation by lesion of the peripheral nerve. Exp. Neurol., 115, 100–103.CrossRefGoogle ScholarPubMed
Diamond, J., Foerster, A., Holmes, M., & Coughlin, M. (1992). Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF. J. Neurosci., 12, 1467–1476.CrossRefGoogle ScholarPubMed
Diamond, J., Gloster, A., & Kitchener, P. (1992). Regulation of the sensory innervation of skin: trophic control of collateral sprouting. In Sensory Neurons: Diversity, Development and Plasticity, ed. Scott, S. A.. Oxford: Oxford University Press, pp. 309–332.Google Scholar
Diamond, J., Holmes, M., & Coughlin, M. (1992). Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat. J. Neurosci., 12, 1454–1466.CrossRefGoogle ScholarPubMed
DiStefano, P. S., Friedman, B., Radziejewski, C.et al. (1992). The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron, 8, 983–993.CrossRefGoogle ScholarPubMed
Dodge, M. E., Rahimtula, M., & Mearow, K. M. (2002). Factors contributing to neurotrophin-independent survival of adult sensory neurons. Brain Res., 953, 144–156.CrossRefGoogle ScholarPubMed
Doherty, P., Williams, E., & Walsh, F. S. (1995). A soluble chimeric form of the L1 glycoprotein stimulates neurite outgrowth. Neuron, 14, 57–66.CrossRefGoogle ScholarPubMed
Doherty, T. J., Chan, K. M., & Brown, W. F. (2007). Motor neurons, motor units, and motor unit recruitment. In Neuromuscular Function and Disease, ed. Brown, W. F., Bolton, C. F., & Aminoff, M. J.. Philadelphia: W. B. Saunders, pp. 247–273.Google Scholar
Doherty, T. J., Stashuk, D. W., & Brown, W. F. (1993). Determinants of mean motor unit size: impact on estimates of motor unit number. Muscle Nerve, 16 (12), 1326–1331.CrossRefGoogle ScholarPubMed
Donaldson, D., Evans, O. B., & Harrison, R. W. (1986). Insulin binding in denervated muscle. Muscle Nerve, 9, 211–215.CrossRefGoogle ScholarPubMed
Dort, J. C., Zochodne, D., Fan, Y., Prychitko, J., & Peeling, J. (1997). Biochemical changes in denervated muscle identified by magnetic resonance spectroscopy. J. Otolaryngol., 26, 368–373.Google ScholarPubMed
Doucette, R. & Diamond, J. (1987). Normal and precocious sprouting of heat nociceptors in the skin of adult rats. J. Comp. Neurol., 261, 592–603.CrossRefGoogle ScholarPubMed
Doya, H., Ito, T., Hata, K.et al. (2006). Induction of repulsive guidance molecule in neurons following sciatic nerve injury. J. Chem. Neuroanat., 32, 74–77.CrossRefGoogle ScholarPubMed
DuBois, D. C. & Max, S. R. (1983). Effect of denervation and reinnervation on oxidation of 6–14C glucose by rat skeletal muscle homogenates. J. Neurochem., 40, 727–733.CrossRefGoogle ScholarPubMed
Dubovy, P. & Aldskogius, H. (1996). Degeneration and regeneration of cutaneous sensory nerve formations. Microsc. Res. Tech., 34, 362–375.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Duce, I. R., & Keen, P. (1980). The formation of axonal sprouts in organ culture and their relationship to sprouting in vivo, Int. Rev. Cytol., 66, 211–256.CrossRefGoogle ScholarPubMed
Dumitru, D. (1996). Single muscle fiber discharges (insertional activity, end-plate potentials, positive sharp waves, and fibrillation potentials): a unifying proposal. Muscle Nerve, 19 (2), 221–226.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Dyck, P. J., Karnes, J., O'Brien, P.et al. (1984). Spatial pattern of nerve fiber abnormality indicative of pathologic mechanism. Am. J. Pathol., 117, 225–238.Google ScholarPubMed
Dyck, P. J., Karnes, J., Sparks, M., & Low, P. A. (1982). The morphometric composition of myelinated fibres by nerve, level and species related to nerve microenvironment and ischemia. Electroencephalogr. Clin. Neurophysiol. Suppl., 36, 39–55.Google Scholar
Dyck, P. J. & Norell, J. E. (1999). Microvasculitis and ischemia in diabetic lumbosacral radiculoplexus neuropathy. Neurology, 53, 2113–2121.CrossRefGoogle ScholarPubMed
Dyck, P. J. & O'Brien, P. C. (1999). Quantitative sensation testing in epidemiological and therapeutic studies of peripheral neuropathy. Muscle Nerve, 22, 659–662.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Dyck, P. J. & Thomas, P. K. (2005). Peripheral Neuropathy. Philadelphia: Elsevier Saunders.Google Scholar
Dyck, P. J., Zimmerman, B. R., Vilen, T. H.et al. (1988). Nerve glucose, fructose, sorbitol, myo-inositol, and fiber degeneration and regeneration in diabetic neuropathy. N. Engl.J. Med., 319, 542–548.CrossRefGoogle ScholarPubMed
Dyck, P. J., Zimmerman, I. R., Johnson, D. M.et al. (1996). A standard test of heat-pain responses using CASE IV. J. Neurol. Sci., 136, 54–63.CrossRefGoogle ScholarPubMed
Eberhardt, K. A., Irintchev, A., Al-Majed, A. A.et al. (2006). BDNF/TrkB signaling regulates HNK-1 carbohydrate expression in regenerating motor nerves and promotes functional recovery after peripheral nerve repair. Exp. Neurol, 198, 500–510.CrossRefGoogle ScholarPubMed
Edstrom, A. & Ekstrom, P. A. (2003). Role of phosphatidylinositol 3-kinase in neuronal survival and axonal outgrowth of adult mouse dorsal root ganglia explants. J. Neurosci.Res., 74, 726–735.CrossRefGoogle ScholarPubMed
Ehlers, M. D. (2004). Deconstructing the axon: Wallerian degeneration and the ubiquitin-proteasome system. Trends Neurosci., 27, 3–6.CrossRefGoogle ScholarPubMed
Eickholt, B. J., Walsh, F. S., & Doherty, P. (2002). An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling. J. Cell Biol., 157, 211–217.CrossRefGoogle Scholar
Ekstrom, A. R. & Tomlinson, D. R. (1989). Impaired nerve regeneration in streptozotocin-diabetic rats. Effects of treatment with an aldose reductase inhibitor. J. Neurol. Sci., 93, 231–237.CrossRefGoogle ScholarPubMed
Ekstrom, P. A., Mayer, U., Panjwani, A.et al. (2003). Involvement of alpha7beta1 integrin in the conditioning-lesion effect on sensory axon regeneration. Mol. Cell Neurosci., 22, 383–395.CrossRefGoogle ScholarPubMed
Endo, M., Ohashi, K., & Mizuno, K. (2007). LIM kinase and slingshot are critical for neurite extension. J. Biol. Chem., 282, 13692–13702.CrossRefGoogle ScholarPubMed
Enerback, L., Olsson, Y., & Sourander, P. (1965). Mast cells in normal and sectioned peripheral nerve. Z. Zellforsch. Mikrosk. Anat., 66, 596–608.CrossRefGoogle Scholar
English, A. W., Meador, W., & Carrasco, D. I. (2005). Neurotrophin-4/5 is required for the early growth of regenerating axons in peripheral nerves. Eur. J. Neurosci., 21, 2624–2634.CrossRefGoogle ScholarPubMed
Erez, H., Malkinson, G., Prager-Khoutorsky, M.et al. (2007). Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. J. Cell Biol., 176, 497–507.CrossRefGoogle ScholarPubMed
Esper, R. M. & Loeb, J. A. (2004). Rapid axoglial signaling mediated by neuregulin and neurotrophic factors. J. Neurosci., 24, 6218–6227.CrossRefGoogle ScholarPubMed
Esper, R. M., Pankonin, M. S., & Loeb, J. A. (2006). Neuregulins: versatile growth and differentiation factors in nervous system development and human disease. Brain Res.Rev., 51, 161–175.CrossRefGoogle ScholarPubMed
Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev., 16, 139–149.CrossRefGoogle ScholarPubMed
Etienne-Manneville, S. & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420, 629–635.CrossRefGoogle ScholarPubMed
Eyer, J. & Peterson, A. (1994). Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron, 12, 389–405.CrossRefGoogle ScholarPubMed
Fadool, D. A., Tucker, K., Phillips, J. J., & Simmen, J. A. (2000). Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3. J. Neurophysiol., 83, 2332–2348.CrossRefGoogle ScholarPubMed
Fahnestock, M., Yu, G., & Coughlin, M. D. (2004). ProNGF: a neurotrophic or an apoptotic molecule?Prog. Brain Res., 146, 101–110.CrossRefGoogle ScholarPubMed
Fenrich, K. & Gordon, T. (2004). Canadian Association of Neuroscience review: axonal regeneration in the peripheral and central nervous systems – current issues and advances. Can. J. Neurol. Sci., 31, 142–156.CrossRefGoogle ScholarPubMed
Ferguson, T. A. & Muir, D. (2000). MMP-2 and MMP-9 increase the neurite-promoting potential of schwann cell basal laminae and are upregulated in degenerated nerve. Mol. Cell Neurosci., 16, 157–167.CrossRefGoogle ScholarPubMed
Fernandes, K. J. L. & Tetzlaff, W. G. (2000). Gene expression in axotomized neurons: identifying the intrinsic determinants of axonal growth. In Axonal Regeneration in the Central Nervous System, ed. Ingoglia, N. A. & Murray, M.. New York: Marcel Dekker, pp. 219–266.Google Scholar
Fernyhough, P., Smith, D. R., Schapansky, J.et al. (2005). Activation of nuclear factor-kappaB via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons. J. Neurosci., 25, 1682–1690.CrossRefGoogle ScholarPubMed
Filbin, M. T. (2003). Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci., 4, 703–713.CrossRefGoogle ScholarPubMed
Filbin, M. T. (2006). How inflammation promotes regeneration. Nat. Neurosci., 9, 715–717.CrossRefGoogle ScholarPubMed
Fischer, D., Petkova, V., Thanos, S., & Benowitz, L. I. (2004). Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J. Neurosci., 24, 8726–8740.CrossRefGoogle Scholar
Folli, F., Bonfanti, L., Renard, E., Kahn, C. R., & Merighi, A. (1994). Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system. J. Neurosci., 14, 6412–6422.CrossRefGoogle ScholarPubMed
Forman, D. S., McQuarrie, I. G., Labore, F. W.et al. (1980). Time course of the conditioning lesion effect on axonal regeneration. Brain Res., 182, 180–185.CrossRefGoogle ScholarPubMed
Fournier, A. E., Takizawa, B. T., & Strittmatter, S. M. (2003). Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci., 23, 1416–1423.CrossRefGoogle ScholarPubMed
Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A., & Sugimoto, C. (2003). PI3K/Akt and apoptosis: size matters. Oncogene, 22, 8983–8998.CrossRefGoogle ScholarPubMed
Franz, C. K., Rutishauser, U., & Rafuse, V. F. (2005). Polysialylated neural cell adhesion molecule is necessary for selective targeting of regenerating motor neurons. J. Neurosci., 25, 2081–2091.CrossRefGoogle ScholarPubMed
Frey, D., Laux, T., Xu, L., Schneider, C., & Caroni, P. (2000). Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J. Cell Biol., 149, 1443–1454.CrossRefGoogle ScholarPubMed
Fried, K. & Frisen, J. (1990). End structure and neuropeptide immunoreactivity of axons in sciatic neuromas following nerve section in neonatal rats. Exp. Neurol., 109, 286–293.CrossRefGoogle ScholarPubMed
Fried, K., Govrin-Lippmann, R., Rosenthal, F., Ellisman, M. H., & Devor, M. (1991). Ultrastructure of afferent axon endings in a neuroma. J. Neurocytol., 20, 682–701.CrossRefGoogle Scholar
Friede, R. L. & Beuche, W. (1985). A new approach toward analyzing peripheral nerve fiber populations. I. Variance in sheath thickness corresponds to different geometric proportions of the internodes. J. Neuropathol. Exp. Neurol., 44, 60–72.CrossRefGoogle ScholarPubMed
Friede, R. L. & Bischhausen, R. (1980). The fine structure of stumps of transected nerve fibers in subserial sections. J. Neurol. Sci., 44, 181–203.CrossRefGoogle ScholarPubMed
Frost, J. A., Swantek, J. L., Stippec, S.et al. (2000). Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J. Biol. Chem., 275, 19693–19699.CrossRefGoogle ScholarPubMed
Frost, J. A., Xu, S., Hutchison, M. R., Marcus, S., & Cobb, M. H. (1996). Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol. Cell Biol., 16, 3707–3713.CrossRefGoogle ScholarPubMed
Fry, E. J., Ho, C., & David, S. (2007). A role for Nogo receptor in macrophage clearance from injured peripheral nerve. Neuron, 53, 649–662.CrossRefGoogle ScholarPubMed
Fu, S. Y. & Gordon, T. (1995). Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J. Neurosci., 15, 3886–3895.CrossRefGoogle ScholarPubMed
Fu, S. Y. & Gordon, T. (1997). The cellular and molecular basis of peripheral nerve regeneration. Mol. Neurobiol., 14, 67–116.CrossRefGoogle ScholarPubMed
Fukata, Y., Itoh, T. J., Kimura, T.et al. (2002). CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat. Cell Biol., 4, 583–591.CrossRefGoogle ScholarPubMed
Fukuda, T., Kiuchi, K., & Takahashi, M. (2002). Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase. J. Biol. Chem., 277, 19114–19121.CrossRefGoogle ScholarPubMed
Funakoshi, H., Frisen, J., Barbany, G.et al. (1993). Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J. Cell Biol., 123, 455–465.CrossRefGoogle ScholarPubMed
Furey, M. J., Midha, R., Xu, Q. G., Belkas, J., & Gordon, T. (2007). Prolonged target deprivation reduces the capacity of injured motoneurons to regenerate. Neurosurgery, 60, 723–732.CrossRefGoogle ScholarPubMed
Galbraith, J. A. & Gallant, P. E. (2000). Axonal transport of tubulin and actin. J. Neurocytol., 29, 889–911.CrossRefGoogle ScholarPubMed
Gallo, G. & Letourneau, P. C. (1998). Localized sources of neurotrophins initiate axon collateral sprouting. J. Neurosci., 18, 5403–5414.CrossRefGoogle ScholarPubMed
Gallo, G. & Letourneau, P. C. (2003). Regulation of growth cone actin filaments by guidance cues. J. Neurobiol., 58, 92–102.CrossRefGoogle Scholar
Galtrey, C. M. & Fawcett, J. W. (2007). Characterization of tests of functional recovery after median and ulnar nerve injury and repair in the rat forelimb. J. Peripher. Nerv. Syst., 12, 11–27.CrossRefGoogle ScholarPubMed
Garbay, B., Heape, A. M., Sargueil, F., & Cassagne, C. (2000). Myelin synthesis in the peripheral nervous system. Prog. Neurobiol., 61, 267–304.CrossRefGoogle ScholarPubMed
Gardiner, N. J., Fernyhough, P., Tomlinson, D. R.et al. (2005). Alpha7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons. Mol. Cell Neurosci., 28, 229–240.CrossRefGoogle ScholarPubMed
Garratt, A. N., Voiculescu, O., Topilko, P., Charnay, P., & Birchmeier, C. (2000). A dual role of erbB2 in myelination and in expansion of the Schwann cell precursor pool. J. Cell Biol., 148, 1035–1046.CrossRefGoogle ScholarPubMed
Gavazzi, I., Kumar, R. D., McMahon, S. B., & Cohen, J. (1999). Growth responses of different subpopulations of adult sensory neurons to neurotrophic factors in vitro. Eur. J. Neurosci., 11, 3405–3414.CrossRefGoogle ScholarPubMed
Gehler, S., Gallo, G., Veien, E., & Letourneau, P. C. (2004). p75 neurotrophin receptor signaling regulates growth cone filopodial dynamics through modulating RhoA activity. J. Neurosci., 24, 4363–4372.CrossRefGoogle ScholarPubMed
Ghosh, M., Song, X., Mouneimne, G.et al. (2004). Cofilin promotes actin polymerization and defines the direction of cell motility. Science, 304, 743–746.CrossRefGoogle ScholarPubMed
Giannini, C. & Dyck, P. J. (1990). The fate of Schwann cell basement membranes in permanently transected nerves. J. Neuropathol. Exp. Neurol., 49, 550–563.CrossRefGoogle ScholarPubMed
Giehl, K. M. & Tetzlaff, W. (1996). BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur. J. Neurosci., 8, 1167–1175.CrossRefGoogle Scholar
Giniger, E. (2002). How do Rho family GTPases direct axon growth and guidance? A proposal relating signaling pathways to growth cone mechanics. Differentiation, 70, 385–396.CrossRefGoogle ScholarPubMed
Giraux, P., Sirigu, A., Schneider, F., & Dubernard, J. M. (2001). Cortical reorganization in motor cortex after graft of both hands. Nat. Neurosci., 4, 691–692.CrossRefGoogle ScholarPubMed
Glazner, G. W. & Ishii, D. N. (1995). Insulinlike growth factor gene expression in rat muscle during reinnervation. Muscle Nerve, 18, 1433–1442.CrossRefGoogle ScholarPubMed
Glazner, G. W., Morrison, A. E., & Ishii, D. N. (1994). Elevated insulin-like growth factor (IGF) gene expression in sciatic nerves during IGF-supported nerve regeneration. Brain Res. Mol. Brain Res., 25, 265–272.CrossRefGoogle ScholarPubMed
Godement, P., Wang, L. C., & Mason, C. A. (1994). Retinal axon divergence in the optic chiasm: dynamics of growth cone behavior at the midline. J. Neurosci., 14, 7024–7039.CrossRefGoogle Scholar
Gold, B. G., Armistead, D. M., & Wang, M. S. (2005). Non-FK506-binding protein-12 neuroimmunophilin ligands increase neurite elongation and accelerate nerve regeneration. J. Neurosci. Res., 80, 56–65.CrossRefGoogle ScholarPubMed
Gold, B. G., Katoh, K., & Storm-Dickerson, T. (1995). The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. J. Neurosci., 15, 7509–7516.CrossRefGoogle ScholarPubMed
Gold, B. G., Yew, J. Y., & Zeleny-Pooley, M. (1998). The immunosuppressant FK506 increases GAP-43 mRNA levels in axotomized sensory neurons. Neurosci. Lett., 241, 25–28.CrossRefGoogle ScholarPubMed
Gold, B. G., Zeleny-Pooley, M., Wang, M. S., Chaturvedi, P., & Armistead, D. M. (1997). A nonimmunosuppressant FKBP-12 ligand increases nerve regeneration. Exp. Neurol., 147, 269–278.CrossRefGoogle ScholarPubMed
Goldberg, D. J., Foley, M. S., Tang, D., & Grabham, P. W. (2000). Recruitment of the Arp2/3 complex and mena for the stimulation of actin polymerization in growth cones by nerve growth factor. J. Neurosci. Res., 60, 458–467.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Gordon, T. & Fu, S. Y. (1997). Long-term response to nerve injury. Adv. Neurol., 72, 185–199.Google ScholarPubMed
Gordon-Weeks, P. (2000). Neuronal Growth Cones. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Goshima, Y., Nakamura, F., Strittmatter, P., & Strittmatter, S. M. (1995). Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature, 376, 509–514.CrossRefGoogle ScholarPubMed
Gotz, R., Koster, R., Winkler, C.et al. (1994). Neurotrophin-6 is a new member of the nerve growth factor family. Nature, 372, 266–269.CrossRefGoogle ScholarPubMed
Gratto, K. A. & Verge, V. M. (2003). Neurotrophin-3 down-regulates trkA mRNA, NGF high-affinity binding sites, and associated phenotype in adult DRG neurons. Eur.J. Neurosci., 18, 1535–1548.CrossRefGoogle ScholarPubMed
Gravel, C., Gotz, R., Lorrain, A., & Sendtner, M. (1997). Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons. Nat. Med., 3, 765–770.CrossRefGoogle ScholarPubMed
Griesbeck, O., Parsadanian, A. S., Sendtner, M., & Thoenen, H. (1995). Expression of neurotrophins in skeletal muscle: quantitative comparison and significance for motoneuron survival and maintenance of function. J. Neurosci. Res., 42, 21–33.CrossRefGoogle ScholarPubMed
Griffin, J. W., George, E. B., & Chaudhry, V. (1996). Wallerian degeneration in peripheral nerve disease. Baillières Clin. Neurol., 5, 65–75.Google ScholarPubMed
Griffin, J. W., George, E. G., Hsieh, S. T., & Glass, J. D. (1995). Axonal degeneration and disorders of the axonal cytoskeleton. In The Axon. Structure, Function and Pathophysiology, ed. Waxman, S. G., Kocsis, J. D., & Stys, P. K.. Oxford, UK: Oxford University Press, pp. 375–390.CrossRefGoogle Scholar
Griffin, J. W., George, R., & Ho, T. (1993). Macrophage systems in peripheral nerves. A review. J. Neuropathol. Exp. Neurol., 52, 553–560.CrossRefGoogle ScholarPubMed
Grothe, C., Haastert, K., & Jungnickel, J. (2006). Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration – lessons from in vivo studies in mice and rats. Brain Res. Rev., 51, 293–299.CrossRefGoogle ScholarPubMed
Grothe, C., Meisinger, C., & Claus, P. (2001). In vivo expression and localization of the fibroblast growth factor system in the intact and lesioned rat peripheral nerve and spinal ganglia. J. Comp. Neurol., 434, 342–357.CrossRefGoogle ScholarPubMed
Groves, M. J., Schanzer, A., Simpson, A. J.et al. (2003). Profile of adult rat sensory neuron loss, apoptosis and replacement after sciatic nerve crush. J. Neurocytol., 32, 113–122.CrossRefGoogle ScholarPubMed
Guan, W., Puthenveedu, M. A., & Condic, M. L. (2003). Sensory neuron subtypes have unique substratum preference and receptor expression before target innervation. J. Neurosci., 23, 1781–1791.CrossRefGoogle ScholarPubMed
Guenard, V., Kleitman, N., Morrissey, T. K., Bunge, R. P., & Aebischer, P. (1992). Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J. Neurosci., 12, 3310–3320.CrossRefGoogle ScholarPubMed
Guertin, A. D., Zhang, D. P., Mak, K. S., Alberta, J. A., & Kim, H. A. (2005). Microanatomy of axon/glial signaling during Wallerian degeneration. J. Neurosci., 25, 3478–3487.CrossRefGoogle ScholarPubMed
Gundersen, R. W. (1987). Response of sensory neurites and growth cones to patterned substrata of laminin and fibronectin in vitro. Dev. Biol., 121, 423–431.CrossRefGoogle ScholarPubMed
Guntinas-Lichius, O., Angelov, D. N., Morellini, F.et al. (2005). Opposite impacts of tenascin-C and tenascin-R deficiency in mice on the functional outcome of facial nerve repair. Eur. J. Neurosci., 22, 2171–2179.CrossRefGoogle ScholarPubMed
Gustafsson, H., Tamm, C., & Forsby, A. (2004). Signalling pathways for insulin-like growth factor type 1-mediated expression of uncoupling protein 3. J. Neurochem., 88, 462–468.CrossRefGoogle ScholarPubMed
Haapaniemi, T., Nishiura, Y., & Dahlin, L. B. (2002). Functional evaluation after rat sciatic nerve injury followed by hyperbaric oxygen treatment. J. Peripher. Nerv. Syst., 7, 149–154.CrossRefGoogle ScholarPubMed
Hall, S. M. (1986). The effect of inhibiting Schwann cell mitosis on the re-innervation of acellular autografts in the peripheral nervous system of the mouse. Neuropathol. Appl.Neurobiol., 12, 401–414.CrossRefGoogle ScholarPubMed
Hall, S. M. (1999). The biology of chronically denervated Schwann cells. Ann. N.Y. Acad.Sci., 883, 215–233.CrossRefGoogle ScholarPubMed
Hamanoue, M., Middleton, G., Wyatt, S.et al. (1999). p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol. Cell Neurosci., 14, 28–40.CrossRefGoogle ScholarPubMed
Hammarberg, H., Piehl, F., Cullheim, S.et al. (1996). GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. NeuroReport, 7, 857–860.CrossRefGoogle ScholarPubMed
Hanada, M., Feng, J., & Hemmings, B. A. (2004). Structure, regulation and function of PKB/AKT – a major therapeutic target. Biochim. Biophys. Acta., 1697, 3–16.CrossRefGoogle ScholarPubMed
Hanz, S., Perlson, E., Willis, D.et al. (2003). Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron, 40, 1095–1104.CrossRefGoogle ScholarPubMed
Hargreaves, K., Dubner, R., Brown, F., Flores, C., & Joris, J. (1988). A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 32, 77–88.CrossRefGoogle ScholarPubMed
Haymaker, W. & Woodhall, B. (1953). Peripheral Nerve Injuries, Principles of Diagnosis. Philadelphia: W. B. Saunders.Google Scholar
He, Y. & Baas, P. W. (2003). Growing and working with peripheral neurons. Methods Cell Biol., 71, 17–35.CrossRefGoogle ScholarPubMed
Hefti, F., Dento, T. L., Knusel, B, & Lapchak, P. A. (1993). Neurotrophic factors: what are they and what are they doing? In Neurtrophic Factors, ed. Loughlin, S. E. & Fallon, J. H.. Toronto: Academic Press, pp. 25–49.Google Scholar
Heidenreich, K. A. (1993). Insulin and IGF-I receptor signaling in cultured neurons. Ann. N.Y. Acad. Sci., 692, 72–88.CrossRefGoogle ScholarPubMed
Heine, W., Conant, K., Griffin, J. W., & Hoke, A. (2004). Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp. Neurol., 189, 231–240.CrossRefGoogle ScholarPubMed
Heinrich, P. C., Behrmann, I., Haan, S.et al. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J., 374, 1–20.CrossRefGoogle ScholarPubMed
Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F., & Graeve, L. (1998). Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J., 334 (2), 297–314.CrossRefGoogle ScholarPubMed
Helgren, M. E., Squinto, S. P., Davis, H. L.et al. (1994). Trophic effect of ciliary neurotrophic factor on denervated skeletal muscle. Cell, 76, 493–504.CrossRefGoogle ScholarPubMed
Hendry, I. A., Stockel, K., Thoenen, H., & Iversen, L. L. (1974). The retrograde axonal transport of nerve growth factor. Brain Res., 68, 103–121.CrossRefGoogle ScholarPubMed
Henrich, M., Hoffmann, K., Konig, P.et al. (2002). Sensory neurons respond to hypoxia with NO production associated with mitochondria. Mol. Cell Neurosci., 20, 307–322.CrossRefGoogle ScholarPubMed
Herrup, K., Neve, R., Ackerman, S. L., & Copani, A. (2004). Divide and die: cell cycle events as triggers of nerve cell death. J. Neurosci., 24, 9232–9239.CrossRefGoogle ScholarPubMed
Hess, D. T., Patterson, S. I., Smith, D. S., & Skene, J. H. (1993). Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature, 366, 562–565.CrossRefGoogle ScholarPubMed
Heumann, R., Korsching, S., Bandtlow, C., & Thoenen, H. (1987). Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J. Cell Biol., 104, 1623–1631.CrossRefGoogle ScholarPubMed
Hikawa, N., Horie, H., & Takenaka, T. (1993). Macrophage-enhanced neurite regeneration of adult dorsal root ganglia neurones in culture. NeuroReport, 5, 41–44.CrossRefGoogle ScholarPubMed
Hildebrand, C., Kocsis, J. D., Berglund, S., & Waxman, S. G. (1985). Myelin sheath remodelling in regenerated rat sciatic nerve. Brain Res., 358, 163–170.CrossRefGoogle ScholarPubMed
Hildebrand, C., Mustafa, G. Y., Bowe, C., & Kocsis, J. D. (1987). Nodal spacing along regenerated axons following a crush lesion of the developing rat sciatic nerve. Brain Res., 429, 147–154.CrossRefGoogle ScholarPubMed
Hiraga, A., Kuwabara, S., Doya, H.et al. (2006). Rho-kinase inhibition enhances axonal regeneration after peripheral nerve injury. J. Peripher. Nerv. Syst., 11, 217–224.CrossRefGoogle ScholarPubMed
Ho, P. R., Coan, G. M., Cheng, E. T.et al. (1998). Repair with collagen tubules linked with brain-derived neurotrophic factor and ciliary neurotrophic factor in a rat sciatic nerve injury model. Arch. Otolaryngol. Head Neck Surg., 124, 761–766.CrossRefGoogle Scholar
Ho, W. H., Armanini, M. P., Nuijens, A., Phillips, H. S., & Osheroff, P. L. (1995). Sensory and motor neuron-derived factor. A novel heregulin variant highly expressed in sensory and motor neurons. J. Biol. Chem., 270, 26722.CrossRefGoogle ScholarPubMed
Hoang, T. X., Pikov, V., & Havton, L. A. (2006). Functional reinnervation of the rat lower urinary tract after cauda equina injury and repair. J. Neurosci., 26, 8672–8679.CrossRefGoogle ScholarPubMed
Hobson, M. I., Green, C. J., & Terenghi, G. (2000). VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J. Anat., 197 (4), 591–605.CrossRefGoogle ScholarPubMed
Hogan, E. L., Dawson, D. M., & Romanul, F. C. A. (1965). Enzymatic changes in denervated muscle. II Biochemical studies. Arch. Neurol., 13, 274–282.CrossRefGoogle ScholarPubMed
Hohn, A., Leibrock, J., Bailey, K., & Barde, Y. A. (1990). Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature, 344, 339–341.CrossRefGoogle ScholarPubMed
Hoke, A., Cheng, C., & Zochodne, D. W. (2000). Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. NeuroReport, 11, 1651–1654.CrossRefGoogle ScholarPubMed
Hoke, A., Gordon, T., Zochodne, D. W., & Sulaiman, O. A. (2002). A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp. Neurol., 173, 77–85.CrossRefGoogle ScholarPubMed
Hoke, A., Ho, T., Crawford, T. O.et al. (2003). Glial cell line-derived neurotrophic factor alters axon Schwann cell units and promotes myelination in unmyelinated nerve fibers. J. Neurosci., 23, 561–567.CrossRefGoogle ScholarPubMed
Hoke, A., Redett, R., Hameed, H.et al. (2006). Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J. Neurosci., 26, 9646–9655.CrossRefGoogle ScholarPubMed
Hoke, A., Sun, H., Gordon, T., & Zochodne, D. W. (2001). Do denervated peripheral nerve trunks become ischemic?Exp. Neurol., 172, 398–406.CrossRefGoogle ScholarPubMed
Holmes, F. E., Mahoney, S., King, V. R.et al. (2000). Targeted disruption of the galanin gene reduces the number of sensory neurons and their regenerative capacity. Proc. Natl. Acad. Sci. USA, 97, 11563–11568.CrossRefGoogle ScholarPubMed
Holmes, M., Maysinger, D., Foerster, A.et al. (2003). Neotrofin, a novel purine that induces NGF-dependent nociceptive nerve sprouting but not hyperalgesia in adult rat skin. Mol. Cell Neurosci., 24, 568–580.CrossRefGoogle Scholar
Honig, M. G., Lance-Jones, C., & Landmesser, L. (1986). The development of sensory projection patterns in embryonic chick hindlimb under experimental conditions. Dev. Biol., 118, 532–548.CrossRefGoogle ScholarPubMed
Horie, H., Inagaki, Y., Sohma, Y.et al. (1999). Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. J. Neurosci., 19, 9964–9974.CrossRefGoogle ScholarPubMed
Horie, H., Kadoya, T., Hikawa, N.et al. (2004). Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J. Neurosci., 24, 1873–1880.CrossRefGoogle ScholarPubMed
Horie, H., Sakai, I., Akahori, Y., & Kadoya, T. (1997). IL-1 beta enhances neurite regeneration from transected-nerve terminals of adult rat DRG. NeuroReport, 8, 1955–1959.CrossRefGoogle ScholarPubMed
Hotta, N., Koh, N., Sakakibara, F.et al. (1996). Effects of beraprost sodium and insulin on the electroretinogram, nerve conduction, and nerve blood flow in rats with streptozotocin-induced diabetes. Diabetes, 45, 361–366.CrossRefGoogle ScholarPubMed
Hotta, N., Koh, N., Sakakibara, F.et al. (1996). Effect of propionyl-L-carnitine on motor nerve conduction, autonomic cardiac function, and nerve blood flow in rats with streptozotocin-induced diabetes: comparison with an aldose reductase inhibitor. J. Pharmacol. Exp. Ther., 276, 49–55.Google ScholarPubMed
Hotta, N., Koh, N., Sakakibara, F.et al. (1995). Prevention of abnormalities in motor nerve conduction and nerve blood-flow by a prostacyclin analog, beraprost sodium, in streptozotocin-induced diabetic rats. Prostaglandins, 49, 339–349.CrossRefGoogle ScholarPubMed
Huang, C. S., Zhou, J., Feng, A. K.et al. (1999). Nerve growth factor signaling in caveolae-like domains at the plasma membrane. J. Biol. Chem., 274, 36707–36714.CrossRefGoogle ScholarPubMed
Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.CrossRefGoogle ScholarPubMed
Ibanez, C. F. (2002). Jekyll-Hyde neurotrophins: the story of proNGF. Trends Neurosci., 25, 284–286.CrossRefGoogle ScholarPubMed
Ibanez, C. F., Ilag, L. L., Murray-Rust, J., & Persson, H. (1993). An extended surface of binding to Trk tyrosine kinase receptors in NGF and BDNF allows the engineering of a multifunctional pan-neurotrophin. EMBO J., 12, 2281–2293.Google ScholarPubMed
Ide, C. (1996). Peripheral nerve regeneration. Neurosci. Res., 25, 101–121.CrossRefGoogle ScholarPubMed
Igarashi, M., Li, W. W., Sudo, Y., & Fishman, M. C. (1995). Ligand-induced growth cone collapse: amplification and blockade by variant GAP-43 peptides. J. Neurosci., 15, 5660–5667.CrossRefGoogle ScholarPubMed
Ingoglia, N. A. & Murray, M. (2001). Axonal Regeneration in the Central Nervous System. New York: Marcel Dekker.Google Scholar
Inserra, M. M., Yao, M., Murray, R., & Terris, D. J. (2000). Peripheral nerve regeneration in interleukin 6-deficient mice. Arch. Otolaryngol. Head Neck Surg., 126, 1112–1116.CrossRefGoogle ScholarPubMed
Ip, N. Y. & Yancopoulos, G. D. (1992). Ciliary neurotrophic factor and its receptor complex. Prog. Growth Factor Res., 4, 139–155.CrossRefGoogle ScholarPubMed
Ishii, D. N. & Lupien, S. B. (1995). Insulin-like growth factors protect against diabetic neuropathy: effects on sensory nerve regeneration in rats. J. Neurosci. Res., 40, 138–144.CrossRefGoogle ScholarPubMed
Jackson, P. C. & Diamond, J. (1984). Temporal and spatial constraints on the collateral sprouting of low-threshold mechanosensory nerves in the skin of rats. J. Comp. Neurol., 226, 336–345.CrossRefGoogle ScholarPubMed
Jain, A., Brady-Kalnay, S. M., & Bellamkonda, R. V. (2004). Modulation of Rho GTPase activity alleviates chondroitin sulfate proteoglycan-dependent inhibition of neurite extension. J. Neurosci. Res., 77, 299–307.CrossRefGoogle ScholarPubMed
Jander, S., Lausberg, F., & Stoll, G. (2001). Differential recruitment of CD8+ macrophages during Wallerian degeneration in the peripheral and central nervous system. Brain Pathol., 11, 27–38.CrossRefGoogle ScholarPubMed
Jander, S., Pohl, J., Gillen, C., & Stoll, G. (1996). Differential expression of interleukin-1o mRNA in Wallerian degeneration and immune-mediated inflammation of the rat peripheral nervous system. J. Neurosci. Res., 43, 254–259.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Janig, W. & Lisney, S. J. W. (1989). Small diameter myelinated afferents produce vasodilatation but not plasma extravasation in rat skin. J. Physiol., 415, 477–486.CrossRefGoogle Scholar
Jaworski, J., Spangler, S., Seeburg, D. P., Hoogenraad, C. C., & Sheng, M. (2005). Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt-mammalian target of rapamycin pathway. J. Neurosci., 25, 11300–11312.CrossRefGoogle ScholarPubMed
Jessen, K. R. & Mirsky, R. (1984). Nonmyelin-forming Schwann cells coexpress surface proteins and intermediate filaments not found in myelin-forming cells: a study of Ran-2, A5E3 antigen and glial fibrillary acidic protein. J. Neurocytol., 13, 923–934.CrossRefGoogle Scholar
Jessen, K. R., Morgan, L., Stewart, H. J., & Mirsky, R. (1990). Three markers of adult non-myelin-forming Schwann cells, 217c(Ran-1), A5E3 and GFAP: development and regulation by neuron- Schwann cell interactions. Development, 109, 91–103.Google ScholarPubMed
Ji, R. R., Zhang, Q., Zhang, X.et al. (1995). Prominent expression of bFGF in dorsal root ganglia after axotomy. Eur. J. Neurosci., 7, 2458–2468.CrossRefGoogle ScholarPubMed
Jiang, Y., McLennan, I. S., Koishi, K., & Hendry, I. A. (2000). Transforming growth factor-beta 2 is anterogradely and retrogradely transported in motoneurons and up-regulated after nerve injury. Neuroscience, 97, 735–742.CrossRefGoogle ScholarPubMed
Jin, M., Guan, C. B., Jiang, Y. A.et al. (2005). Ca2+-dependent regulation of rho GTPases triggers turning of nerve growth cones. J. Neurosci., 25, 2338–2347.CrossRefGoogle ScholarPubMed
Joffe, M., Savage, N., & Isaacs, H. (1981). Biochemical functioning of mitochondria in normal and denervated mammalian skeletal muscle. Muscle Nerve, 4, 514–519.CrossRefGoogle ScholarPubMed
Kadomatsu, K. & Muramatsu, T. (2004). Midkine and pleiotrophin in neural development and cancer. Cancer Lett., 204, 127–143.CrossRefGoogle ScholarPubMed
Kaku, D. A., Malamut, R. I., Frey, D. J., & Parry, G. J. (1993). Conduction block as an early sign of reversible injury in ischemic monomelic neuropathy. Neurology, 43 (6), 1126.CrossRefGoogle ScholarPubMed
Kalichman, M. W. & Lalonde, A. W. (1991). Experimental nerve ischemia and injury produced by cocaine and procaine. Brain Res., 565, 34–41.CrossRefGoogle ScholarPubMed
Kamiguchi, H. & Lemmon, V. (2000). Recycling of the cell adhesion molecule L1 in axonal growth cones. J. Neurosci., 20, 3676–3686.CrossRefGoogle ScholarPubMed
Kamijo, M., Merry, A. C., Akdas, G., Cherian, P. V., & Sima, A. A. (1996). Nerve fiber regeneration following axotomy in the diabetic biobreeding Worcester rat: the effect of ARI treatment. J. Diabetes Complications, 10, 183–191.CrossRefGoogle ScholarPubMed
Kaneda, N., Talukder, A. H., Nishiyama, H., Koizumi, S., & Muramatsu, T. (1996). Midkine, a heparin-binding growth/differentiation factor, exhibits nerve cell adhesion and guidance activity for neurite outgrowth in vitro. J. Biochem. (Tokyo), 119, 1150–1156.CrossRefGoogle ScholarPubMed
Kang, H., Tian, L., & Thompson, W. (2003). Terminal Schwann cells guide the reinnervation of muscle after nerve injury. J. Neurocytol., 32, 975–985.CrossRefGoogle ScholarPubMed
Kanje, M., Lundborg, G., & Edstrom, A. (1988). A new method for studies of the effects of locally applied drugs on peripheral nerve regeneration in vivo. Brain Res., 439, 116–121.CrossRefGoogle ScholarPubMed
Kaplan, D. R. & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol., 10, 381–391.CrossRefGoogle Scholar
Karabay, A., Yu, W., Solowska, J. M., Baird, D. H., & Baas, P. W. (2004). Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules. J. Neurosci., 24, 5778–5788.CrossRefGoogle ScholarPubMed
Karagiannis, S. N., King, R. H., & Thomas, P. K. (1997). Colocalisation of insulin and IGF-1 receptors in cultured rat sensory and sympathetic ganglion cells. J. Anat., 191, 431–440.CrossRefGoogle ScholarPubMed
Karchewski, L. A., Gratto, K. A., Wetmore, C., & Verge, V. M. (2002). Dynamic patterns of BDNF expression in injured sensory neurons: differential modulation by NGF and NT-3. Eur. J. Neurosci., 16, 1449–1462.CrossRefGoogle ScholarPubMed
Karchewski, L. A., Kim, F. A., Johnston, J., McKnight, R. M., and Verge, V. M. K. (1999). Anatomical evidence supporting the potential for modulation by multiple neurotrophins in the majority of adult lumbar sensory neurons. J. Comp. Neurol., 413, 327–341.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Katayama, Y., Montenegro, R., Freier, T.et al. (2006). Coil-reinforced hydrogel tubes promote nerve regeneration equivalent to that of nerve autografts. Biomaterials, 27, 505–518.CrossRefGoogle ScholarPubMed
Kato, H., Wanaka, A., & Tohyama, M. (1992). Co-localization of basic fibroblast growth factor-like immunoreactivity and its receptor mRNA in the rat spinal cord and the dorsal root ganglion. Brain Res, 576, 351–354.CrossRefGoogle ScholarPubMed
Katsuki, H., & Okuda, S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol, 46, 607–636.CrossRefGoogle ScholarPubMed
Kawano, S., Okajima, S., Mizoguchi, A.et al. (1997). Immunocytochemical distribution of Ca2+-independent protein kinase C subtypes (delta, epsilon, and zeta) in regenerating axonal growth cones of rat peripheral nerve. Neuroscience, 81, 263–273.CrossRefGoogle Scholar
Kawasaki, T., Oka, N., Tachibana, H., Akiguchi, I., & Shibasaki, H. (2003). Oct6, a transcription factor controlling myelination, is a marker for active nerve regeneration in peripheral neuropathies. Acta Neuropathol. (Berl.), 105, 203–208.Google ScholarPubMed
Kemp, S. W., Walsh, S. K., Zochodne, D. W., & Midha, R. (2007). A novel method for establishing daily in vivo concentration gradients of soluble nerve growth factor (NGF). J. Neurosci. Methods, 165, 83–88.CrossRefGoogle Scholar
Kennedy, J. M. & Zochodne, D. W. (2000). The regenerative deficit of peripheral nerves in experimental diabetes: its extent, timing and possible mechanisms. Brain, 123, 2118–2129.CrossRefGoogle ScholarPubMed
Kennedy, J. M. & Zochodne, D. W. (2002). Influence of experimental diabetes on the microcirculation of injured peripheral nerve. Functional and morphological aspects. Diabetes, 51, 2233–2240.CrossRefGoogle ScholarPubMed
Kennedy, J. M. & Zochodne, D. W. (2004). Heightened pain and delayed regeneration of galanin axons in diabetic mice. NeuroReport, 15, 807–810.CrossRefGoogle ScholarPubMed
Kennedy, J. M. & Zochodne, D. W. (2005). Experimental diabetic neuropathy and spontaneous recovery: is there irreparable damage?Diabetes, 54, 830–837.CrossRefGoogle ScholarPubMed
Kennedy, J. M. & Zochodne, D. W. (2005). Impaired peripheral nerve regeneration in diabetes mellitus. J. Peripher. Nerv. Syst., 10, 144–157.CrossRefGoogle ScholarPubMed
Kerezoudi, E. & Thomas, P. K. (1999). Influence of age on regeneration in the peripheral nervous system. Gerontology, 45, 301–306.CrossRefGoogle ScholarPubMed
Keswani, S. C., Buldanlioglu, U., Fischer, A.et al. (2004). A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann. Neurol., 56, 815–826.CrossRefGoogle ScholarPubMed
Kilmer, S. L. & Carlsen, R. C. (1984). Forskolin activation of adenylate cyclase in vivo stimulates nerve regeneration. Nature, 307, 455–457.CrossRefGoogle ScholarPubMed
Kilmer, S. L. & Carlsen, R. C. (1987). Chronic infusion of agents that increase cyclic AMP concentration enhances the regeneration of mammalian peripheral nerves in vivo. Exp. Neurol., 95, 357–367.CrossRefGoogle ScholarPubMed
Kim, B., Cheng, H. L., Margolis, B., & Feldman, E. L. (1998). Insulin receptor substrate 2 and Shc play different roles in insulin-like growth factor I signaling. J. Biol. Chem., 273, 34543–34550.CrossRefGoogle ScholarPubMed
Kim, K. J., Yoon, Y. W., & Chung, J. M. (1997). Comparison of three rodent neuropathic pain models. Exp. Brain Res., 113, 200–206.CrossRefGoogle ScholarPubMed
Kim, Y. S., Furman, S., Sink, H., & VanBerkum, M. F. (2001). Calmodulin and profilin coregulate axon outgrowth in Drosophila. J. Neurobiol., 47, 26–38.CrossRefGoogle ScholarPubMed
Kimpinski, K., Campenot, R. B., & Mearow, K. (1997). Effects of the neurotrophins nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor (BDNF) on neurite growth from adult sensory neurons in compartmented cultures. J. Neurobiol., 33, 395–410.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Kimura, J. (2001). Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice, 3rd edn. New York: Oxford University Press.Google Scholar
King, R. H. M. (1999). Atlas of Peripheral Nerve Pathology. London: Arnold.Google Scholar
Kishino, A., Ishige, Y., Tatsuno, T., Nakayama, C., & Noguchi, H. (1997). BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth. Exp. Neurol., 144, 273–286.CrossRefGoogle ScholarPubMed
Klein, H. W., Kilmer, S., & Carlsen, R. C. (1989). Enhancement of peripheral nerve regeneration by pharmacological activation of the cyclic AMP second messenger system. Microsurgery, 10, 122–125.CrossRefGoogle ScholarPubMed
Kline, D. G. & Hudson, A. (1995). Nerve Injuries: Operative Results for Major Nerve Injuries, Entrapments, and Tumors. Toronto: W. B. Saunders.Google Scholar
Kobayashi, N. R., Fan, D. P., Giehl, K. M.et al. (1997). BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J. Neurosci., 17, 9583–9595.CrossRefGoogle ScholarPubMed
Kobbert, C., Apps, R., Bechmann, I.et al. (2000). Current concepts in neuroanatomical tracing. Prog. Neurobiol., 62, 327–351.CrossRefGoogle ScholarPubMed
Koenig, E., Martin, R., Titmus, M., & Sotelo-Silveira, J. R. (2000). Cryptic peripheral ribosomal domains distributed intermittently along mammalian myelinated axons. J. Neurosci., 20, 8390–8400.CrossRefGoogle ScholarPubMed
Kogawa, S., Yasuda, H., Terada, M., Maeda, K., & Kikkawa, R. (2000). Apoptosis and impaired axonal regeneration of sensory neurons after nerve crush in diabetic rats. NeuroReport, 11, 663–667.CrossRefGoogle ScholarPubMed
Kolston, J. & Lisney, S. J. W. (1993). A study of vasodilator responses evoked by antidromic stimulation of A delta afferent nerve fibers supplying normal and reinnervated rat skin. Microvasc. Res., 46, 143–157.CrossRefGoogle ScholarPubMed
Korthals, J., Gieron, M., & Wisniewski, H. (1989). Nerve regeneration patterns after acute ischemic injury. Neurology, 39, 932.CrossRefGoogle ScholarPubMed
Korthals, J. K., Korthals, M. A., & Wisniewski, H. M. (1978). Peripheral nerve ischemia: Part 2. Accumulation of organelles. Ann. Neurol., 4, 487–498.CrossRefGoogle ScholarPubMed
Korthals, J. K., Maki, T., & Gieron, M. A. (1985). Nerve and muscle vulnerability to ischemia. J. Neurol. Sci., 71, 283–290.CrossRefGoogle ScholarPubMed
Korthals, J. K., Maki, T., Korthals, M. A., & Prockop, L. D. (1996). Nerve and muscle damage after experimental thrombosis of large artery. Electrophysiology and morphology. J. Neurol. Sci., 136, 24–30.CrossRefGoogle ScholarPubMed
Korthals, J. K. & Wisniewski, H. M. (1975). Peripheral nerve ischemia. Part 1. Experimental model. J. Neurol. Sci., 24, 65–76.CrossRefGoogle ScholarPubMed
Kraft, G. H. (1996). Are fibrillation potentials and positive sharp waves the same? No. Muscle Nerve, 19 (2), 216–220.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Krasnoselsky, A., Massay, M. J., DeFrances, M. C.et al. (1994). Hepatocyte growth factor is a mitogen for Schwann cells and is present in neurofibromas. J. Neurosci., 14, 7284–7290.CrossRefGoogle ScholarPubMed
Krekoski, C. A., Neubauer, D., Zuo, J., & Muir, D. (2001). Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan. J. Neurosci., 21, 6206–6213.CrossRefGoogle ScholarPubMed
Kreulen, D. L. (2005). Neurobiology of autonomic ganglia. In Peripheral Neuropathy, 4th edn., ed. Dyck, P. J. & Thomas, P. K.. Philadelphia: Elsevier Saunders, pp. 233–248.CrossRefGoogle Scholar
Kumagai, K., Ushiki, T., Tohyama, K., Arakawa, M., & Ide, C. (1990). Regenerating axons and their growth cones observed by scanning electron microscopy. J. Electron Microsc.(Tokyo), 39, 108–114.Google ScholarPubMed
Kuo, L. T., Simpson, A., Schanzer, A.et al. (2005). Effects of systemically administered NT-3 on sensory neuron loss and nestin expression following axotomy. J. Comp. Neurol., 482, 320–332.CrossRefGoogle ScholarPubMed
Kuwako, K. I., Hosokawa, A., Nishimura, I.et al. (2005). Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival. J. Neurosci., 25, 7090–7099.CrossRefGoogle ScholarPubMed
Laferriere, N. B., MacRae, T. H., & Brown, D. L. (1997). Tubulin synthesis and assembly in differentiating neurons. Biochem. Cell Biol., 75, 103–117.CrossRefGoogle ScholarPubMed
Lagerlund, T. D. & Low, P. A. (1987). A mathematical simulation of oxygen delivery in rat peripheral nerve. Microvasc. Res., 34, 211–222.CrossRefGoogle ScholarPubMed
Lagerlund, T. D. & Low, P. A. (1994). Mathematical modeling of hydrogen clearance blood flow measurements in peripheral nerve. Comput. Biol. Med., 24, 77–89.CrossRefGoogle ScholarPubMed
Lago, N. & Navarro, X. (2007). Evaluation of the long-term regenerative potential in an experimental nerve amputee model. J. Peripher. Nerv. Syst., 12, 108–120.CrossRefGoogle Scholar
Lai, K. O., Fu, W. Y., Ip, F. C. F., & Ip, N. Y. (1998). Cloning and expression of a novel neurotrophin, NT-7, from carp. Mol. Cell Neurosci., 11, 64–76.CrossRefGoogle ScholarPubMed
Landreth, G. E. (2006). Growth factors. In Basic Neurochemistry, 7th edn., ed. Siegel, G. J., Albers, R. W., Brady, S. T., & Price, D. L.. New York: Academic Press, pp. 471–484.
Langton, B. S. (2002). A First Step: Understanding Guillain–Barré Syndrome. Trafford Publishing.Google Scholar
Langton, B. S., Ondrich, S., & Hill, P. (2006). Guillain–Barré Syndrome. 5 years later. Trafford Publishing.Google Scholar
Lariviere, R. C. & Julien, J. P. (2004). Functions of intermediate filaments in neuronal development and disease. J. Neurobiol., 58, 131–148.CrossRefGoogle ScholarPubMed
Latchman, D. S. (2005). HSP27 and cell survival in neurones. Int. J. Hyperthermia, 21, 393–402.CrossRefGoogle ScholarPubMed
Lauria, G., Cornblath, D. R., Johansson, O.et al. (2005). EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur. J. Neurol., 12, 747–758.CrossRefGoogle Scholar
Laux, T., Fukami, K., Thelen, M.et al. (2000). GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol., 149, 1455–1472.CrossRefGoogle ScholarPubMed
Lawson, S. N. (2005). The peipheral sensory nervous system: dorsal root ganglion neurons. In Peripheral Neuropathy, 4th edn., ed. Dyck, P. J. & Thomas, P. K.. Philadelphia: Elsevier Saunders, pp. 163–202.CrossRefGoogle Scholar
LeBlanc, A. C. & Poduslo, J. F. (1990). Axonal modulation of myelin gene expression in the peripheral nerve. J. Neurosci. Res., 26, 317–326.CrossRefGoogle ScholarPubMed
Leclere, P. G., Norman, E., Groutsi, F.et al. (2007). Impaired axonal regeneration by isolectin B4-binding dorsal root ganglion neurons in vitro. J. Neurosci., 27, 1190–1199.CrossRefGoogle ScholarPubMed
Lee, A. C., Yu, V. M., Lowe, J. B.et al. (2003). Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp. Neurol., 184, 295–303.CrossRefGoogle ScholarPubMed
Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294, 1945–1948.CrossRefGoogle ScholarPubMed
Lee, Y. S., Baratta, J., Yu, J., Lin, V. W., & Robertson, R. T. (2002). AFGF promotes axonal growth in rat spinal cord organotypic slice co-cultures. J. Neurotrauma., 19, 357–367.CrossRefGoogle ScholarPubMed
Lehmann, H. C., Lopez, P. H., Zhang, G.et al. (2007). Passive immunization with anti-ganglioside antibodies directly inhibits axon regeneration in an animal model. J. Neurosci., 27, 27–34.CrossRefGoogle Scholar
Leibrock, J., Lottspeich, F., Hohn, A.et al. (1989). Molecular cloning and expression of brain-derived neurotrophic factor. Nature, 341, 149–152.CrossRefGoogle ScholarPubMed
Levavasseur, F., Zhu, Q., & Julien, J. P. (1999). No requirement of alpha-internexin for nervous system development and for radial growth of axons. Brain Res. Mol. Brain Res., 69, 104–112.CrossRefGoogle ScholarPubMed
Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science, 237, 1154–1162.CrossRefGoogle ScholarPubMed
Levi-Montalcini, R. & Hamburger, V. (1951). Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool., 116, 321–362.CrossRefGoogle ScholarPubMed
Levi-Montalcini, R. & Hamburger, V. (1953). A diffusible agent of mouse sarcoma, producing hyperplasia of sympathetic ganglia and hyperneurotization of viscera in the chick embro. J. Exp. Zool., 123, 233–287.CrossRefGoogle Scholar
Levy, D., Hoke, A., & Zochodne, D. W. (1999). Local expression of inducible nitric oxide synthase in an animal model of neuropathic pain. Neurosci. Lett., 260, 207–209.CrossRefGoogle Scholar
Levy, D., Kubes, P., & Zochodne, D. W. (2001). Delayed peripheral nerve degeneration, regeneration, and pain in mice lacking inducible nitric oxide synthase. J. Neuropathol.Exp. Neurol., 60, 411–421.CrossRefGoogle ScholarPubMed
Levy, D., Tal, M., Hoke, A., & Zochodne, D. W. (2000). Transient action of the endothelial constitutive nitric oxide synthase (ecNOS) mediates the development of thermal hypersensitivity following peripheral nerve injury. Eur. J. Neurosci., 12, 2323–2332.CrossRefGoogle ScholarPubMed
Levy, D. & Zochodne, D. W. (1998). Local nitric oxide synthase activity in a model of neuropathic pain. Eur. J. Neurosci., 10, 1846–1855.CrossRefGoogle Scholar
Lewis, T., Harris, K. E., & Grant, R. T. (1927). Observations relating to the influence of the cutaneous nerves on various reactions of the cutaneous vessels. Heart, 14, 1–17.Google Scholar
Li, G. D., Wo, Y., Zhong, M. F.et al. (2002). Expression of fibroblast growth factors in rat dorsal root ganglion neurons and regulation after peripheral nerve injury. NeuroReport, 13, 1903–1907.CrossRefGoogle ScholarPubMed
Li, H., Terenghi, G., & Hall, S. M. (1997). Effects of delayed re-innervation on the expression of c-ergB receptors by chronically denervated rat Schwann cells in vivo. Glia, 20, 333–347.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Li, L., Oppenheim, R. W., Lei, M., & Houenou, L. J. (1994). Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. J. Neurobiol., 25, 759–766.CrossRefGoogle ScholarPubMed
Li, R. (2005). Neuronal polarity: until GSK-3 do us part. Curr. Biol., 15, R198–R200.CrossRefGoogle ScholarPubMed
Li, X.-G. & Zochodne, D. W. (2003). Microvacuolar neuronopathy is a post-mortem artifact of sensory neurons. J. Neurocytol., 32, 393–398.CrossRefGoogle ScholarPubMed
Li, X.-Q., Verge, V. M. K., Johnston, J. M., & Zochodne, D. W. (2004). CGRP peptide and regenerating sensory axons. J. Neuropathol. Exp. Neurol., 63, 1092–1103.CrossRefGoogle ScholarPubMed
Li, Y. S., Milner, P. G., Chauhan, A. K.et al. (1990). Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity. Science, 250, 1690–1694.CrossRefGoogle ScholarPubMed
Lieberman, A. R. (1971). The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int. Rev. Neurobiol., 14, 49–124.CrossRefGoogle ScholarPubMed
Liefner, M., Siebert, H., Sachse, T.et al. (2000). The role of TNF-alpha during Wallerian degeneration. J. Neuroimmunol., 108, 147–152.CrossRefGoogle ScholarPubMed
Lin, H., Bao, J., Sung, Y. J., Walters, E. T., & Ambron, R. T. (2003). Rapid electrical and delayed molecular signals regulate the serum response element after nerve injury: convergence of injury and learning signals. J. Neurobiol., 57, 204–220.CrossRefGoogle ScholarPubMed
Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., & Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 260, 1130–1132.CrossRefGoogle ScholarPubMed
Lin, L. F., Zhang, T. J., Collins, F., & Armes, L. G. (1994). Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. J. Neurochem., 63, 758–768.CrossRefGoogle ScholarPubMed
Lindholm, D., Heumann, R., Meyer, M., & Thoenen, H. (1987). Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature, 330, 658–659.CrossRefGoogle ScholarPubMed
Lino, M. M., Atanasoski, S., Kvajo, M.et al. (2007). Mice lacking protease nexin-1 show delayed structural and functional recovery after sciatic nerve crush. J. Neurosci., 27, 3677–3685.CrossRefGoogle ScholarPubMed
Liu, C. N., Amir, R., & Devor, M. (1999). Effect of age and nerve injury on cross-excitation among sensory neurons in rat dorsal root ganglia. Neurosci. Lett., 259, 95–98.CrossRefGoogle ScholarPubMed
Liu, R. Y., Schmid, R. S., Snider, W. D., & Maness, P. F. (2002). NGF enhances sensory axon growth induced by laminin but not by the L1 cell adhesion molecule. Mol. Cell Neurosci., 20, 2–12.CrossRefGoogle Scholar
Lohof, A. M., Quillan, M., Dan, Y., & Poo, M.-M. (1992). Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J. Neurosci., 12, 1253–1261.CrossRefGoogle ScholarPubMed
Longo, F. M., Powell, H. C., Lebeau, J.et al. (1986). Delayed nerve regeneration in streptozotocin diabetic rats. Muscle Nerve, 9, 385–393.CrossRefGoogle ScholarPubMed
Love, A., Cotter, M. A., & Cameron, N. E. (1995). Impaired myelinated fiber regeneration following freeze-injury in rats with streptozotocin-induced diabetes: involvement of the polyol pathway. Brain Res., 703, 105–110.CrossRefGoogle ScholarPubMed
Low, P. A., Lagerlund, T. D., & McManis, P. G. (1989). Nerve blood flow and oxygen delivery in normal, diabetic, and ischemic neuropathy. Int. Rev. Neurobiol., 31, 355–438.CrossRefGoogle ScholarPubMed
Low, P. A. & Tuck, R. R. (1984). Effects of changes of blood pressure, respiratory acidosis and hypoxia on blood flow in the sciatic nerve of the rat. J. Physiol., 347, 513–524.CrossRefGoogle ScholarPubMed
Lu, X. & Richardson, P. M. (1991). Inflammation near the nerve cell body enhances axonal regeneration. J. Neurosci., 11, 972–978.CrossRefGoogle ScholarPubMed
Lubinska, L. & Olekiewicz, M. (1959). The rate of regeneration of amphibian peripheral nerves at different temperatures. Acta Biol. Exp. (Warsaw), 15, 125–145.Google Scholar
Lumpkin, E. A. & Caterina, M. J. (2007). Mechanisms of sensory transduction in the skin. Nature, 445, 858–865.CrossRefGoogle Scholar
Lundborg, G. (1975). Structure and function of the intraneural microvessels as related to trauma, edema formation, and nerve function. J. Bone Joint Surg. AM., 57, 938–948.CrossRefGoogle ScholarPubMed
Lundborg, G. (2004). Nerve Injury and Repair. Regeneration, Reconstruction and Cortical Remodeling, 2nd edn. Elsevier.Google Scholar
Lundborg, G., Dahlin, L., Dohi, D., Kanje, M., & Terada, N. (1997). A new type of “bioartificial” nerve graft for bridging extended defects in nerves. J. Hand Surg. [Br]., 22, 299–303.CrossRefGoogle ScholarPubMed
Lundborg, G., Dahlin, L. B., & Danielsen, N. (1991). Ulnar nerve repair by the silicone chamber technique. Case report. Scand. J. Plast. Reconstr. Surg., 25, 79–82.CrossRefGoogle ScholarPubMed
Lundborg, G., Dahlin, L. B., Danielsen, N.et al. (1982). Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp. Neurol., 76, 361–375.CrossRefGoogle ScholarPubMed
Lundborg, G., Dahlin, L. B., Danielsen, N.et al. (1982). Nerve regeneration across an extended gap: a neurobiological view of nerve repair and the possible involvement of neuronotrophic factors. J. Hand Surg. [Am]., 7, 580–587.CrossRefGoogle ScholarPubMed
Lundborg, G., Dahlin, L. B., Danielsen, N. P., Hansson, H. A., & Larsson, K. (1981). Reorganization and orientation of regenerating nerve fibres, perineurium, and epineurium in preformed mesothelial tubes – an experimental study on the sciatic nerve of rats. J. Neurosci. Res., 6, 265–281.CrossRefGoogle ScholarPubMed
Lundborg, G., Gelberman, R. H., Longo, F. M., Powell, H. C., & Varon, S. (1982). In vivo regeneration of cut nerves encased in silicone tubes. J. Neuropathol. Exp. Neurol., 41, 412–422.CrossRefGoogle ScholarPubMed
Lundborg, G. & Hansson, H. A. (1979). Regeneration of peripheral nerve through a preformed tissue space. Preliminary observations on the reorganization of regenerating nerve fibres and perineurium. Brain Res., 178, 573–576.CrossRefGoogle ScholarPubMed
Luo, L., Jan, L. Y., & Jan, Y. N. (1997). Rho family GTP-binding proteins in growth cone signalling. Curr. Opin. Neurobiol., 7, 81–86.CrossRefGoogle ScholarPubMed
Luo, L. & O'Leary, D. D. (2005). Axon retraction and degeneration in development and disease. Ann. Rev. Neurosci., 28, 127–156.CrossRefGoogle ScholarPubMed
Lyons, W. R. & Woodhall, B. (1949). Atlas of Peripheral Nerve Injuries. Philadelphia: W. B. Saunders.Google Scholar
Macica, C. M., Liang, G., Lankford, K. L., & Broadus, A. E. (2006). Induction of parathyroid hormone-related peptide following peripheral nerve injury: role as a modulator of Schwann cell phenotype. Glia, 53, 637–648.CrossRefGoogle ScholarPubMed
Mack, T. G., Reiner, M., Beirowski, B.et al. (2001). Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci., 4, 1199–1206.CrossRefGoogle ScholarPubMed
Maeda, K., Fernyhough, P., & Tomlinson, D. R. (1996). Regenerating sensory neurones of diabetic rats express reduced levels of mRNA for GAP-43, gamma-preprotachykinin and the nerve growth factor receptors, trkA and p75NGFR. Brain Res. Mol. Brain Res., 37, 166–174.CrossRefGoogle ScholarPubMed
Maina, F. & Klein, R. (1999). Hepatocyte growth factor, a versatile signal for developing neurons. Nat. Neurosci., 2, 213–217.CrossRefGoogle ScholarPubMed
Maisonpierre, P. C., Belluscio, L., Squinto, S.et al. (1990). Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science, 247, 1446–1451.CrossRefGoogle ScholarPubMed
Malik, R. A., Newrick, P. G., Sharma, A. K.et al. (1989). Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia, 32, 92–102.CrossRefGoogle ScholarPubMed
Martinez, J. A., Cunningham, F. A., & Zochodne, D. W. (2005). Appraising mouse nerve: dessication artifact. J. Peripher. Nerv. Syst., 10, 213–214.CrossRefGoogle ScholarPubMed
Martini, R. (1994). Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J. Neurocytol., 23, 1–28.CrossRefGoogle ScholarPubMed
Martini, R. & Schachner, M. (1988). Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve. J. Cell Biol., 106, 1735–1746.CrossRefGoogle Scholar
Martini, R., Xin, Y., Schmitz, B., & Schachner, M. (1992). The L2/HNK-1 carbohydrate epitope is involved in the preferential outgrowth of motor neurons on ventral roots and motor nerves. Eur. J. Neurosci., 4, 628–639.CrossRefGoogle ScholarPubMed
Mason, C. A. & Wang, L. C. (1997). Growth cone form is behavior-specific and, consequently, position-specific along the retinal axon pathway. J. Neurosci., 17, 1086–1100.CrossRefGoogle ScholarPubMed
Mason, M. R., Lieberman, A. R., Grenningloh, G., & Anderson, P. N. (2002). Transcriptional upregulation of SCG10 and CAP-23 is correlated with regeneration of the axons of peripheral and central neurons in vivo. Mol. Cell Neurosci., 20, 595–615.CrossRefGoogle ScholarPubMed
Massa, S. M., Xie, Y., Yang, T.et al. (2006). Small, nonpeptide p75NTR ligands induce survival signaling and inhibit proNGF-induced death. J. Neurosci., 26, 5288–5300.CrossRefGoogle ScholarPubMed
Matsumoto, K., Sawa, H., Sato, M.et al. (2002). Distribution of extracellular matrix tenascin-X in sciatic nerves. Acta Neuropathol. (Berl.), 104, 448–454.Google ScholarPubMed
Matsunaga, E., Nakamura, H., & Chedotal, A. (2006). Repulsive guidance molecule plays multiple roles in neuronal differentiation and axon guidance. J. Neurosci., 26, 6082–6088.CrossRefGoogle ScholarPubMed
Matsuoka, I., Nakane, A., & Kurihara, K. (1997). Induction of LIF-mRNA by TGF-beta 1 in Schwann cells. Brain Res., 776, 170–180.CrossRefGoogle ScholarPubMed
Maxfield, E. K., Love, A., Cotter, M. A., & Cameron, N. E. (1995). Nerve function and regeneration in diabetic rats: effects of ZD-7155, an AT1 receptor antagonist. Am. J. Physiol., 269, E530–E537.Google ScholarPubMed
McComas, A. J., Fawcett, P. R. W., Campbell, M. J., & Sica, R. E. P. (1971). Electrophysiological estimation of the number of motor units within a human muscle. J. Neurol. Neurosurg. Psychiatry, 34, 121–131.CrossRefGoogle ScholarPubMed
McDonald, D., Cheng, C., Chen, Y. Y., & Zochodne, D. W. (2006). Early events of peripheral nerve regeneration. Neuron Glia Biol., 2, 139–147.CrossRefGoogle ScholarPubMed
McDonald, D. M. (2007). Supportive and inhibitory influences on the outcome of peripheral nerve regeneration. Ph.D. thesis, University of Calgary.
McDonald, D. S. & Zochodne, D. W. (2003). An injectable nerve regeneration chamber for studies of unstable soluble growth factors. J. Neurosci. Methods, 122, 171–178.CrossRefGoogle ScholarPubMed
McDonald, N. Q., Lapatto, R., Murray-Rust, J.et al. (1991). New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature, 354, 411–414.CrossRefGoogle ScholarPubMed
McGraw, T. S., Mickle, J. P., Shaw, G., & Streit, W. J. (2002). Axonally transported peripheral signals regulate alpha-internexin expression in regenerating motoneurons. J. Neurosci., 22, 4955–4963.CrossRefGoogle ScholarPubMed
McKenzie, I. A., Biernaskie, J., Toma, J. G., Midha, R., & Miller, F. D. (2006). Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J. Neurosci., 26, 6651–6660.CrossRefGoogle ScholarPubMed
McLean, W. G., Pekiner, C., Cullum, N. A., & Casson, I. F. (1992). Posttransiational modifications of nerve cytoskeletal proteins in experimental diabetes. Mol. Neurobiol., 6, 225–237.CrossRefGoogle ScholarPubMed
McMahon, S. B., Armanini, M. P., Ling, L. H., & Phillips, H. S. (1994). Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron, 12, 1161–1171.CrossRefGoogle ScholarPubMed
McManis, P. G. & Low, P. A. (1988). Factors affecting the relative viability of centrifascicular and subperineurial axons in acute peripheral nerve ischemia. Exp. Neurol., 99, 84–95.CrossRefGoogle ScholarPubMed
McManis, P. G., Schmelzer, J. D., Zollman, P. J., & Low, P. A. (1997). Blood flow and autoregulation in somatic and autonomic ganglia. Comparison with sciatic nerve. Brain, 120 (3), 445–449.CrossRefGoogle ScholarPubMed
McQuarrie, I. G. & Grafstein, B. (1973). Axon outgrowth enhanced by a previous nerve injury. Arch. Neurol., 29, 53–55.CrossRefGoogle ScholarPubMed
McQuarrie, I. G., Grafstein, B., & Gershon, M. D. (1977). Axonal regeneration in the rat sciatic nerve: effect of a conditioning lesion and of dbcAMP. Brain Res., 132, 443–453.CrossRefGoogle ScholarPubMed
Meier, C., Parmantier, E., Brennan, A., Mirsky, R., & Jessen, K. R. (1999). Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor- BB. J. Neurosci., 19, 3847–3859.CrossRefGoogle ScholarPubMed
Metz, G. A. & Whishaw, I. Q. (2002). Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J. Neurosci. Methods, 115, 169–179.CrossRefGoogle ScholarPubMed
Meyer, D. & Birchmeier, C. (1995). Multiple essential functions of neuregulin in development. Nature, 378, 386–390.CrossRefGoogle ScholarPubMed
Meyer, G. & Feldman, E. L. (2002). Signaling mechanisms that regulate actin-based motility processes in the nervous system. J. Neurochem., 83, 490–503.CrossRefGoogle Scholar
Meyer, M., Matsuoka, I., Wetmore, C., Olson, L., & Thoenen, H. (1992). Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J. Cell Biol., 119, 45–54.CrossRefGoogle ScholarPubMed
Mi, R., Chen, W., & Hoke, A. (2007). Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc. Natl. Acad. Sci. USA, 104, 4664–4669.CrossRefGoogle ScholarPubMed
Mi, S., Lee, X., Shao, Z.et al. (2004). LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat. Neurosci., 7, 221–228.CrossRefGoogle ScholarPubMed
Miao, T., Wu, D., Zhang, Y.et al. (2006). Suppressor of cytokine signaling-3 suppresses the ability of activated signal transducer and activator of transcription-3 to stimulate neurite growth in rat primary sensory neurons 1190. J. Neurosci., 26, 9512–9519.CrossRefGoogle Scholar
Michailov, G. V., Sereda, M. W., Brinkmann, B. G.et al. (2004). Axonal neuregulin-1 regulates myelin sheath thickness. Science, 304, 700–703.CrossRefGoogle ScholarPubMed
Midrio, M. (2006). The denervated muscle: facts and hypotheses. A historical review. Eur. J. Appl. Physiol., 98, 1–21.CrossRefGoogle ScholarPubMed
Miller, F. D., Tetzlaff, W., Bisby, M. A., Fawcett, J. W., & Milner, R. J. (1989). Rapid induction of the major embryonic a-Tubulin mRNA, Ta1, during nerve regeneration in adult rats. J. Neurol. Sci., 9, 1452–1463.Google Scholar
Ming, G., Song, H., Berninger, B.et al. (1999). Phospholipase C-gamma and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron, 23, 139–148.CrossRefGoogle ScholarPubMed
Ming, G. L., Song, H. J., Berninger, B.et al. (1997). cAMP-dependent growth cone guidance by netrin-1. Neuron, 19, 1225–1235.CrossRefGoogle ScholarPubMed
Mirsky, R. & Jessen, K. R. (1999). The neurobiology of Schwann cells. Brain Pathol., 9, 293–311.CrossRefGoogle ScholarPubMed
Moir, M. S., Wang, M. Z., To, M., Lum, J., & Terris, D. J. (2000). Delayed repair of transected nerves: effect of brain-derived neurotrophic factor. Arch. Otolaryngol. Head Neck Surg., 126, 501–505.CrossRefGoogle ScholarPubMed
Morris, J. H., Hudson, A. R., & Weddell, G. (1972). A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy. I. The traumatic degeneration of myelin in the proximal stump of the divided nerve. Z. Zellforsch. Mikrosk. Anat., 124, 76–102.CrossRefGoogle ScholarPubMed
Morris, J. H., Hudson, A. R., & Weddell, G. (1972). A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy. II. The development of the “regenerating unit”. Z. Zellforsch. Mikrosk. Anat., 124, 103–130.CrossRefGoogle ScholarPubMed
Morris, J. H., Hudson, A. R., & Weddell, G. (1972). A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy. IV. Changes in fascicular microtopography, perineurium and endoneurial fibroblasts. Z. Zellforsch. Mikrosk. Anat., 124, 165–203.CrossRefGoogle ScholarPubMed
Morris, J. K., Lin, W., Hauser, C.et al. (1999). Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron, 23, 273–283.CrossRefGoogle ScholarPubMed
Morton, C. R., Lacey, G. R., & Newcombe, R. L. G. (2000). Mechanisms of pain arising from spinal nerve root compression. In Proceedings of the 9th World Congress of Pain, ed. Devor, M., Rowbotham, M. C., & Wiesenfeld-Hallin, Z.. Seattle: IASP Press, pp. 689–695.Google Scholar
Mosahebi, A., Woodward, B., Wiberg, M., Martin, R., & Terenghi, G. (2001). Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration. Glia, 34, 8–17.CrossRefGoogle ScholarPubMed
Munger, B. L. (1988). The reinnervation of denervated skin. Prog. Brain Res., 74, 259–262.CrossRefGoogle ScholarPubMed
Murakami, K., Namikawa, K., Shimizu, T.et al. (2006). Nerve injury induces the expression of EXT2, a glycosyltransferase required for heparan sulfate synthesis. Neuroscience, 141, 1961–1969.CrossRefGoogle ScholarPubMed
Murashov, A. K., Ul, H., Hill, C.et al. (2001). Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury. Brain Res. Mol. Brain Res., 93, 199–208.CrossRefGoogle ScholarPubMed
Murphy, P., Topilko, P., Schneider-Maunoury, S.et al. (1996). The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Development, 122, 2847–2857.Google ScholarPubMed
Murphy, P. G., Borthwick, L. A., Altares, M.et al. (2000). Reciprocal actions of interleukin-6 and brain-derived neurotrophic factor on rat and mouse primary sensory neurons. Eur. J. Neurosci., 12, 1891–1899.CrossRefGoogle ScholarPubMed
Murphy, P. G., Borthwick, L. S., Johnston, R. S., Kuchel, G., & Richardson, P. M. (1999). Nature of the retrograde signal from injured nerves that induces interleukin-6 mRNA in neurons. J. Neurosci., 19, 3791–3800.CrossRefGoogle ScholarPubMed
Murphy, P. G., Grondin, J., Altares, M., & Richardson, P. M. (1995). Induction of interleukin-6 in axotomized sensory neurons. J. Neurosci., 15, 5130–5138.CrossRefGoogle ScholarPubMed
Myers, R. R., Heckman, H. M., & Powell, H. C. (1983). Endoneurial fluid is hypertonic. Results of microanalysis and its significance in neuropathy. J. Neuropathol. Exp. Neurol., 42, 217–224.CrossRefGoogle ScholarPubMed
Nachemson, A. K., Hansson, H. A., Dahl, D., & Lundborg, G. (1986). Visualization of regenerating sciatic nerve fibres by neurofilament immunohistochemistry. Acta Physiol. Scand., 126, 485–489.CrossRefGoogle ScholarPubMed
Nachemson, A. K., Hansson, H. A., & Lundborg, G. (1988). Neurotropism in nerve regeneration: an immunohistochemical study. Acta Physiol. Scand., 133, 139–148.CrossRefGoogle Scholar
Nachmias, V. T., Golla, R., Casella, J. F., & Barron-Casella, E. (1996). Cap Z, a calcium insensitive capping protein in resting and activated platelets. FEBS Lett., 378, 258–262.CrossRefGoogle Scholar
Nachmias, V. T. & Padykula, H. A. (1958). A histochemical study of normal and denervated red and white muscles of the rat. J. Biophysic & Biochem. Cytol., 4, 47–59.CrossRefGoogle ScholarPubMed
Nakagawa, T., Miyamoto, O., Janjua, N. A.et al. (2004). Localization of nestin in amygdaloid kindled rat: an immunoelectron microscopic study. Can. J. Neurol. Sci., 31, 514–519.CrossRefGoogle Scholar
Namikawa, K., Honma, M., Abe, K.et al. (2000). Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J. Neurosci., 20, 2875–2886.CrossRefGoogle ScholarPubMed
Namikawa, K., Okamoto, T., Suzuki, A., Konishi, H., & Kiyama, H. (2006). Pancreatitis-associated protein-III is a novel macrophage chemoattractant implicated in nerve regeneration. J. Neurosci., 26, 7460–7467.CrossRefGoogle ScholarPubMed
Nandedkar, S. D., Barkhaus, P. E., Sanders, D. B., & Stalberg, E. V. (2000). Some observations on fibrillations and positive sharp waves. Muscle Nerve, 23, 888–894.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Navarro, X. & Kennedy, W. R. (1988). Effect of age on collateral reinnervation of sweat glands in the mouse. Brain Res., 463, 174–181.CrossRefGoogle ScholarPubMed
Navarro, X., Udina, E., Ceballos, D., & Gold, B. G. (2001). Effects of FK506 on nerve regeneration and reinnervation after graft or tube repair of long nerve gaps. Muscle Nerve, 24, 905–915.CrossRefGoogle ScholarPubMed
Navarro, X., Verdu, E., Wendelschafer-Crabb, G., & Kennedy, W. R. (1997). Immunohistochemical study of skin reinnervation by regenerative axons. J. Comp.Neurol., 380, 164–174.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Neary, J. T., Rathbone, M. P., Cattabeni, F., Abbracchio, M. P., & Burnstock, G. (1996). Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci., 19, 13–18.CrossRefGoogle ScholarPubMed
Neumann, S., Bradke, F., Tessier-Lavigne, M., & Basbaum, A. I. (2002). Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron, 34, 885–893.CrossRefGoogle ScholarPubMed
Neumann, S., Skinner, K., & Basbaum, A. I. (2005). Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration. Proc. Natl. Acad. Sci. USA, 102, 16848–16852.CrossRefGoogle ScholarPubMed
Ng, J. & Luo, L. (2004). Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron, 44, 779–793.CrossRefGoogle ScholarPubMed
Niederost, B., Oertle, T., Fritsche, J., McKinney, R. A., & Bandtlow, C. E. (2002). Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J. Neurosci., 22, 10368–10376.CrossRefGoogle ScholarPubMed
Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., & Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108, 233–246.CrossRefGoogle ScholarPubMed
Nixon, B. J., Doucette, R., Jackson, P. C., & Diamond, J. (1984). Impulse activity evokes precocious sprouting of nociceptive nerves into denervated skin. Somatosens. Res., 2, 97–126.CrossRefGoogle ScholarPubMed
Novikov, L., Novikova, L., & Kellerth, J. O. (1997). Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo. Neuroscience, 79, 765–774.CrossRefGoogle ScholarPubMed
Novikova, L., Novikov, L., & Kellerth, J. O. (1997). Effects of neurotransplants and BDNF on the survival and regeneration of injured adult spinal motoneurons. Eur. J. Neurosci., 9, 2774–2777.CrossRefGoogle ScholarPubMed
Novikova, L., Novikov, L., & Kellerth, J. O. (1997). Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates. J. Neurosci. Methods, 74, 9–15.CrossRefGoogle ScholarPubMed
Nukada, H. (1986). Increased susceptibility to ischemic damage in steptozocin diabetic nerve. Diabetes, 35, 1058–1061.CrossRefGoogle ScholarPubMed
Nukada, H. (1992). Mild ischemia causes severe pathological changes in experimental diabetic nerve. Muscle Nerve, 15, 1116–1122.CrossRefGoogle ScholarPubMed
Nukada, H. & Dyck, P. J. (1984). Microsphere embolization of nerve capillaries and fiber degeneration. Am. J. Pathol., 115, 275–287.Google ScholarPubMed
Nukada, H. & Dyck, P. J. (1987). Acute ischemia causes axonal stasis, swelling, attenuation and secondary demyelination. Ann. Neurol., 22, 311–318.CrossRefGoogle ScholarPubMed
Nukada, H., Dyck, P. J., & Karnes, J. L. (1985). Spatial distribution of capillaries in rat nerves: correlation to ischemic damage. Exp. Neurol., 87, 369–376.CrossRefGoogle ScholarPubMed
Nukada, H., Powell, H. C., & Myers, R. R. (1993). Spatial distribution of nerve injury after occlusion of individual major vessels in rat sciatic nerves. J. Neuropathol. Exp. Neurol., 52, 452–459.CrossRefGoogle ScholarPubMed
Oblinger, M. M. & Lasek, R. J. (1984). A conditioning lesion of the peripheral axons of dorsal root ganglion cells accelerates regeneration of only their peripheral axons. J. Neurosci., 4, 1736–1744.CrossRefGoogle ScholarPubMed
Oblinger, M. M., Wong, J., & Parysek, L. M. (1989). Axotomy-induced changes in the expression of a type III neuronal intermediate filament gene. J. Neurosci., 9, 3766–3775.CrossRefGoogle ScholarPubMed
Obrosova, I. G., Huysen, C., Fathallah, L.et al. (2000). Evaluation of alpha(1)-adrenoceptor antagonist on diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J., 14, 1548–1558.Google ScholarPubMed
Ochoa, J., Fowler, T. J., & Gilliatt, R. W. (1972). Anatomical changes in peripheral nerves compressed by a pneumatic tourniquet. J. Anat., 113, 433–455.Google ScholarPubMed
Ochoa, J. & Mair, W. G. (1969). The normal sural nerve in man. I. Ultrastructure and numbers of fibres and cells. Acta Neuropathol. (Berl.  ), 13, 197–216.CrossRefGoogle Scholar
Ochoa, J. & Mair, W. G. (1969). The normal sural nerve in man. II. Changes in the axons and Schwann cells due to ageing. Acta Neuropathol. (Berl.), 13, 217–239.CrossRefGoogle ScholarPubMed
Oestreicher, A. B., Graan, P. N. E., Gispen, W. H., Verhaagen, J., & Schrama, L. H. (1997). B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog. Neurobiol. 53, 627–686.CrossRefGoogle Scholar
Oestreicher, A. B., Dongen, C. J., Zwiers, H., & Gispen, W. H. (1983). Affinity-purified anti-B-50 protein antibody: interference with the function of the phosphoprotein B-50 in synaptic plasma membranes. J. Neurochem., 41, 331–340.CrossRefGoogle ScholarPubMed
Oestreicher, A. B., Zwiers, H., Schotman, P., & Gispen, W. H. (1981). Immunohistochemical localization of a phosphoprotein (B-50) isolated from rat brain synaptosomal plasma membranes. Brain Res. Bull., 6, 145–153.CrossRefGoogle ScholarPubMed
Ohnishi, A., O'Brien, P. C., & Dyck, P. J. (1974). Studies to improve fixation of human nerves. 2. Effect of time elapsed between death and glutaraldehyde fixation on relationship of axonal area to number of myelin lamellae. J. Neurol. Sci., 23, 387–390.CrossRefGoogle Scholar
Ohnishi, A., O'Brien, P. C., & Dyck, P. J. (1976). Studies to improve fixation of human nerves. IV. Effect of time elapsed between death and glutaraldehyde fixation on density of microtubules and neurofilaments. J. Neuropathol. Exp. Neurol., 35, 26–29.CrossRefGoogle ScholarPubMed
Ohnishi, A., O'Brien, P. C., & Dyck, P. J. (1976). Studies to improve fixation of human nerves. Part 3. Effect of osmolality of glutaraldhyde solutions on relationship of axonal area to number of myelin lamellae. J. Neurol. Sci., 27, 193–199.CrossRefGoogle ScholarPubMed
Ohnishi, A., O'Brien, P. C., & Dyck, P. J. (1976). Studies to improve fixation of human nerves. V. Effect of temperature, fixative and CaCl2 on density of microtubules and neurofilaments. J. Neuropathol. Exp. Neurol., 35, 167–179.CrossRefGoogle ScholarPubMed
Okajima, S., Mizoguchi, A., Tamai, K., Hirasawa, Y., & Ide, C. (1995). Distribution of protein kinase C (alpha, beta, gamma subtypes) in normal nerve fibers and in regenerating growth cones of the rat peripheral nervous system. Neuroscience, 66, 645–654.CrossRefGoogle ScholarPubMed
Okajima, S., Shirasu, M., Hirasawa, Y., & Ide, C. (2000). Ultrastructural characteristics and synaptophysin immunohistochemistry of regenerating nerve growth cones following traumatic injury to rat peripheral nerve. J. Reconstr. Microsurg., 16, 637–642.CrossRefGoogle ScholarPubMed
Olsson, Y. (1967). Degranulation of mast cells in peripheral nerve injuries. Acta Neurol. Scand., 43, 365–374.CrossRefGoogle ScholarPubMed
Olsson, Y. & Kristensson, K. (1971). Permeability of blood vessels and connective tissue sheaths in the peripheral nervous system to exogenous proteins. Acta Neuropathol. Suppl. 5, 61–69.Google ScholarPubMed
Olsson, Y. & Reese, T. S. (1971). Permeability of vasa nervorum and perineurium in mouse sciatic nerve studied by fluorescence and electron microscopy. J. Neuropathol. Exp. Neurol., 30, 105–119.CrossRefGoogle ScholarPubMed
Ono, S. (2003). Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin-interacting protein 1: new blades for twisted filaments. Biochemistry, 42, 13363–13370.CrossRefGoogle ScholarPubMed
Oppenheim, R. W., Prevette, D., Yin, Q. W., Collins, F., & MacDonald, J. (1991). Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science, 251, 1616–1618.CrossRefGoogle ScholarPubMed
Oppenheim, R. W., Wiese, S., Prevette, D.et al. (2001). Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons. J. Neurosci., 21, 1283–1291.CrossRefGoogle ScholarPubMed
Oudega, M., Xu, X. M., Guenard, V., Kleitman, N., & Bunge, M. B. (1997). A combination of insulin-like growth factor-I and platelet-derived growth factor enhances myelination but diminishes axonal regeneration into Schwann cell grafts in the adult rat spinal cord. Glia, 19, 247–258.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Ozmen, S., Ayhan, S., Latifoglu, O., & Siemionow, M. (2002). Stamp and paper method: a superior technique for the walking track analysis. Plast. Reconstr. Surg., 109, 1760–1761.CrossRefGoogle ScholarPubMed
Parmantier, E., Lynn, B., Lawson, D.et al. (1999). Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths. Neuron, 23, 713–724.CrossRefGoogle ScholarPubMed
Parry, G. J. & Brown, M. J. (1981). Arachidonate-induced experimental nerve infarction. J. Neurol. Sci., 50, 123–133.CrossRefGoogle ScholarPubMed
Parry, G. J. & Linn, D. J. (1988). Conduction block without demyelination following acute nerve infarction. J. Neurol. Sci., 84, 265–273.CrossRefGoogle ScholarPubMed
Pasterkamp, R. J. & Verhaagen, J. (2006). Semaphorins in axon regeneration: developmental guidance molecules gone wrong?Philos. Trans. R. Soc. Lond. B Biol. Sci., 361, 1499–1511.CrossRefGoogle ScholarPubMed
Pataky, D. M., Borisoff, J. F., Fernandes, K. J., Tetzlaff, W., & Steeves, J. D. (2000). Fibroblast growth factor treatment produces differential effects on survival and neurite outgrowth from identified bulbospinal neurons in vitro. Exp. Neurol., 163, 357–372.CrossRefGoogle ScholarPubMed
Patti, M. E., Sun, X. J., Bruening, J. C.et al. (1995). 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice. J. Biol. Chem., 270, 24670–24673.CrossRefGoogle ScholarPubMed
Paves, H. & Saarma, M. (1997). Neurotrophins as in vitro growth cone guidance molecules for embryonic sensory neurons. Cell Tissue Res., 290, 285–297.CrossRefGoogle ScholarPubMed
Peng, H. B., Yang, J. F., Dai, Z.et al. (2003). Differential effects of neurotrophins and Schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J. Neurosci., 23, 5050–5060.CrossRefGoogle ScholarPubMed
Perlson, E., Hanz, S., Ben-Yaakov, K.et al. (2005). Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve 1. Neuron, 45, 715–726.CrossRefGoogle Scholar
Perlson, E., Medzihradszky, K. F., Darula, Z.et al. (2004). Differential proteomics reveals multiple components in retrogradely transported axoplasm after nerve injury. Mol. Cell Proteomics. 3, 510–520.CrossRefGoogle ScholarPubMed
Perrin, F. E., Lacroix, S., Aviles-Trigueros, M., & David, S. (2005). Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain, 128, 854–866.CrossRefGoogle ScholarPubMed
Perry, V. H., Brown, M. C., & Andersson, P. B. (1993). Macrophage responses to central and peripheral nerve injury. Adv. Neurol., 59, 309–314.Google ScholarPubMed
Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440, 1069–1072.CrossRefGoogle ScholarPubMed
Peters, A., Palay, S. L., & Webster, H. D. (1991). The Fine Structure of the Nervous System, 3rd edn. New York: Oxford University Press.Google Scholar
Pfister, L. A., Papaloizos, M., Merkle, H. P., & Gander, B. (2007). Nerve conduits and growth factor delivery in peripheral nerve repair. J. Peripher. Nerv. Syst., 12, 65–82.CrossRefGoogle ScholarPubMed
Plantinga, L. C., Verhaagen, J., Edwards, P. M.et al. (1993). The expression of B-50/GAP-43 in Schwann cells in upregulated degenerating peripheral nerve stumps following nerve injury. Brain Res., 602, 69–76.CrossRefGoogle ScholarPubMed
Plewnia, C., Wallace, C., & Zochodne, D. W. (1999). Traumatic sciatic neuropathy: a novel cause, local experience, and a review of the literature. J. Trauma, 47, 986–991.CrossRefGoogle Scholar
Plunet, W., Kwon, B. K., & Tetzlaff, W. (2002). Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. J. Neurosci. Res., 68, 1–6.CrossRefGoogle ScholarPubMed
Polydefkis, M., Hauer, P., Sheth, S.et al. (2004). The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain, 127, 1606–1615.CrossRefGoogle ScholarPubMed
Price, R. D., Yamaji, T., Yamamoto, H.et al. (2005). FK1706, a novel non-immunosuppressive immunophilin: neurotrophic activity and mechanism of action. Eur. J. Pharmacol., 509, 11–19.CrossRefGoogle ScholarPubMed
Pugliese, G., Tilton, R. G., Speedy, A.et al. (1989). Effects of very mild versus overt diabetes on vascular haemodynamics and barrier function in rats. Diabetologia, 32, 845–857.CrossRefGoogle ScholarPubMed
Puigdellivol-Sanchez, A., Prats-Galino, A., & Molander, C. (2006). Estimations of topographically correct regeneration to nerve branches and skin after peripheral nerve injury and repair. Brain Res., 1098, 49–60.CrossRefGoogle ScholarPubMed
Qi, M. L., Wakabayashi, Y., Haro, H., & Shinomiya, K. (2003). Changes in FGF-2 expression in the distal spinal cord stump after complete cord transection: a comparison between infant and adult rats. Spine, 28, 1934–1940.CrossRefGoogle ScholarPubMed
Qiu, J., Cai, D., Dai, H.et al. (2002). Spinal axon regeneration induced by elevation of cyclic AMP. Neuron, 34, 895–903.CrossRefGoogle ScholarPubMed
Quayle, J. M., Bonev, A. D., Brayden, J. E., & Nelson, M. T. (1994). Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinaseAm. J. Physiol., 475 (1), 9–13.CrossRefGoogle ScholarPubMed
Rabinovsky, E. D., Smith, G. M., Browder, D. P., Shine, H. D., & McManaman, J. L. (1992). Peripheral nerve injury down-regulates CNTF expression in adult rat sciatic nerves. J. Neurosci. Res., 31, 188–192.CrossRefGoogle ScholarPubMed
Raff, M. C., Sangalang, V., & Asbury, A. K. (1968). Ischemic mononeuropathy multiplex associated with diabetes mellitus. Arch. Neurol., 18, 487–499.CrossRefGoogle ScholarPubMed
Rafuse, V. F., Gordon, T., & Orozco, R. (1992). Proportional enlargement of motor units after partial denervation of cat triceps surae muscles. J. Neurophysiol., 68, 1261–1276.CrossRefGoogle ScholarPubMed
Raivich, G., Bohatschek, M., Da Costa, C.et al. (2004). The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron, 43, 57–67.CrossRefGoogle ScholarPubMed
Rajagopal, R., Chen, Z. Y., Lee, F. S., & Chao, M. V. (2004). Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J. Neurosci., 24, 6650–6658.CrossRefGoogle ScholarPubMed
Ramji, N., Toth, C., Kennedy, J., & Zochodne, D. W. (2007). Does diabetes mellitus target motor neurons?Neurobiol. Dis., 26, 301–311.CrossRefGoogle ScholarPubMed
Ramon, yCajal, S. (1928). Degeneration and regeneration of the nervous system. In Cajal's Degeneration and Regeneration of the Nervous System, ed. DeFelipe, J. & Jones, E. G.. Oxford: Oxford University Press.Google Scholar
Rangappa, N., Romero, A., Nelson, K. D., Eberhart, R. C., & Smith, G. M. (2000). Laminin-coated poly(L-lactide) filaments induce robust neurite growth while providing directional orientation. J. Biomed. Mater. Res., 51, 625–634.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Rechthand, E., Hervonen, A., Sato, S., & Rapoport, S. I. (1986). Distribution of adrenergic innervation of blood vessels in peripheral nerve. Brain Res., 374, 185–189.CrossRefGoogle ScholarPubMed
Rechthand, E. & Rapoport, S. I. (1987). Regulation of the microenvironment of peripheral nerve: role of the blood nerve barrier. Prog. Neurobiol., 28, 303–343.CrossRefGoogle ScholarPubMed
Rechthand, E., Sato, S., Oberg, P. A., & Rapoport, S. I. (1988). Sciatic nerve blood flow response to carbon dioxide. Brain Res., 446, 61–66.CrossRefGoogle ScholarPubMed
Recio-Pinto, E., Rechler, M. M., & Ishii, D. N. (1986). Effects of insulin, insulin-like growth factor-II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons. J. Neurosci., 6, 1211–1219.CrossRefGoogle ScholarPubMed
Redett, R., Jari, R., Crawford, T.et al. (2005). Peripheral pathways regulate motoneuron collateral dynamics. J. Neurosci., 25, 9406–9412.CrossRefGoogle ScholarPubMed
Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci., 361, 1545–1564.CrossRefGoogle ScholarPubMed
Richardson, P. M. & Lu, X. (1994). Inflammation and axonal regeneration. J. Neurol., 242, S57–S60.CrossRefGoogle ScholarPubMed
Richardson, P. M. & Verge, V. M. (1986). The induction of a regenerative propensity in sensory neurons following peripheral axonal injury. J. Neurocytol., 15, 585–594.CrossRefGoogle ScholarPubMed
Riethmacher, D., Sonnenberg-Riethmacher, E., Brinkmann, V.et al. (1997). Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature, 389, 725–730.CrossRefGoogle Scholar
Rong, L. L., Trojaborg, W., Qu, W.et al. (2004). Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J., 18, 1812–1817.CrossRefGoogle ScholarPubMed
Rong, L. L., Yan, S. F., Wendt, T.et al. (2004). RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways. FASEB J., 18, 1818–1825.CrossRefGoogle ScholarPubMed
Rosslenbroich, V., Dai, L., Baader, S. L.et al. (2005). Collapsin response mediator protein-4 regulates F-actin bundling. Exp. Cell Res., 310, 434–444.CrossRefGoogle ScholarPubMed
Rotshenker, S. (1981). Sprouting and synapse formation by motor axons separated from their cell bodies. Brain Res., 223, 141–145.CrossRefGoogle ScholarPubMed
Rufer, M., Flanders, K., & Unsicker, K. (1994). Presence and regulation of transforming growth factor beta mRNA and protein in the normal and lesioned rat sciatic nerve. J. Neurosci. Res., 39, 412–423.CrossRefGoogle ScholarPubMed
Rundquist, I., Smith, Q. R., Michel, M. E.et al. (1985). Sciatic nerve blood flow measured by laser Doppler flowometry and [14C]iodoantipyrine. Am. J. Physiol., 248, H311–H317.Google Scholar
Russell, J. W., Sullivan, K. A., Windebank, A. J., Herrmann, D. N., & Feldman, E. L. (1999). Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol. Dis., 6, 347–363.CrossRefGoogle ScholarPubMed
Sabatini, D. M., Lai, M. M., & Snyder, S. H. (1997). Neural roles of immunophilins and their ligands. Mol. Neurobiol., 15, 223–239.CrossRefGoogle ScholarPubMed
Sahenk, Z., Seharaseyon, J., & Mendell, J. R. (1994). CNTF potentiates peripheral nerve regeneration. Brain Res., 655, 246–250.CrossRefGoogle ScholarPubMed
Saito, H., Nakao, Y., Takayama, S., Toyama, Y., & Asou, H. (2005). Specific expression of an HNK-1 carbohydrate epitope and NCAM on femoral nerve Schwann cells in mice. Neurosci. Res., 53, 314–322.CrossRefGoogle ScholarPubMed
Sakamoto, T., Kawazoe, Y., Shen, J. S.et al. (2003). Adenoviral gene transfer of GDNF, BDNF and TGF beta 2, but not CNTF, cardiotrophin-1 or IGF1, protects injured adult motoneurons after facial nerve avulsion. J. Neurosci. Res., 72, 54–64.CrossRefGoogle ScholarPubMed
Salafsky, B., Bell, J., & Prewitt, M. A. (1968). Development of fibrillation potentials in denervated fast and slow skeletal muscle. Am. J. Physiol., 215, 637–643.Google ScholarPubMed
Salvarezza, S. B., Lopez, H. S., & Masco, D. H. (2003). The same cellular signaling pathways mediate survival in sensory neurons that switch their trophic requirements during development. J. Neurochem., 85, 1347–1358.CrossRefGoogle ScholarPubMed
Sandvig, A., Berry, M., Barrett, L. B., Butt, A., & Logan, A. (2004). Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia, 46, 225–251.CrossRefGoogle ScholarPubMed
Sariola, H. & Saarma, M. (2003). Novel functions and signalling pathways for GDNF. J. Cell Sci., 116, 3855–3862.CrossRefGoogle ScholarPubMed
Sasaki, Y., Araki, T., & Milbrandt, J. (2006). Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy 1200. J. Neurosci., 26, 8484–8491.CrossRefGoogle Scholar
Saxena, S., Bucci, C., Weis, J., & Kruttgen, A. (2005). The small GTPase Rab7 controls the endosomal trafficking and neuritogenic signaling of the nerve growth factor receptor TrkA. J. Neurosci., 25, 10930–10940.CrossRefGoogle ScholarPubMed
Sayan, H., Ugurlu, B., Babul, A., Take, G., & Erdogan, D. (2004). Effects of L-arginine and NG-nitro L-arginine methyl ester on lipid peroxide, superoxide dismutase and nitrate levels after experimental sciatic nerve ischemia–reperfusion in rats. Int J. Neurosci., 114, 349–364.CrossRefGoogle ScholarPubMed
Scaravilli, F., Love, S., & Myers, R. (1986). X-irradiation impairs regeneration of peripheral nerve across a gap. J. Neurocytol., 15, 439–449.CrossRefGoogle ScholarPubMed
Scarlato, M., Ara, J., Bannerman, P., Scherer, S., & Pleasure, D. (2003). Induction of neuropilins-1 and -2 and their ligands, Sema3A, Sema3F, and VEGF, during Wallerian degeneration in the peripheral nervous system. Exp. Neurol., 183, 489–498.CrossRefGoogle ScholarPubMed
Schenone, A. E. & Dyck, P. J. (1987). Which endoneurial microvessel histologic measurements are least influenced by vasomotor tone?Brain Res., 402, 151–154.CrossRefGoogle ScholarPubMed
Scherer, S. S. & Arroyo, E. J. (2002). Recent progress on the molecular organization of myelinated axons. J. Peripher. Nerv. Syst., 7, 1–12.CrossRefGoogle ScholarPubMed
Schmelzer, J. D., Zochodne, D. W., & Low, P. A. (1989). Ischemic and reperfusion injury of rat peripheral nerve. Proc. Natl. Acad. Sci. USA, 86, 1639–1642.CrossRefGoogle ScholarPubMed
Schmidt, R., Grabau, G., & Yip, H. (1986). Retrograde axonal transport of 125I nerve growth factor in Ileal mesenteric nerves in vitro. Brain Res., 378, 325.CrossRefGoogle ScholarPubMed
Schmidt, R. E. & Yip, H. K. (1985). Retrograde axonal transport in rat ileal mesenteric nerves. Characterization using intravenously administered 125I-nerve growth factor and effect of chemical sympathectomy. Diabetes, 34, 1222–1229.CrossRefGoogle ScholarPubMed
Schroder, J. M. (2001). Pathology of Peripheral Nerves. Berlin: Springer.CrossRefGoogle Scholar
Scott, S. A. (1988). Skin sensory innervation patterns in embryonic chick hindlimbs deprived of motoneurons. Dev. Biol, 126, 362–374.CrossRefGoogle ScholarPubMed
Seckel, B. R. (1990). Enhancement of peripheral nerve regeneration. Muscle Nerve, 13, 785–800.CrossRefGoogle ScholarPubMed
Seidel, C. & Bicker, G. (2000). Nitric oxide and cGMP influence axonogenesis of antennal pioneer neurons. Development, 127, 4541–4549.Google ScholarPubMed
Seijffers, R., Allchorne, A. J., & Woolf, C. J. (2006). The transcription factor ATF-3 promotes neurite outgrowth. Mol. Cell Neurosci., 32, 143–154.CrossRefGoogle ScholarPubMed
Seilheimer, B. & Schachner, M. (1987). Regulation of neural cell adhesion molecule expression on cultured mouse Schwann cells by nerve growth factor. EMBO J., 6, 1611–1616.Google ScholarPubMed
Senaldi, G., Varnum, B. C., Sarmiento, U.et al. (1999). Novel neurotrophin-1/B cell-stimulating factor-3: a cytokine of the IL-6 family. Proc. Natl. Acad. Sci. USA, 96, 11458–11463.CrossRefGoogle ScholarPubMed
Shao, Z., Browning, J. L., Lee, X.et al. (2005). TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron, 45, 353–359.CrossRefGoogle ScholarPubMed
Sharkey, K. A. & Lomax, A. E. (2002). Structure and function of the enteric nervous system: neurological disease and its consequences for neuromuscular function in the gastrointestinal tract. In Neuromuscular Function and Disease, ed. Brown, W. F., Bolton, C. F., & Aminoff, M. J.. Philadelphia: W. B. Saunders, pp. 527–555.Google Scholar
Sharma, A. K. & Thomas, P. K. (1975). Peripheral nerve regeneration in experimental diabetes. J. Neurol. Sci., 24, 417–424.CrossRefGoogle ScholarPubMed
Sharp, P., Krishnan, M., Pullar, O.et al. (2006). Heat shock protein 27 rescues motor neurons following nerve injury and preserves muscle function. Exp. Neurol., 198, 511–518.CrossRefGoogle ScholarPubMed
Shaw, G. (1998). Neurofilaments. Georgetown: Springer.Google Scholar
Shirane, M. & Nakayama, K. I. (2006). Protrudin induces neurite formation by directional membrane trafficking. Science, 314, 818–821.CrossRefGoogle ScholarPubMed
Shirley, D. M., Williams, S. A., & Santos, P. M. (1996). Brain-derived neurotrophic factor and peripheral nerve regeneration: a functional evaluation. Laryngoscope, 106, 629–632.CrossRefGoogle ScholarPubMed
Shooter, E. M. (2001). Early days of the nerve growth factor proteins. Annu. Rev. Neurosci., 24, 601–629.CrossRefGoogle ScholarPubMed
Shy, M. E., Frohman, E. M., So, Y. T.et al. (2003). Quantitative sensory testing: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology, 60, 898–904.CrossRefGoogle ScholarPubMed
Siconolfi, L. B. & Seeds, N. W. (2001). Induction of the plasminogen activator system accompanies peripheral nerve regeneration after sciatic nerve crush. J. Neurosci., 21, 4336–4347.CrossRefGoogle ScholarPubMed
Siconolfi, L. B. & Seeds, N. W. (2001). Mice lacking tPA, uPA, or plasminogen genes showed delayed functional recovery after sciatic nerve crush. J. Neurosci., 21, 4348–4355.CrossRefGoogle ScholarPubMed
Siironen, J., Vuorinen, V., Taskinen, H. S., & Roytta, M. (1995). Axonal regeneration into chronically denervated distal stump. 2. Active expression of type I collagen mRNA in epineurium. Acta Neuropathol., 89, 219–226.CrossRefGoogle ScholarPubMed
Simon, M., Porter, R., Brown, R., Coulton, G. R., & Terenghi, G. (2003). Effect of NT-4 and BDNF delivery to damaged sciatic nerves on phenotypic recovery of fast and slow muscles fibres. Eur. J. Neurosci., 18, 2460–2466.CrossRefGoogle ScholarPubMed
Simon, M., Terenghi, G., Green, C. J., & Coulton, G. R. (2000). Differential effects of NT-3 on reinnervation of the fast extensor digitorum longus (EDL) and the slow soleus muscle of rat. Eur. J. Neurosci., 12, 863–871.CrossRefGoogle ScholarPubMed
Simpson, S. A. & Young, J. Z. (1945). Regeneration of fibre diameter after cross-unions of visceral and somatic nerves. J. Anat., 79, 48–65.Google ScholarPubMed
Skene, J. H. & Willard, M. (1981). Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J. Cell Biol., 89, 96–103.CrossRefGoogle ScholarPubMed
Sommer, C. & Myers, R. R. (1996). Vascular pathology in CCI neuropathy: a quantitative temporal study. Exp. Neurol., 141, 113–119.CrossRefGoogle ScholarPubMed
Son, Y.-J., Trachtenberg, J. T., & Thompson, W. J. (1996). Schwann cells induce and guide sprouting and reinnervation of neuromuscular junctions. Trends Neurosci., 19, 280–285.CrossRefGoogle ScholarPubMed
Sondell, M., Fex-Svenningsen, A., & Kanje, M. (1997). The insulin-like growth factors I and II stimulate proliferation of different types of Schwann cells. NeuroReport, 8, 2871–2876.CrossRefGoogle ScholarPubMed
Sondell, M., Lundborg, G., & Kanje, M. (1999). Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci., 19, 5731–5740.CrossRefGoogle ScholarPubMed
Sondell, M., Lundborg, G., & Kanje, M. (1999). Vascular endothelial growth factor stimulates Schwann cell invasion and neovascularization of acellular nerve grafts. Brain Res., 846, 219–228.CrossRefGoogle ScholarPubMed
Song, H. J., Ming, G. L., & Poo, M. M. (1997). cAMP-induced switching in turning direction of nerve growth cones. Nature, 388, 275–279.CrossRefGoogle ScholarPubMed
Sosa, I., Reyes, O., & Kuffler, D. P. (2005). Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions. Exp. Neurol., 195, 7–15.CrossRefGoogle ScholarPubMed
Stalberg, E. & Trontelj, J. V. (1979). Single Fibre Electromyography, 1st edn. Old Woking, Surrey: Miravelle Press.Google Scholar
Steinmetz, M. P., Horn, K. P., Tom, V. J.et al. (2005). Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord. J. Neurosci., 25, 8066–8076.CrossRefGoogle Scholar
Sterne, G. D., Brown, R. A., Green, C. J., & Terenghi, G. (1997). Neurotrophin-3 delivered locally via fibronectin mats enhances peripheral nerve regeneration. Eur. J. Neurosci., 9, 1388–1396.CrossRefGoogle ScholarPubMed
Sterne, G. D., Coulton, G. R., Brown, R. A., Green, C. J., & Terenghi, G. (1997). Neurotrophin-3-enhanced nerve regeneration selectively improves recovery of muscle fibers expressing myosin heavy chains 2b. J. Cell Biol., 139, 709–715.CrossRefGoogle ScholarPubMed
Stevens, M. J., Obrosova, I., Cao, X., Huysen, C., & Greene, D. A. (2000). Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes, 49, 1006–1015.CrossRefGoogle ScholarPubMed
Stewart, H. J., Eccleston, P. A., Jessen, K. R., & Mirsky, R. (1991). Interaction between cAMP elevation, identified growth factors, and serum components in regulating Schwann cell growth. J. Neurosci. Res., 30, 346–352.CrossRefGoogle ScholarPubMed
Stewart, H. J., Turner, D., Jessen, K. R., & Mirsky, R. (1997). Expression and regulation of alpha1beta1 integrin in Schwann cells. J. Neurobiol., 33, 914–928.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Stoll, G., Griffin, J. W., Li, C. Y., & Trapp, B. D. (1989). Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J. Neurocytol., 18, 671–683.CrossRefGoogle ScholarPubMed
Stoll, G. & Jander, S. (1999). The role of microglia and macrophages in the pathophysiology of the CNS. Prog. Neurobiol., 58, 233–247.CrossRefGoogle ScholarPubMed
Stoll, G., Jander, S., & Myers, R. R. (2002). Degeneration and regeneration of the peripheral nervous system: from Augustus Waller's observations to neuroinflammation. J. Peripher. Nerv. Syst., 7, 13–27.CrossRefGoogle ScholarPubMed
Stoll, G., Jung, S., Jander, S., , M. P., & Hartung, H. P. (1993). Tumor necrosis factor-alpha in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. J. Neuroimmunol., 45, 175–182.CrossRefGoogle ScholarPubMed
Storkebaum, E. & Carmeliet, P. (2004). VEGF: a critical player in neurodegeneration. J. Clin. Invest., 113, 14–18.CrossRefGoogle ScholarPubMed
Strand, F. L. & Kung, T. T. (1980). ACTH accelerates recovery of neuromuscular function following crushing of peripheral nerve. Peptides, 1, 135–138.CrossRefGoogle ScholarPubMed
Streppel, M., Azzolin, N., Dohm, S.et al. (2002). Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion. Eur. J. Neurosci., 15, 1327–1342.CrossRefGoogle ScholarPubMed
Sugimoto, H., Monafo, W. W., & Eliasson, S. G. (1986). Regional sciatic nerve and muscle blood flow in conscious and anesthetized rats. Am. J. Physiol., 251, H1211–H1216.Google ScholarPubMed
Sugimoto, K., Murakawa, Y., Zhang, W., Xu, G., & Sima, A. A. (2000). Insulin receptor in rat peripheral nerve: its localization and alternatively spliced isoforms. Diabetes Metab.Res. Rev., 16, 354–363.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Sugimoto, K. & Yagihashi, S. (1997). Effects of aminoguanidine on structural alterations of microvessels in peripheral nerve of streptozotocin diabetic rats. Microvasc. Res., 53, 105–112.CrossRefGoogle ScholarPubMed
Sugiura, S., Lahav, R., Han, J.et al. (2000). Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur. J. Neurosci., 12, 457–466.CrossRefGoogle ScholarPubMed
Sulaiman, O. A. & Gordon, T. (2000). Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination, and size. Glia, 32, 234–246.3.0.CO;2-3>CrossRefGoogle Scholar
Sulaiman, O. A. & Gordon, T. (2002). Transforming growth factor-beta and forskolin attenuate the adverse effects of long-term Schwann cell denervation on peripheral nerve regeneration in vivo. Glia, 37, 206–218.CrossRefGoogle ScholarPubMed
Sulaiman, O. A., Midha, R., Munro, C. A.et al. (2002). Chronic Schwann cell denervation and the presence of a sensory nerve reduce motor axonal regeneration. Exp. Neurol., 176, 342–354.CrossRefGoogle ScholarPubMed
Sulaiman, O. A., Voda, J., Gold, B. G., & Gordon, T. (2002). FK506 increases peripheral nerve regeneration after chronic axotomy but not after chronic Schwann cell denervation. Exp. Neurol., 175, 127–137.CrossRefGoogle Scholar
Sunderland, S. (1978). Nerves and Nerve Injuries, 2nd edn. Edinburgh: Churchill Livingstone.Google Scholar
Suter, U. & Martini, R. (2005). Myelination. In Peripheral Neuropathy, 4th edn., ed. Dyck, P. J. & Thomas, P. K.. Philadelphia: Elsevier Saunders, pp. 411–431.CrossRefGoogle Scholar
Sutera, S. P., Chang, K., Marvel, J., & Williamson, J. R. (1992). Concurrent increases in regional hematocrit and blood flow in diabetic rats: prevention by sorbinil. Am. J. Physiol., 263, H945–H950.Google ScholarPubMed
Tam, S. L., Archibald, V., Jassar, B., Tyreman, N., & Gordon, T. (2001). Increased neuromuscular activity reduces sprouting in partially denervated muscles. J. Neurosci., 21, 654–667.CrossRefGoogle ScholarPubMed
Tam, S. L. & Gordon, T. (2003). Mechanisms controlling axonal sprouting at the neuromuscular junction. J. Neurocytol., 32, 961–974.CrossRefGoogle ScholarPubMed
Tan, W., Rouen, S., Barkus, K. M.et al. (2003). Nerve growth factor blocks the glucose-induced down-regulation of caveolin-1 expression in Schwann cells via p75 neurotrophin receptor signaling. J. Biol. Chem., 278, 23151–23162.CrossRefGoogle ScholarPubMed
Tanaka, A., Kamiakito, T., Hakamata, Y.et al. (2001). Extensive neuronal localization and neurotrophic function of fibroblast growth factor 8 in the nervous system. Brain Res., 912, 105–115.CrossRefGoogle Scholar
Tanaka, T., Saito, H., & Matsuki, N. (1993). Endogenous nitric oxide inhibits NMDA- and kainate-responses by a negative feedback system in rat hippocampal neurons. Brain Res., 631, 72–76.CrossRefGoogle ScholarPubMed
Tang, F. & Kalil, K. (2005). Netrin-1 induces axon branching in developing cortical neurons by frequency-dependent calcium signaling pathways. J. Neurosci., 25, 6702–6715.CrossRefGoogle ScholarPubMed
Tani, T., Miyamoto, Y., Fujimori, K. E.et al. (2005). Trafficking of a ligand-receptor complex on the growth cones as an essential step for the uptake of nerve growth factor at the distal end of the axon: a single-molecule analysis. J. Neurosci., 25, 2181–2191.CrossRefGoogle ScholarPubMed
Teng, F. Y. & Tang, B. L. (2006). Axonal regeneration in adult CNS neurons – signaling molecules and pathways. J. Neurochem., 96, 1501–1508.CrossRefGoogle ScholarPubMed
Terada, M., Yasuda, H., & Kikkawa, R. (1998). Delayed Wallerian degeneration and increased neurofilament phosphorylation in sciatic nerves of rats with streptozocin- induced diabetes. J. Neurol. Sci., 155, 23–30.CrossRefGoogle ScholarPubMed
Terada, M., Yasuda, H., Kikkawa, R., & Shigeta, Y. (1996). Tolrestat improves nerve regeneration after crush injury in streptozocin-induced diabetic rats. Metabolism, 45, 1189–1195.CrossRefGoogle ScholarPubMed
Terashima, T., Yasuda, H., Terada, M.et al. (2001). Expression of Rho-family GTPases (Rac, cdc42, RhoA) and their association with p-21 activated kinase in adult rat peripheral nerve. J. Neurochem., 77, 986–993.CrossRefGoogle ScholarPubMed
Tesfaye, S., Harris, N., Jakubowski, J. J.et al. (1993). Impaired blood flow and arterior-venous shunting in human diabetic neuropathy: a novel technique of nerve photography and fluorescein angiography. Diabetologia, 36, 1266–1274.CrossRefGoogle Scholar
Tetzlaff, W., Bisby, M. A., & Kreutzberg, G. W. (1988). Changes in cytoskeletal proteins in the rat facial nucleus following axotomy. J. Neurosci., 8, 3181–3189.CrossRefGoogle ScholarPubMed
Tetzlaff, W., Zwiers, H., Lederis, K., Cassar, L., & Bisby, M. A. (1989). Axonal transport and localization of B-50/GAP-43-like immunoreactivity in regenerating sciatic and facial nerves of the rat. J. Neurosci., 9, 1303–1313.CrossRefGoogle ScholarPubMed
Theriault, E. & Diamond, J. (1988). Nociceptive cutaneous stimuli evoke localized contractions in a skeletal muscle. J. Neurophysiol., 60, 446–462.CrossRefGoogle Scholar
Theriault, M., Dort, J., Sutherland, G., & Zochodne, D. W. (1998). A prospective quantitative study of sensory deficits after whole sural nerve biopsies in diabetic and nondiabetic patients. Surgical approach and the role of collateral sprouting. Neurology, 50, 480–484.CrossRefGoogle ScholarPubMed
Thoenen, H. & Barde, Y. A. (1980). Physiology of nerve growth factor. Physiol. Rev., 60, 1284–1335.CrossRefGoogle ScholarPubMed
Tilton, R. G., Chang, K., Nyengaard, J. R.et al. (1995). Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin-induced diabetic rats. Diabetes, 44, 234–242.CrossRefGoogle ScholarPubMed
Tinel, J. (1918). Nerve Wounds, Symptomatology of Peripheral Nerve Lesions Caused by War Wounds. New York: William Wood and Company.Google Scholar
Tofaris, G. K., Patterson, P. H., Jessen, K. R., & Mirsky, R. (2002). Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J. Neurosci., 22, 6696–6703.CrossRefGoogle Scholar
Tolwani, R. J., Cosgaya, J. M., Varma, S.et al. (2004). BDNF overexpression produces a long-term increase in myelin formation in the peripheral nervous system. J. Neurosci.Res., 77, 662–669.CrossRefGoogle ScholarPubMed
Tonge, D., Edbladh, M., Edstrom, A., & Kanje, M. (1992). An improved HRP method for tracing axons in whole-mount preparations during early stages of regeneration in peripheral nerves of adult animals. J. Neurosci. Methods, 44, 27–31.CrossRefGoogle ScholarPubMed
Tonge, D., Edstrom, A., & Ekstrom, P. (1998). Use of explant cultures of peripheral nerves of adult vertebrates to study axonal regeneration in vitro. Prog. Neurobiol., 54, 459–480.CrossRefGoogle ScholarPubMed
Tonra, J. R., Curtis, R., Wong, V.et al. (1998). Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J. Neurosci., 18, 4374–4383.CrossRefGoogle ScholarPubMed
Torigoe, K., Hashimoto, K., & Lundborg, G. (1999). A role of migratory Schwann cells in a conditioning effect of peripheral nerve regeneration. Exp. Neurol., 160, 99–108.CrossRefGoogle Scholar
Tosney, K. W. & Landmesser, L. T. (1985). Growth cone morphology and trajectory in the lumbosacral region of the chick embryo. J. Neurosci., 5, 2345–2358.CrossRefGoogle ScholarPubMed
Toth, C., Brussee, V., & Martinez, J. A.et al. (2006). Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin. Neuroscience, 139, 429–449.CrossRefGoogle ScholarPubMed
Toth, C., Brussee, V., & Zochodne, D. W. (2006). Remote neurotrophic support of epidermal nerve fibres in experimental diabetes. Diabetologia, 49, 1081–1088.CrossRefGoogle ScholarPubMed
Toth, C., Martinez, J. A., & Zochodne, D. W. (2006). Local axon synthesis of CGRP peptide is essential for adult nerve regeneration [abstract]. Soc. Neurosci. Abs., 2006.Google Scholar
Triban, C., Guidolin, D., Fabris, M.et al. (1989). Ganglioside treatment and improved axonal regeneration capacity in experimental diabetic neuropathy. Diabetes, 38, 1012–1022.CrossRefGoogle ScholarPubMed
Triolo, D., Dina, G., Lorenzetti, I.et al. (2006). Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage. J. Cell Sci., 119, 3981–3993.CrossRefGoogle ScholarPubMed
Truong, W., Cheng, C., Xu, Q. G., Li, X. Q., & Zochodne, D. W. (2003). Mu opioid receptors and analgesia at the site of a peripheral nerve injury. Ann. Neurol., 53, 366–375.CrossRefGoogle ScholarPubMed
Tseng, T. J., Chen, C. C., Hsieh, Y. L., & Hsieh, S. T. (2007). Effects of decompression on neuropathic pain behaviors and skin reinnervation in chronic constriction injury. Exp. Neurol., 204, 574–582.CrossRefGoogle ScholarPubMed
Tsuda, M., Shigemoto-Mogami, Y., Koizumi, S.et al. (2003). P2 X 4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature, 424, 778–783.CrossRefGoogle Scholar
Tuck, R. R., Schmelzer, J. D., & Low, P. A. (1984). Endoneurial blood flow and oxygen tension in the sciatic nerves of rats with experimental diabetic neuropathy. Brain, 107, 935–950.CrossRefGoogle ScholarPubMed
Tucker, B. A., Rahimtula, M., & Mearow, K. M. (2006). Laminin and growth factor receptor activation stimulates differential growth responses in subpopulations of adult DRG neurons. Eur. J. Neurosci., 24, 676–690.CrossRefGoogle ScholarPubMed
Tucker, K. L., Meyer, M., & Barde, Y. A. (2001). Neurotrophins are required for nerve growth during development. Nat. Neurosci., 4, 29–37.CrossRefGoogle ScholarPubMed
Udina, E., Voda, J., Gold, B. G., & Navarro, X. (2003). Comparative dose-dependence study of FK506 on transected mouse sciatic nerve repaired by allograft or xenograft. J. Peripher. Nerv. Syst., 8, 145–154.CrossRefGoogle ScholarPubMed
Valdez, G., Akmentin, W., Philippidou, P.et al. (2005). Pincher-mediated macroendocytosis underlies retrograde signaling by neurotrophin receptors. J. Neurosci., 25, 5236–5247.CrossRefGoogle ScholarPubMed
Kesteren, R. E., Carter, C., Dissel, H. M.et al. (2006). Local synthesis of actin-binding protein beta-thymosin regulates neurite outgrowth. J. Neurosci., 26, 152–157.CrossRefGoogle ScholarPubMed
Minnen, J., Bergman, J. J., Kesteren, E. R.et al. (1997). De novo protein synthesis in isolated axons of identified neurons. Neuroscience, 80, 1–7.Google ScholarPubMed
Van, D., V. & Roberts, L. J. (1999). Contrasting roles for nitric oxide and peroxynitrite in the peroxidation of myelin lipids. J. Neuroimmunol., 95, 1–7.Google Scholar
Vance, J. E., Campenot, R. B., & Vance, D. E. (2000). The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim. Biophys. Acta, 1486, 84–96.CrossRefGoogle ScholarPubMed
Verdu, E., Ceballos, D., Vilches, J. J., & Navarro, X. (2000). Influence of aging on peripheral nerve function and regeneration. J. Peripher. Nerv. Syst., 5, 191–208.CrossRefGoogle ScholarPubMed
Verge, V. M. K., Gratto, K. A., Karchewski, L. A., & Richardson, P. M. (1996). Neurotrophins and nerve injury in the adult. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 351, 423–430.CrossRefGoogle ScholarPubMed
Verge, V. M. K., Tetzlaff, W., Bisby, M. A., & Richardson, P. M. (1990). Influence of nerve growth factor on neurofilament gene expression in mature primary sensory neurons. J. Neurosci., 10, 2018–2025.CrossRefGoogle ScholarPubMed
Verhaagen, J., Hooff, C. O., Edwards, P. M.et al. (1986). The kinase C substrate protein B-50 and axonal regeneration. Brain Res. Bull., 17, 737–741.CrossRefGoogle ScholarPubMed
Verma, P., Chierzi, S., Codd, A. M.et al. (2005). Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci., 25, 331–342.CrossRefGoogle ScholarPubMed
Visochek, L., Steingart, R. A., Vulih-Shultzman, I.et al. (2005). PolyADP-ribosylation is involved in neurotrophic activity. J. Neurosci., 25, 7420–7428.CrossRefGoogle ScholarPubMed
Vita, G., Dattola, R., Girlanda, P.et al. (1983). Effects of steroid hormones on muscle reinnervation after nerve crush in rabbit. Exp. Neurol., 80, 279–287.CrossRefGoogle ScholarPubMed
Wagner, R. & Myers, R. R. (1996). Schwann cells produce tumor necrosis factor alpha: expression in injured and non-injured nerves. Neuroscience, 73, 625–629.CrossRefGoogle ScholarPubMed
Wall, J. T., Kaas, J. H., Sur, M.et al. (1986). Functional reorganization in somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: possible relationships to sensory recovery in humans. J. Neurosci., 6, 218–233.CrossRefGoogle ScholarPubMed
Waller, A. (1850). Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog and observations of the alterations produced thereby in the structure of their primitive fibers. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 140, 423–429.CrossRefGoogle Scholar
Wallquist, W., Plantman, S., Thams, S.et al. (2005). Impeded interaction between Schwann cells and axons in the absence of laminin alpha4. J. Neurosci., 25, 3692–3700.CrossRefGoogle ScholarPubMed
Wallquist, W., Zelano, J., Plantman, S.et al. (2004). Dorsal root ganglion neurons up-regulate the expression of laminin-associated integrins after peripheral but not central axotomy. J. Comp. Neurol., 480, 162–169.CrossRefGoogle Scholar
Walsh, F. S. & Doherty, P. (1996). Cell adhesion molecules and neuronal regeneration. Curr. Opin. Cell Biol., 8, 707–713.CrossRefGoogle ScholarPubMed
Walsh, G. S., Orike, N., Kaplan, D. R., & Miller, F. D. (2004). The invulnerability of adult neurons: a critical role for p73. J. Neurosci., 24, 9638–9647.CrossRefGoogle ScholarPubMed
Wang, G. & Scott, S. A. (1999). Independent development of sensory and motor innervation patterns in embryonic chick hindlimbs. Dev. Biol., 208, 324–336.CrossRefGoogle ScholarPubMed
Wang, M. S., Zeleny-Pooley, M., & Gold, B. G. (1997). Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve. J. Pharmacol. Exp. Ther., 282, 1084–1093.Google ScholarPubMed
Wang, X., Wang, C., Zeng, J.et al. (2005). Gene transfer to dorsal root ganglia by intrathecal injection: effects on regeneration of peripheral nerves. Mol. Ther., 12, 314–320.CrossRefGoogle ScholarPubMed
Wang, Y., Shibasaki, F., & Mizuno, K. (2005). Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J. Biol. Chem., 280, 12683–12689.CrossRefGoogle ScholarPubMed
Wang, Y. L., Wang, D. Z., & Nie, X.et al. (2006). The role of bone morphogenetic protein-2 in vivo in regeneration of peripheral nerves. Br. J. Oral Maxillofac. Surg., 45, 197–202.CrossRefGoogle ScholarPubMed
Wanner, I. B., Mahoney, J., Jessen, K. R.et al. (2006). Invariant mantling of growth cones by Schwann cell precursors characterize growing peripheral nerve fronts. Glia, 54, 424–438.CrossRefGoogle ScholarPubMed
Watson, F. L., Heerssen, H. M., Bhattacharyya, A.et al. (2001). Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat. Neurosci., 4, 981–988.CrossRefGoogle ScholarPubMed
Watson, F. L., Heerssen, H. M., Moheban, D. B.et al. (1999). Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex. J. Neurosci., 19, 7889–7900.CrossRefGoogle ScholarPubMed
Watts, R. J., Hoopfer, E. D., & Luo, L. (2003). Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin–proteasome system. Neuron, 38, 871–885.CrossRefGoogle ScholarPubMed
Wayman, G. A., Kaech, S., Grant, W. F.et al. (2004). Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J. Neurosci., 24, 3786–3794.CrossRefGoogle ScholarPubMed
Weerasuriya, A. (1987). Permeability of endoneurial capillaries to K, Na, and Cl and its relation to peripheral nerve excitability. Brain Res., 419, 188–196.CrossRefGoogle Scholar
Weerasuriya, A. (1988). Patterns of change in endoneurial capillary permeability and vascular space during Wallerian degeneration. Brain Res., 445, 181–187.CrossRefGoogle ScholarPubMed
Weerasuriya, A. (1990). Patterns of change in endoneurial capillary permeability and vascular space during nerve regeneration. Brain Res., 510, 135–139.CrossRefGoogle ScholarPubMed
Weerasuriya, A., Curran, G. L., & Poduslo, J. F. (1989). Blood-nerve transfer of albumin and its implications for the endoneurial microenvironment. Brain Res., 494, 114–121.CrossRefGoogle ScholarPubMed
Weerasuriya, A., Rapoport, S. I., & Taylor, R. E. (1980). Ionic permeabilities of the frog perineurium. Brain Res., 191, 405–415.CrossRefGoogle ScholarPubMed
Wehrman, T., He, X., Raab, B.et al. (2007). Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron, 53, 25–38.CrossRefGoogle ScholarPubMed
Werner, A., Willem, M., Jones, L. L.et al. (2000). Impaired axonal regeneration in alpha7 integrin-deficient mice. J. Neurosci., 20, 1822–1830.CrossRefGoogle ScholarPubMed
White, M. F. (1997). The insulin signalling system and the IRS proteins. Diabetologia, 40, S2–S17.CrossRefGoogle ScholarPubMed
White, M. F. & Yenush, L. (1998). The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Curr. Top. Microbiol. Immunol., 228, 179–208.Google ScholarPubMed
Wiberg, M., Hazari, A., Ljungberg, C.et al. (2003). Sensory recovery after hand reimplantation: a clinical, morphological, and neurophysiological study in humans. Scand. J. Plast. Reconstr. Surg. Hand Surg., 37, 163–173.CrossRefGoogle ScholarPubMed
Williams, L. R., Longo, F. M., Powell, H. C., Lundborg, G., & Varon, S. (1983). Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J. Comp. Neurol., 218, 460–470.CrossRefGoogle ScholarPubMed
Willis, D. & Coggeshall, R. (1991). Sensory Mechanisms of the Spinal Cord, 2nd edn. New York: Plenum.CrossRefGoogle Scholar
Willis, D., Li, K. W., Zheng, J. Q.et al. (2005). Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J. Neurosci., 25, 778–791.CrossRefGoogle ScholarPubMed
Willis, W. D. & Coggeshall, R. E. (2004). Sensory Mechanisms of the Spinal Cord, 3rd edn. New York: Kluwer Academic/Plenum.Google Scholar
Witzel, C., Rohde, C., & Brushart, T. M. (2005). Pathway sampling by regenerating peripheral axons. J. Comp. Neurol., 485, 183–190.CrossRefGoogle ScholarPubMed
Woldeyesus, M. T., Britsch, S., Riethmacher, D.et al. (1999). Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev., 13, 2538–2548.CrossRefGoogle ScholarPubMed
Wong, L. F., Yip, P. K., Battaglia, A.et al. (2006). Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat. Neurosci., 9, 243–250.CrossRefGoogle ScholarPubMed
Woo, S. & Gomez, T. M. (2006). Rac1 and RhoA promote neurite outgrowth through formation and stabilization of growth cone point contacts. J. Neurosci., 26, 1418–1428.CrossRefGoogle ScholarPubMed
Wood, J. N., Boorman, J. P., Okuse, K., & Baker, M. D. (2004). Voltage-gated sodium channels and pain pathways. J. Neurobiol., 61, 55–71.CrossRefGoogle ScholarPubMed
Wu, K. Y., Hengst, U., Cox, L. J.et al. (2005). Local translation of RhoA regulates growth cone collapse. Nature, 436, 1020–1024.CrossRefGoogle ScholarPubMed
Wu, L. C., Goettl, V. M., Madiai, F., Hackshaw, K. V., & Hussain, S. R. (2006). Reciprocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury. BMC. Neurosci. 7, 4.CrossRefGoogle ScholarPubMed
Xu, G., Pierson, C. R., Murakawa, Y., & Sima, A. A. (2002). Altered tubulin and neurofilament expression and impaired axonal growth in diabetic nerve regeneration. J. Neuropathol. Exp. Neurol., 61, 164–175.CrossRefGoogle ScholarPubMed
Xu, G. & Sima, A. A. (2001). Altered immediate early gene expression in injured diabetic nerve: implications in regeneration. J. Neuropathol. Exp. Neurol., 60, 972–983.CrossRefGoogle ScholarPubMed
Xu, Q.-G., Cheng, C., Sun, H., Thomsen, K., & Zochodne, D. W. (2003). Local sensory ganglion ischemia induced by endothelin vasoconstriction. Neuroscience, 122, 897–905.CrossRefGoogle ScholarPubMed
Xu, Q. G., Li, X.-Q., Kotecha, S. A.et al. (2004). Insulin as an in vivo growth factor. Exp. Neurol., 188, 43–51.CrossRefGoogle ScholarPubMed
Xu, Q. G. & Zochodne, D. W. (2002). Ischemia and failed regeneration in chronic experimental neuromas. Brain Res., 946, 24–30.CrossRefGoogle ScholarPubMed
Yamamoto, Y., Yasuda, Y., Kimura, Y., & Komiya, Y. (1998). Effects of cilostazol, an antiplatelet agent, on axonal regeneration following nerve injury in diabetic rats. Eur. J. Pharmacol., 352, 171–178.CrossRefGoogle ScholarPubMed
Yamasaki, H., Itakura, C., & Mizutani, M. (1991). Hereditary hypotrophic axonopathy with neurofilament deficiency in a mutant strain of the Japanese quail. Acta Neuropathol. (Berl.), 82, 427–434.CrossRefGoogle Scholar
Yamashita, T. & Tohyama, M. (2003). The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat. Neurosci., 6, 461–467.CrossRefGoogle ScholarPubMed
Yao, M., Inserra, M. M., Duh, M. J., & Terris, D. J. (1998). A longitudinal, functional study of peripheral nerve recovery in the mouse. Laryngoscope, 108, 1141–1145.CrossRefGoogle ScholarPubMed
Yao, M., Moir, M. S., Wang, M. Z., To, M. P., & Terris, D. J. (1999). Peripheral nerve regeneration in CNTF knockout mice. Laryngoscope, 109, 1263–1268.CrossRefGoogle ScholarPubMed
Yarmola, E. G. & Bubb, M. R. (2006). Profilin: emerging concepts and lingering misconceptions. Trends Biochem. Sci., 31, 197–205.CrossRefGoogle ScholarPubMed
Yasuda, H., Terada, M., Maeda, K.et al. (2003). Diabetic neuropathy and nerve regeneration. Prog. Neurobiol., 69, 229–285.CrossRefGoogle ScholarPubMed
Yasuda, H., Terada, M., Taniguchi, Y.et al. (1999). Impaired regeneration and no amelioration with aldose reductase inhibitor in crushed unmyelinated nerve fibers of diabetic rats. NeuroReport, 10, 2405–2409.CrossRefGoogle ScholarPubMed
Ygge, J. (1989). Neuronal loss in lumbar dorsal root ganglia after proximal compared to distal sciatic nerve resection: a quantitative study in the rat. Brain Res., 478, 193–195.CrossRefGoogle ScholarPubMed
Yin, Q., Kemp, G. J., Yu, L. G., Wagstaff, S. C., & Frostick, S. P. (2001). Neurotrophin-4 delivered by fibrin glue promotes peripheral nerve regeneration. Muscle Nerve, 24, 345–351.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Yin, Y., Henzl, M. T., Lorber, B.et al. (2006). Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci., 9, 843–852.CrossRefGoogle ScholarPubMed
Yosipovitch, G., Yarnitsky, D., Mermelstein, V.et al. (1995). Paradoxical heat sensation in uremic polyneuropathy. Muscle Nerve, 18, 768–771.CrossRefGoogle ScholarPubMed
You, S., Petrov, T., Chung, P. H., & Gordon, T. (1997). The expression of the low affinity nerve growth factor receptor in long-term denervated Schwann cells. Glia, 20, 87–100.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Yuan, X. B., Jin, M., Xu, X.et al. (2003). Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat. Cell Biol., 5, 38–45.CrossRefGoogle ScholarPubMed
Zelena, J. (1984). Multiple axon terminals in reinnervated Pacinian corpuscles of adult rat. J. Neurocytol., 13, 665–684.CrossRefGoogle ScholarPubMed
Zhai, Q., Wang, J., Kim, A.et al. (2003). Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration. Neuron, 39, 217–225.CrossRefGoogle ScholarPubMed
Zhang, J. Y., Luo, X. G., Xian, C. J., Liu, Z. H., & Zhou, X. F. (2000). Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur. J. Neurosci., 12, 4171–4180.Google ScholarPubMed
Zhang, Q. L., Liu, J., Lin, P. X., & Webster, H. (2002). Local administration of vasoactive intestinal peptide after nerve transection accelerates early myelination and growth of regenerating axons. J. Peripher. Nerv. Syst., 7, 118–127.CrossRefGoogle ScholarPubMed
Zhang, X. F., Schaefer, A. W., Burnette, D. T., Schoonderwoert, V. T., & Forscher, P. (2003). Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron, 40, 931–944.CrossRefGoogle ScholarPubMed
Zhao, Q., Dahlin, L. B., Kanje, M., & Lundborg, G. (1992). Specificity of muscle reinnervation following repair of the transected sciatic nerve. A comparative study of different repair techniques in the rat. J. Hand Surg. [Br]., 17, 257–261.CrossRefGoogle ScholarPubMed
Zhao, Q., Dahlin, L. B., Kanje, M., & Lundborg, G. (1992). The formation of a “pseudo-nerve” in silicone chambers in the absence of regenerating axons. Brain Res., 592, 106–114.CrossRefGoogle ScholarPubMed
Zhao, Z., Alam, S., Oppenheim, R. W.et al. (2004). Overexpression of glial cell line-derived neurotrophic factor in the CNS rescues motoneurons from programmed cell death and promotes their long-term survival following axotomy. Exp. Neurol., 190, 356–372.CrossRefGoogle ScholarPubMed
Zhong, J., Dietzel, I. D., Wahle, P., Kopf, M., & Heumann, R. (1999). Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. J. Neurosci., 19, 4305–4313.CrossRefGoogle ScholarPubMed
Zhou, F. Q. & Snider, W. D. (2006). Intracellular control of developmental and regenerative axon growth. Phil. Trans. R. Soc. Lond. B Biol. Sci., 361, 1575–1592.CrossRefGoogle ScholarPubMed
Zhou, F. Q., Walzer, M., Wu, Y. H.et al. (2006). Neurotrophins support regenerative axon assembly over CSPGs by an ECM-integrin-independent mechanism. J. Cell Sci., 119, 2787–2796.CrossRefGoogle ScholarPubMed
Zigmond, R. E. (1997). LIF, NGF, and the cell body response to axotomy. Neuroscientist, 3, 176–185.CrossRefGoogle Scholar
Zochodne, D. W. (1999). Nerve growth factor. Science and Medicine, 6, 46–55.Google Scholar
Zochodne, D. W. (2002). Nerve and ganglion blood flow in diabetes: an appraisal. In Neurobiology of Diabetic Neuropathy, ed. Tomlinson, D.. San Diego: Academic Press, pp. 161–202.CrossRefGoogle Scholar
Zochodne, D. W., Allison, J. A., Ho, W.et al. (1995). Evidence for CGRP accumulation and activity in experimental neuromas. Am. J. Physiol., 268, H584–H590.Google ScholarPubMed
Zochodne, D. W., Bolton, C. F., Wells, G. A.et al. (1987). Critical illness polyneuropathy a complication of sepsis and multiple organ failure. Brain, 110, 819–842.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Cheng, C. (1999). Diabetic peripheral nerves are susceptible to multifocal ischemic damage from endothelin. Brain Res., 838, 11–17.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Cheng, C. (2000). Neurotrophins and other growth factors in the regenerative milieu of proximal nerve stump tips. J. Anat., 196, 279–283.CrossRefGoogle ScholarPubMed
Zochodne, D. W., Cheng, C., Miampamba, M., Hargreaves, K., & Sharkey, K. A. (2001). Peptide accumulations in proximal endbulbs of transected axons. Brain Res., 902, 40–50.CrossRefGoogle ScholarPubMed
Zochodne, D. W., Cheng, C., & Sun, H. (1996). Diabetes increases sciatic nerve susceptibility to endothelin-induced ischemia. Diabetes, 45, 627–632.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Ho, L. T. (1990). Endoneurial microenvironment and acute nerve crush injury in the rat sciatic nerve. Brain Res., 535, 43–48.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Ho, L. T. (1991). Influence of perivascular peptides on endoneurial blood flow and microvascular resistance in the sciatic nerve of the rat. J. Physiol., 444, 615–630.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Ho, L. T. (1991). Unique microvascular characteristics of the dorsal root ganglion in the rat. Brain Res., 559, 89–93.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Ho, L. T. (1992). Hyperemia of injured peripheral nerve: sensitivity to CGRP antagonism. Brain Res., 598, 59–66.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Ho, L. T. (1992). Normal blood flow but lower oxygen tension in diabetes of young rats: microenvironment and the influence of sympathectomy. Can. J. Physiol. Pharmacol., 70, 651–659.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Ho, L. T. (1993). Vasa nervorum constriction from substance P and calcitonin gene-related peptide antagonists: sensitivity to phentolamine and nimodipine. Regul. Pept., 47, 285–290.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Ho, L. T. (1994). Neonatal guanethidine treatment alters endoneurial but not dorsal root ganglion perfusion in the rat. Brain Res., 649, 147–150.CrossRefGoogle Scholar
Zochodne, D. W., Ho, L. T., & Gross, P. M. (1992). Acute endoneurial ischemia induced by epineurial endothelin in the rat sciatic nerve. Am. J. Physiol., 263, H1806–H1810.Google ScholarPubMed
Zochodne, D. W., Huang, Z. X., Ward, K. K., & Low, P. A. (1990). Guanethidine-induced adrenergic sympathectomy augments endoneurial perfusion and lowers endoneurial microvascular resistance. Brain Res., 519, 112–117.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Levy, D. (2005). Nitric oxide in damage, disease and repair of the peripheral nervous system. Cell Mol. Biol. (Noisy.-le-grand), 51, 255–267.Google ScholarPubMed
Zochodne, D. W., Levy, D., Zwiers, H.et al. (1999). Evidence for nitric oxide and nitric oxide synthase activity in proximal stumps of transected peripheral nerves. Neuroscience, 91, 1515–1527.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Low, P. A. (1990). Adrenergic control of nerve blood flow. Exp. Neurol., 109, 300–307.CrossRefGoogle ScholarPubMed
Zochodne, D. W., Low, P. A., & Dyck, P. J. (1989). Adrenergic sympathectomy ablates unmyelinated fibers in the rat “preganglionic” cervical sympathetic trunk. Brain Res., 498, 221–228.CrossRefGoogle ScholarPubMed
Zochodne, D. W., Misra, M., Cheng, C., & Sun, H. (1997). Inhibition of nitric oxide synthase enhances peripheral nerve regeneration in mice. Neurosci. Lett., 228, 71–74.CrossRefGoogle ScholarPubMed
Zochodne, D. W., Murray, M. M., Sloot, P., & Riopelle, R. J. (1995). Distal tibial mononeuropathy in diabetic and nondiabetic rats reared on wire cages: an experimental entrapment neuropathy. Brain Res., 698, 130–136.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Nguyen, C. (1997). Angiogenesis at the site of neuroma formation in transected peripheral nerve. J. Anat., 191, 23–30.CrossRefGoogle ScholarPubMed
Zochodne, D. W. & Nguyen, C. (1999). Increased peripheral nerve microvessels in early experimental diabetic neuropathy: quantitative studies of nerve and dorsal root ganglia. J. Neurol. Sci., 166, 40–46.CrossRefGoogle ScholarPubMed
Zochodne, D. W., Nguyen, C., & Sharkey, K. A. (1994). Accumulation and degranulation of mast cells in experimental neuromas. Neurosci. Lett., 182, 3–6.CrossRefGoogle ScholarPubMed
Zochodne, D. W., Sun, H., & Li, X. Q. (2001). Evidence that nitric oxide and opioid containing inerneurons innerate vessels in the dorsal horn of the spinal cord of rats. J. Physiol., 532, 749–758.CrossRefGoogle Scholar
Zochodne, D. W., Theriault, M., Sharkey, K. A., Cheng, C., & Sutherland, G. (1997). Peptides and neuromas: calcitonin gene-related peptide, substance P, and mast cells in a mechanosensitive human sural neuroma. Muscle Nerve, 20, 875–880.3.0.CO;2-R>CrossRefGoogle Scholar
Zochodne, D. W., Thompson, R. T., Driedger, A. A.et al. (1988). Metabolic changes in human muscle denervation: topical 31-P NMR spectroscopy studies. Magn. Reson. Med., 7, 373–383.CrossRefGoogle Scholar
Zuo, J., Ferguson, T. A., Hernandez, Y. J., Stetler-Stevenson, W. G., & Muir, D. (1998). Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J. Neurosci. 18, 5203–5211.CrossRefGoogle ScholarPubMed
Zuo, J., Hernandez, Y. J., & Muir, D. (1998). Chondroitin sulfate proteoglycan with neurite-inhibiting activity is up-regulated following peripheral nerve injury. J. Neurobiol., 34, 41–54.3.0.CO;2-C>CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Douglas W. Zochodne, University of Calgary
  • Book: Neurobiology of Peripheral Nerve Regeneration
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541759.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Douglas W. Zochodne, University of Calgary
  • Book: Neurobiology of Peripheral Nerve Regeneration
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541759.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Douglas W. Zochodne, University of Calgary
  • Book: Neurobiology of Peripheral Nerve Regeneration
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541759.011
Available formats
×