Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T18:45:26.793Z Has data issue: false hasContentIssue false

62 - Disorders of the mitochondrial respiratory chain

from Part X - Other neurodegenerative diseases

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Anthony H. V. Schapira
Affiliation:
Royal Free and University College Medical School, and Institute of Neurology, University College London, UK
Get access

Summary

Introduction

Mitochondria are ubiquitous and present in all mammalian cells. They are host to a range of biochemical pathways including oxidative phosphorylation, β-oxidation and the urea cycle. Mitochondria are also important in mediating a variety of intracellular triggers for apoptotic cell death. This chapter will focus on defects of the mitochondrial respiratory chain and specifically those that are related to human diseases; toxin induced mitochondrial defects will be considered elsewhere.

The mitochondrial respiratory chain and oxidative phosphorylation system comprises five multisubunit proteins, which are embedded within the inner mitochondrial membrane. The first four complexes are connected in functional terms by coenzyme Q, and cytochrome c. Electrons are transferred from NADH and FADH2 and result in the reduction of oxygen to water. This process also involves the shuttling of protons across the inner membrane to the internal membranous space, and this provides the proton motive force for the generation of ATP from ADP by complex V (ATPase).

Complexes I–V comprise approximately 82 different subunits, of which 13 are encoded by mitochondrial DNA. The remainder are encoded by nuclear genes and imported into the mitochondrium often by way of specific targeting sequences and import machinery. Mitochondrial DNA is a 16.5 kb double-stranded circular molecule, which lies in the matrix attached near its D-loop to the inner mitochondrial membrane. Mitochondrial DNA encodes 2 ribosomal RNAs, 22 transfer RNAs and 13 proteins (Table 62.1 and Fig. 62.1). It is dependent upon nuclear enzymes for transcription, translation, replication and repair.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 909 - 926
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, Z. I., Daniel, S. E., Lees, A. J., Marsden, D. C., Jenner, P. & Halliwell, B. (1997a). A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J. Neurochem., 69, 1326–9CrossRefGoogle Scholar
Alam, Z. I., Jenner, A., Daniel, S. E.et al. (1997b). Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem., 69, 196–203Google Scholar
Allard, J. C., Tilak, S., Carter, A. P. (1988). CT and MR of MELAS syndrome. Am. J. Neuroradiol., 9, 1234–8Google Scholar
Andreu, A. L., Hanna, M. G., Reichmann, H., , S.et al. (1999). Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N. Engl. J. Med., 341, 1037–44CrossRefGoogle ScholarPubMed
Baumgartner, E. R., Suormala, T. M., Wick, H.et al. (1989). Biotinidase deficiency: a cause of subacute necrotizing encephalomyelopathy (Leigh syndrome). Report of a case with lethal outcome. Pediatr. Res., 26, 260–6CrossRefGoogle ScholarPubMed
Beal, M. F. (1992). Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?Ann. Neurol., 31, 119–30CrossRefGoogle ScholarPubMed
Beal, M. F., Kowell, N. W., Ellison, D. W.et al. (1986). Replication of the neurochemical characteristics of Huntington's disease by Quinolinic acid. Nature, 321, 168–171CrossRefGoogle ScholarPubMed
Beal, M. F., Kowall, N. W., Ferrante, R. J. & Cippolloni, P. B. (1989). Quinolinic acid striatal lesions in primates as a model of Huntington's disease. Ann. Neurol., 26, 137Google Scholar
Beal, M. F., Brouillet, E., Jenkins, B. G.et al. (1993). Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci., 13, 4181–92CrossRefGoogle ScholarPubMed
Berkovic, S. F., Carpenter, S., Evans, A.et al. (1989). Myoclonus epilepsy and ragged-red fibres (MERRF). 1. A clinical, pathological, biochemical, magnetic resonance spectrographic and positron emission tomographic study. Brain, 112, 1231–60CrossRefGoogle ScholarPubMed
Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V. & Greenamyre, J. T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci., 3, 1301–6CrossRefGoogle ScholarPubMed
Bidichandani, S. I., Ashizawa, T. & Patel, P. I. (1998). The GAA triplet-repeat expansion Friedreich's ataxia interferes with transcription and may be associated with an unusual DNA structure. Am. J. Hum. Genet., 62, 111–12CrossRefGoogle ScholarPubMed
Bogdanov, M., Brown, R. H., Matson, W.et al. (2000). Increased oxidative damage to DNA in ALS patients. Free. Radic. Biol. Med., 29, 652–8CrossRefGoogle ScholarPubMed
Bonilla, E., Tanji, K., Hirano, M., Vu, T. H., DiMauro, S., Schon, E. A. (1999). Mitochondrial involvement in Alzheimer's disease. Biochim. Biophys. Acta., 1410, 171–82CrossRefGoogle ScholarPubMed
Borner, G. V., Zeviani, M., Tiranti, V.et al. (2000). Decreased aminoacylation of mutant tRNAs in MELAS but not in MERRF patients. Hum. Mol. Genet., 9, 467–75CrossRefGoogle ScholarPubMed
Borthwick, G. M., Johnson, M. A., Ince, P. G., Shaw, P. J. & Turnbull, D. M. (1999). Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann. Neurol., 46, 787–903.0.CO;2-8>CrossRefGoogle ScholarPubMed
Bourgeron, T., Rustin, P., Chretien, D.et al. (1995). Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat. Genet., 11, 144–9CrossRefGoogle ScholarPubMed
Bowling, A. C., Schulz, J. B., Brown, R. H. Jr. & Beal, M. F. (1993). Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem., 61, 2322–5CrossRefGoogle ScholarPubMed
Bradley, J. L., Blake, J. C., Chamberlain, S., Thomas, P. K., Cooper, J. M. & Schapira, A. H. (2000). Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Hum. Mol. Genet., 9, 275–82CrossRefGoogle ScholarPubMed
Brouillet, E., Jenkins, B. G., Hyman, B. T.et al. (1993). Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem., 60, 356–9CrossRefGoogle ScholarPubMed
Browne, S. E., Bowling, A. C., MacGarvey, U.et al. (1997). Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol., 41, 646–53CrossRefGoogle ScholarPubMed
Campuzano, V., Montermini, L., Molto, M. D.et al. (1996). Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science, 8(271), 1423–7CrossRefGoogle Scholar
Campuzano, V., Montermini, L., Lutz, Y.et al. (1997). Frataxin is reduced in Freidreich's ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet., 6, 1771–80CrossRefGoogle Scholar
Chalmers, R. M., Davis, M. B., Sweeney, M. G., Wood, N. W. & Harding, A. E. (1996). Evidence against an X-linked visual loss susceptibility locus in Leber hereditary optic neuropathy. Am. J. Hum. Genet., 59, 103–8Google ScholarPubMed
Chiba, K., Trevor, A. J. & Castagnoli, N Jr. (1985). Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes. Biochem. Biophys. Res. Commun., 128, 1228–32CrossRefGoogle ScholarPubMed
Chomyn, A. (1998). The myoclonic epilepsy and ragged-red fiber mutation provides new insights into human mitochondrial function and genetics. Am. J. Hum. Genet., 62, 745–51CrossRefGoogle ScholarPubMed
Chomyn, A., Meola, G., Bresolin, N., Lai, S. T., Scarlato, G. & Attardi, G. (1991). In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria. Mol. Cell. Biol., 11, 2236–44CrossRefGoogle ScholarPubMed
Comi, G. P., Bordoni, A., Salani, S.et al. (1998). Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann. Neurol., 43, 110–16CrossRefGoogle Scholar
Cooper, J. K., Schilling, G., Peters, M. F.et al. (1998). Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum. Mol. Genet., 7, 783–90CrossRefGoogle ScholarPubMed
Coyle, J. T. & Schwarcz, R. (1976). Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature, 263, 244–6CrossRefGoogle ScholarPubMed
Crow, J. P., Sampson, J. B., Zhuang, Y., Thompson, J. A. & Beckman, J. S. (1997). Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J. Neurochem., 69, 1936–44CrossRefGoogle ScholarPubMed
Cudkowicz, M. E., McKenna-Yasek, D., Sapp, P. E.et al. (1997). Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann. Neurol., 41, 210–21CrossRefGoogle ScholarPubMed
Vries, D. D., Engelen, B. G., Gabreels, F. J., Ruitenbeek, W. K. & Oost, B. A. (1993). A second missense mutation in the mitochondrial ATPase 6 gene in Leigh's syndrome. Ann. Neurol., 34, 410–12CrossRefGoogle ScholarPubMed
Vries, D. D., Went, L. N., Bruyn, G. W.et al. (1996). Genetic and biochemical impairment of mitochondrial complex I activity in a family with Leber hereditary optic neuropathy and hereditary spastic dystonia. Am. J. Hum. Genet., 58, 703–11Google Scholar
Dexter, D. T., Wells, F. R., Lees, A. J.et al. (1989). Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J. Neurochem., 52, 1830–6CrossRefGoogle ScholarPubMed
Dexter, D. T., Holley, A. E., Flitter, W. D.et al. (1994). Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov. Disord., 9(1), 92–7. Erratum in: Mov. Disord, 1994 May, 9–380CrossRefGoogle ScholarPubMed
Dunbar, D. R., Moonie, P. A., Swingler, R. J., Davidson, D., Roberts, R. & Holt, I. J. (1993). Maternally transmitted partial direct tandem duplication of mitochondrial DNA associated with diabetes mellitus. Hum. Mol. Genet., 2, 1619–24CrossRefGoogle ScholarPubMed
Durr, A., Cossee, M., Agid, Y.et al. (1996). Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med., 335, 1169–75CrossRefGoogle ScholarPubMed
Elkon, H., Don, J., Melamed, E., Ziv, I., Shirvan, A. & Offen, D. (2002). Mutant and wild-type alpha-synuclein interact with mitochondrial cytochrome C oxidase. J. Mol. Neurosci., 18, 229–38CrossRefGoogle ScholarPubMed
Emond, M., Lepage, G., Vanasse, M. & Pandolfo, M. (2000). Increased levels of plasma malondialdehyde in Friedreich ataxia. Neurology, 55, 1752–3CrossRefGoogle ScholarPubMed
Enriquez, J. A., Chomyn, A. & Attardi, G. (1995). mtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat. Genet., 10, 47–55CrossRefGoogle ScholarPubMed
Estevez, A. G., Crow, J. P., Sampson, J. B.et al. (1999). Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science, 286, 2498–500Google ScholarPubMed
Ferrante, R. J., Browne, S. E., Shinobu, L. A.et al. (1997). Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem., 69, 2064–74CrossRefGoogle ScholarPubMed
Ferrante, R. J., Shinobu, L. A., Schulz, J. B.et al. (1997). Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann. Neurol., 42, 326–34CrossRefGoogle ScholarPubMed
Ferrante, R. J., Andreassen, O. A., Jenkins, B. G.et al. (2000). Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J. Neurosci., 20, 4389–97CrossRefGoogle Scholar
Fitzmaurice, P. S., Shaw, I. C., Kleiner, H. E.et al. (1996). Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve, 19, 797–8Google ScholarPubMed
Folgero, T., Torbergsen, T. & Oian, P. (1995). The 3243 MELAS mutation in a pedigree with MERRF. Eur. Neurol., 35, 168–71CrossRefGoogle Scholar
Fryer, A., Appleton, R., Sweeney, M. G., Rosenbloom, L. & Harding, A. E. (1994). Mitochondrial DNA 8993 (NARP) mutation presenting with a heterogeneous phenotype including ‘cerebral palsy’. Arch. Dis. Child., 71, 419–22CrossRefGoogle ScholarPubMed
Fukuhara, N., Tokiguchi, S., Shirakawa, K. & Tsubaki, T. (1980). Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities): disease entity or a syndrome? Light-and electron-microscopic studies of two cases and review of literature. J. Neurol. Sci., 47, 117–33CrossRefGoogle ScholarPubMed
Gattermann, N., Retzlaff, S., Wang, Y. L.et al. (1997). Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood, 90, 4961–72Google ScholarPubMed
Gerbitz, K. D., Paprotta, A., Jaksch, M., Zierz, S. & Drechsel, J. (1993). Diabetes mellitus is one of the heterogeneous phenotypic features of a mitochondrial DNA point mutation within the tRNALeu(UUR) gene. FEBS Lett., 321, 194–6CrossRefGoogle ScholarPubMed
Gerbitz, K. D., Ouweland, J. M., Maassen, J. A. & Jaksch, M. (1995). Mitochondrial diabetes mellitus: a review. Biochim. Biophys. Act., 1271, 253–60CrossRefGoogle ScholarPubMed
Goto, Y., Nonaka, I. & Horai, S. (1990). A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature, 348, 651–3CrossRefGoogle ScholarPubMed
Graf, W. D., Sumi, S. M., Copass, M. K.et al. (1993). Phenotypic heterogeneity in families with the myoclonic epilepsy and ragged-red fiber disease point mutation in mitochondrial DNA. Ann. Neurol., 33, 640–5CrossRefGoogle ScholarPubMed
Gu, M., Gash, M. T., Mann, V. M.Javoy-Agid, F., Cooper, J. M. & Schapira, A. H. (1996). Mitochondrial defect in Huntington's disease caudate nucleus. Ann. Neurol., 39, 385–9CrossRefGoogle ScholarPubMed
Gu, M., Gash, M. T., Cooper, J. M.et al. (1997). Mitochondrial respiratory chain function in multiple system atrophy. Mov. Disord., 12, 418–22CrossRefGoogle ScholarPubMed
Gu, M., Cooper, J. M., Taanman, J. W. & Schapira, A. H. (1998). Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease. Ann. Neurol., 44, 177–86CrossRefGoogle ScholarPubMed
Guan, M. X., Enriquez, J. A., Fischel-Ghodsian, N.et al. (1998). The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASer(UCN) precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression. Mol. Cell. Biol., 18, 5868–79CrossRefGoogle ScholarPubMed
Hammans, S. R., Sweeney, M. G., Brockington, M., Morgan-Hughes, J. A. & Harding, A. E. (1991). Mitochondrial encephalopathies: molecular genetic diagnosis from blood samples. Lancet, 337, 1311–13CrossRefGoogle ScholarPubMed
Hammans, S. R., Sweeney, M. G., Brockington, M.et al. (1993). The mitochondrial DNA transfer RNA(Lys)A–>G(8344) mutation and the syndrome of myoclonic epilepsy with ragged red fibres (MERRF). Relationship of clinical phenotype to proportion of mutant mitochondrial DNA. Brain, 116, 617–32CrossRefGoogle ScholarPubMed
Hantraye, P., Brouillet, E., Ferrante, R.et al. (1996). Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat. Med., 2, 1017–21CrossRefGoogle ScholarPubMed
Hao, H. & Moraes, C. T. (1996). Functional and molecular mitochondrial abnormalities associated with a C –> T transition at position 3256 of the human mitochondrial genome. The effects of a pathogenic mitochondrial tRNA point mutation in organelle translation and RNA processing. J. Biol. Chem., 26, 271, 2347–52CrossRefGoogle Scholar
Hart, P. E. & Schapira, A. H. V. (2004). Antioxidant treatment of patients with Friedreich's ataxia: 4-year follow up. Arch. Neurol. (in press)
Hattori, N., Tanaka, M., Ozawa, T. & Mizuno, Y. (1991). Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson's disease. Ann. Neurol., 30, 563–71CrossRefGoogle ScholarPubMed
Hausse, A. O., Aggoun, Y., Bonnet, D.et al. (2002). Idebenone and reduced cardiac hypertrophy in Friedreich's ataxia. Heart, 87, 346–9CrossRefGoogle ScholarPubMed
Helm, M., Florentz, C., Chomyn, A. & Attardi, G. (1999). Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu(UUR). Nucl. Acids Res., 27, 756–63CrossRefGoogle Scholar
Hirano, M., Silvestri, G., Blake, D. M.et al. (1994). Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology, 44, 721–7CrossRefGoogle ScholarPubMed
Hirsch, E. C., Brandel, J. P., Galle, P., Javoy-Agid, F. & Agid, Y. (1991). Iron and aluminum increase in the substantia nigra of patients with Parkinson's disease: an X-ray microanalysis. J. Neurochem., 56, 446–51CrossRefGoogle ScholarPubMed
Hoang, T. Q., Bluml, S., Dubowitz, D. J.et al. (1998). Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington's and Parkinson's diseases. Neurology, 50, 1033–40CrossRefGoogle ScholarPubMed
Hoglinger, G. U., Feger, J., Prigent, A.et al. (2003). Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem., 84, 491–502CrossRefGoogle ScholarPubMed
Holme, E., Larsson, N. G., Oldfors, A., Tulinius, M., Sahlin, P. & Stenman, G. (1993). Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys)A–>G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet., 52(3), 551–6Google Scholar
Holt, I. J., Harding, A. E. & Morgan-Hughes, J. A (1988). Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 331, 717–19CrossRefGoogle ScholarPubMed
Holt, I. J., Harding, A. E., Cooper, J. M.et al. (1989). Mitochondrial myopathies: clinical and biochemical features of 30 patients with major deletions of muscle mitochondrial DNA. Ann. Neurol., 26, 699–708CrossRefGoogle ScholarPubMed
Holt, I. J., Harding, A. E., Petty, R. K. & Morgan-Hughes, J. A. (1990). A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet., 46, 428–33Google ScholarPubMed
Holt, I. J., Dunbar, D. R. & Jacobs, H. T. (1997). Behaviour of a population of partially duplicated mitochondrial DNA molecules in cell culture: segregation, maintenance and recombination dependent upon nuclear background. Hum. Mol. Genet., 6, 1251–60CrossRefGoogle ScholarPubMed
Howell, N. (1997). Leber hereditary optic neuropathy: how do mitochondrial DNA mutations cause degeneration of the optic nerve?J. Bioenerg. Biomembr., 29, 165–73CrossRefGoogle ScholarPubMed
Howell, N., Bindoff, L. A., McCullough, D. A.et al. (1991). Leber hereditary optic neuropathy: identification of the same mitochondrial ND1 mutation in six pedigrees. Am. J. Hum. Genet., 49, 939–50Google ScholarPubMed
Howell, N., Kubacka, I., Smith, R., Frerman, F., Parks, J. K. & Parker, W. D. Jr. (1996). Association of the mitochondrial 8344 MERRF mutation with maternally inherited spinocerebellar degeneration and Leigh disease. Neurology, 46, 219–22CrossRefGoogle ScholarPubMed
Hudgson, P., Bradley, W. G. & Jenkison, M. (1972). Familial “mitochondrial” myopathy. A myopathy associated with disordered oxidative metabolism in muscle fibres. 1. Clinical, electrophysiological and pathological findings. J. Neurol. Sci., 16, 343–70CrossRefGoogle ScholarPubMed
Huntington Study Group. (2001). A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease. Neurology, 57, 397–404CrossRef
Javitch, J. A. & Snyder, S. H. (1984). Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. Eur. J. Pharmacol., 106, 455–6CrossRefGoogle ScholarPubMed
Jenkins, B. G., Koroshetz, W. J., Beal, M. F. & Rosen, B. R. (1993). Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy. Neurology, 43, 2689–95CrossRefGoogle ScholarPubMed
Jenkins, B. G., Rosas, H. D., Chen, Y. C.et al. (1998). 1H NMR spectroscopy studies of Huntington's disease: correlations with CAG repeat numbers. Neurology, 50, 1357–65CrossRefGoogle ScholarPubMed
Johns, D. R., Neufeld, M. J. & Park, R. D. (1992). An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem. Biophys. Res. Commun., 187, 1551–7CrossRefGoogle ScholarPubMed
Jun, A. S., Brown, M. D. & Wallace, D. C. (1994). A mitochondrial DNA mutation at nucleotide pair 14459 of the NADH dehydrogenase subunit 6 gene associated with maternally inherited Leber hereditary optic neuropathy and dystonia. Proc. Natl Acad. Sci., USA, 21(91), 6206–10CrossRefGoogle Scholar
Kadowaki, H., Tobe, K., Mori, Y.et al. (1993). Mitochondrial gene mutation and insulin-deficient type of diabetes mellitus. Lancet, 341, 893–4CrossRefGoogle ScholarPubMed
Kamieniecka, Z. (1977). Myopathies with abnormal mitochondria. A clinical, histological, and electrophysiological study. Acta. Neurol. Scand., 55, 57–75CrossRefGoogle Scholar
Kaukonen, J., Zeviani, M., Comi, G. P., Piscaglia, M. G., Peltonen, L. & Suomalainen, A. (1999). A third locus predisposing to multiple deletions of mtDNA in autosomal dominant progressive external ophthalmoplegia. Am. J. Hum. Genet., 65, 256–61CrossRefGoogle ScholarPubMed
Kaukonen, J., Juselius, J. K., Tiranti, V.et al. (2000). Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science, 289, 782–5CrossRefGoogle ScholarPubMed
Keightley, J. A., Hoffbuhr, K. C., Burton, M. D.et al. (1996). A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat. Genet., 12, 410–6CrossRefGoogle ScholarPubMed
King, M. P., Koga, Y., Davidson, M. & Schon, E. A. (1992). Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Mol. Cell. Biol., 12, 480–90CrossRefGoogle Scholar
Kish, S. J., Bergeron, C., Rajput, A.et al. (1992). Brain cytochrome oxidase in Alzheimer's disease. J. Neurochem., 59, 776–9CrossRefGoogle ScholarPubMed
Kispal, G., Csere, P., Prohl, C. & Lill, R. (1999). The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBOJ., 18, 3981–9Google ScholarPubMed
Klivenyi, P., Ferrante, R. J., Matthews, R. T.et al. (1999). Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat. Med., 5, 347–50CrossRefGoogle Scholar
Kobayashi, Y., Momoi, M. Y., Tominaga, K.et al. (1990). A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem. Biophys. Res. Commun., 173, 816–22CrossRefGoogle Scholar
Koga, Y., Yoshino, M. & Kato, H. (1998). MELAS exhibits dominant negative effects on mitochondrial RNA processing. Ann. Neurol., 43, 835CrossRefGoogle ScholarPubMed
Kong, J. & Xu, Z. (1998). Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J. Neurosci., 18, 3241–50CrossRefGoogle ScholarPubMed
Koroshetz, W. J., Jenkins, B. G., Rosen, B. R. & Beal, M. F. (1997). Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann. Neurol., 41, 160–5CrossRefGoogle ScholarPubMed
Kretzschmar, H. A., DeArmond, S. J., Koch, T. K.et al. (1987). Pyruvate dehydrogenase complex deficiency as a cause of subacute necrotizing encephalopathy (Leigh disease). Pediatrics, 79, 370–3Google Scholar
Kuriyama, M., Umezaki, H., Fukuda, Y.et al. (1984). Mitochondrial encephalomyopathy with lactate-pyruvate elevation and brain infarctions. Neurology, 34, 72–7CrossRefGoogle ScholarPubMed
Kuwert, T., Lange, H. W., Langen, K. J., Herzog, H., Aulich, A. & Feinendegen, L. E. (1990). Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain, 113, 1405–23CrossRefGoogle ScholarPubMed
Langston, J. W. & Ballard, P. (1984). Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridi ne (MPTP): implications for treatment and the pathogenesis of Parkinson's disease. Can. J. Neurol. Sci., 11, 160–5CrossRefGoogle Scholar
Larsson, N. G., Andersen, O., Holme, E., Oldfors, A. & Wahlstrom, J. (1991). Leber's hereditary optic neuropathy and complex I deficiency in muscle. Ann. Neurol., 30, 701–8CrossRefGoogle Scholar
Larsson, N. G., Tulinius, M. H., Holme, E. & Oldfors, A. (1995). Pathogenetic aspects of the A8344G mutation of mitochondrial DNA associated with MERRF syndrome and multiple symmetric lipomas. Muscle Nerve, 3, S102–6CrossRefGoogle ScholarPubMed
Leigh, D. (1951). Subacute necrotizing encephalomyelopathy in an infant. J. Neurochem., 14, 216–21Google ScholarPubMed
Li, F. Y., Tariq, M., Croxen, R.et al. (1999). Mapping of autosomal dominant progressive external ophthalmoplegia to a 7-cM critical region on 10q24. Neurology, 53, 1265–71CrossRefGoogle ScholarPubMed
Li, S. H. & Li, X. J. (1998). Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Hum. Mol. Genet., 7, 777–82CrossRefGoogle ScholarPubMed
Lill, R., Diekert, K., Kaut, A.et al. (1999). The essential role of mitochondria in the biogenesis of cellular iron-sulfur proteins. Biol. Chem., 380, 1157–66CrossRefGoogle ScholarPubMed
Lodi, R., Cooper, J. M., Bradley, J. L.et al. (1999). Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc. Natl Acad. Sci., USA, 96, 11492–5CrossRefGoogle ScholarPubMed
Lodi, R., Schapira, A. H., Manners, D.et al. (2000). Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy. Ann. Neurol., 48, 72–63.0.CO;2-I>CrossRefGoogle ScholarPubMed
Lodi, R., Hart, P. E., Rajagopalan, B.et al. (2001). Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich's ataxia. Ann. Neurol., 49, 590–6CrossRefGoogle ScholarPubMed
Lodi, R., Rajagopalan, B., Blamire, A. M.et al. (2001). Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: an in vivo 31P magnetic resonance spectroscopy study. Cardiovasc. Res. 52, 111–19CrossRefGoogle Scholar
Loeffen, J., Smeitink, J., Triepels, R.et al. (1998). The first nuclear-encoded complex I mutation in a patient with Leigh syndrome. Am. J. Hum. Genet., 63, 1598–608CrossRefGoogle Scholar
Ludolph, A. C., He, F., Spencer, P. S., Hammerstad, J. & Sabri, M. (1991). 3-Nitropropionic acid exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci., 18, 492–8CrossRefGoogle ScholarPubMed
Mackey, D. & Howell, N. (1992). A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology. Am. J. Hum. Genet., 51, 1218–28Google ScholarPubMed
Makela-Bengs, P., Suomalainen, A., Majander, A.et al. (1995). Correlation between the clinical symptoms and the proportion of mitochondrial DNA carrying the 8993 point mutation in the NARP syndrome. Pediatr. Res., 37, 634–9CrossRefGoogle ScholarPubMed
Mann, V. M., Cooper, J. M., Javoy-Agid, F., Agid, Y., Jenner, P. & Schapira, A. H. (1990). Mitochondrial function and parental sex effect in Huntington's disease. Lancet, 336, 749CrossRefGoogle ScholarPubMed
Martindale, D., Hackam, A., Wieczorek, A.et al. (1998). Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat. Genet., 18, 150–4CrossRefGoogle ScholarPubMed
Masucci, J. P., Davidson, M., Koga, Y., Schon, E. A. & King, M. P. (1995). In vitro analysis of mutations causing myoclonus epilepsy with ragged-red fibers in the mitochondrial tRNA(Lys)gene: two genotypes produce similar phenotypes. Mol. Cell. Biol., 15, 2872–81CrossRefGoogle ScholarPubMed
McGeer, E. G. & McGeer, P. L. (1976). Duplication of biochemical changes of Huntington's chorea by intrastriatal injections of glutamic and kainic acids. Nature, 263, 517–19CrossRefGoogle ScholarPubMed
Meire, F. M., Coster, R., Cochaux, P., Obermaier-Kusser, B., Candaele, C. & Martin, J. J. (1995). Neurological disorders in members of families with Leber's hereditary optic neuropathy (LHON) caused by different mitochondrial mutations. Ophth. Genet., 16, 119–26CrossRefGoogle ScholarPubMed
Melberg, A., Lundberg, P. O., Henriksson, K. G., Olsson, Y. & Stalberg, E. (1996). Muscle-nerve involvement in autosomal dominant progressive external ophthalmoplegia with hypogonadism. Muscle Nerve, 19, 751–73.0.CO;2-O>CrossRefGoogle ScholarPubMed
Melberg, A., Holme, E., Oldfors, A. & Lundberg, P. O. (1998). Rhabdomyolysis in autosomal dominant progressive external ophthalmoplegia. Neurology, 50, 299–300CrossRefGoogle ScholarPubMed
Mita, S., Rizzuto, R., Moraes, C. T.et al. (1990). Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic. Acids Res., 18, 561–7CrossRefGoogle ScholarPubMed
Moncada, S., Palmer, R. M. & Higgs, E. A. (1989). The biological significance of nitric oxide formation from L-arginine. Biochem. Soc. Trans., 17, 642–4CrossRefGoogle ScholarPubMed
Moraes, C. T., DiMauro, S., Zeviani, M.et al. (1989). Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N. Engl. J. Med., 320, 1293–9CrossRefGoogle ScholarPubMed
Moraes, C. T., Andreetta, F., Bonilla, E., Shanske, S., DiMauro, S. & Schon, E. A. (1991). Replication-competent human mitochondrial DNA lacking the heavy-strand promoter region. Mol. Cell. Biol., 11, 1631–7CrossRefGoogle ScholarPubMed
Moraes, C. T., Ricci, E., Petruzzella, V.et al. (1992). Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nat. Genet., 1, 359–67CrossRefGoogle ScholarPubMed
Moraes, C. T., Ciacci, F., Bonilla, E.et al. (1993). Two novel pathogenic mitochondrial DNA mutations affecting organelle number and protein synthesis. Is the tRNA(Leu(UUR)) gene an etiologic hot spot?J. Clin. Invest., 92, 2906–15CrossRefGoogle ScholarPubMed
Moraes, C. T., Ciacci, F., Silvestri, G.et al. (1993). Atypical clinical presentations associated with the MELAS mutation at position 3243 of human mitochondrial DNA. Neuromuscul. Disord., 3, 43–50CrossRefGoogle ScholarPubMed
Muller-Hocker, J. (1990). Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: an age-related alteration. J. Neurol. Sci., 100, 14–21CrossRefGoogle ScholarPubMed
Mutisya, E. M., Bowling, A. C. & Beal, M. F. (1994). Cortical cytochrome oxidase activity is reduced in Alzheimer's disease. J. Neurochem., 63, 2179–84CrossRefGoogle ScholarPubMed
Nakamura, M., Nakano, S., Goto, Y.et al. (1995). A novel point mutation in the mitochondrial tRNA(Ser(UCN)) gene detected in a family with MERRF/MELAS overlap syndrome. Biochem. Biophys. Res. Commun., 214, 86–93CrossRefGoogle Scholar
Nicklas, W. J., Vyas, I. & Heikkila, R. E. (1985). Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridi ne. Life Sci., 36, 2503–8CrossRefGoogle Scholar
Nikoskelainen, E. K., Marttila, R. J., Huoponen, K.et al. (1995). Leber's “plus”: neurological abnormalities in patients with Leber's hereditary optic neuropathy. J. Neurol. Neurosurg. Psychiatry., 59, 160–4CrossRefGoogle ScholarPubMed
Nishino, I., Spinazzola, A. & Hirano, M. (1999). Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science, 29(283), 689–92CrossRefGoogle Scholar
Nishino, I., Spinazzola, A. & Papadimitriou, A.et al. (2000). Mitochondrial neurogastrointestinal encephalomyopathy: an autosomal recessive disorder due to thymidine phosphorylase mutations. Ann. Neurol., 47, 792–8003.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Ohno, K., Tanaka, M., Sahashi, K.et al. (1991). Mitochondrial DNA deletions in inherited recurrent myoglobinuria. Ann. Neurol., 29, 364–9CrossRefGoogle ScholarPubMed
Orth, M., Cooper, J. M., Bates, G. P. & Schapira, A. H. (2003). Inclusion formation in Huntington's disease R6/2 mouse muscle cultures. J. Neurochem., 87, 1–6CrossRefGoogle ScholarPubMed
Ortiz, R. G., Newman, N. J., Shoffner, J. M., Kaufman, A. E., Koontz, D. A. & Wallace, D. C. (1993). Variable retinal and neurologic manifestations in patients harboring the mitochondrial DNA 8993 mutation. Arch. Ophthalmol., 111, 1525–30CrossRefGoogle ScholarPubMed
Parfait, B., Lonlay, P., Kleist-Retzow, J. C.et al. (1999). The neurogenic weakness, ataxia and retinitis pigmentosa (NARP) syndrome mtDNA mutation (T8993G) triggers muscle ATPase deficiency and hypocitrullinaemia. Eur. J. Pediatr., 158, 55–8CrossRefGoogle ScholarPubMed
Parker, W. D. Jr., Mahr, N. J., Filley, C. M.et al. (1994). Reduced platelet cytochrome c oxidase activity in Alzheimer's disease. Neurology, 44, 1086–90CrossRefGoogle ScholarPubMed
Parker, W. D. Jr., Parks, J., Filley, C. M. & Kleinschmidt-DeMasters, B. K. (1994). Electron transport chain defects in Alzheimer's disease brain. Neurology, 44, 1090–6CrossRefGoogle ScholarPubMed
Pavlakis, S. G., Phillips, P. C., DiMauro, S., Vivo, D. C. & Rowland, L. P. (1984). Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes: a distinctive clinical syndrome. Ann. Neurol. 16, 481–8CrossRefGoogle ScholarPubMed
Petty, R. K., Harding, A. E. & Morgan-Hughes, J. A. (1986). The clinical features of mitochondrial myopathy. Brain, 109, 915–38CrossRefGoogle ScholarPubMed
Piemonte, F., Pastore, A., Tozzi, G.et al. (2001). Glutathione in blood of patients with Friedreich's ataxia. Eur. J. Clin. Invest., 31, 1007–11CrossRefGoogle ScholarPubMed
Pook, M. A., Al-Mahdawi, S. A., Thomas, N. H.et al. (2000). Identification of three novel frameshift mutations in patients with Friedreich's ataxia. J. Med. Genet., 37CrossRefGoogle ScholarPubMed
Przedborski, S., Kostic, V., Jackson-Lewis, V.et al. (1992). Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci., 12, 1658–67CrossRefGoogle ScholarPubMed
Przedborski, S., Jackson-Lewis, V., Yokoyama, R., Shibata, T., Dawson, V. L. & Dawson, T. M. (1996). Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridi ne (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl Acad. Sci., USA, 93, 4565–71CrossRefGoogle Scholar
Puccio, H., Simon, D., Cossee, M.et al. (2001). Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe–S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet., 27, 181–6CrossRefGoogle ScholarPubMed
Puddu, P., Barboni, P., Mantovani, V.et al. (1993). Retinitis pigmentosa, ataxia, and mental retardation associated with mitochondrial DNA mutation in an Italian family. Br. J. Ophthalmol., 77, 84–8CrossRefGoogle Scholar
Rahman, S., Blok, R. B., Dahl, H. H.et al. (1996). Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann. Neurol., 39, 343–51CrossRefGoogle ScholarPubMed
Ramsay, R. R., Salach, J. I. & Singer, T. P. (1986). Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+. Biochem. Biophys. Res. Commun., 134, 743–8CrossRefGoogle ScholarPubMed
Reardon, W., Ross, R. J., Sweeney, M. G.et al. (1992). Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet, 340, 1376–9CrossRefGoogle ScholarPubMed
Rosen, D. R., Siddique, T., Patterson, D.et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62. Erratum in: Nature, 364 (6435), 362CrossRefGoogle ScholarPubMed
Rossetti, Z. L., Sotgiu, A., Sharp, D. E., Hadjiconstantinou, M. & Neff, N. H. (1988). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and free radicals in vitro. Biochem. Pharmacol., 37, 4573–4CrossRefGoogle ScholarPubMed
Rotig, A., Bessis, J. L., Romero, N.et al. (1992). Maternally inherited duplication of the mitochondrial genome in a syndrome of proximal tubulopathy, diabetes mellitus, and cerebellar ataxia. Am. J. Hum. Genet., 50, 364–70Google Scholar
Rotig, A., Lonlay, P., Chretien, D.et al. (1997). Aconitase and mitochondrial iron–sulphur protein efficiency in Friedreich ataxia. Nat. Genet., 17, 215–17CrossRefGoogle Scholar
Santorelli, F. M., Shanske, S., Jain, K. D., Tick, D., Schon, E. A. & DiMauro, S. (1994). A T–>C mutation at nt 8993 of mitochondrial DNA in a child with Leigh syndrome. Neurology, 44, 972–4CrossRefGoogle Scholar
Santorelli, F. M., Tanji, K., Manta, P.et al. (1999). Maternally inherited cardiomyopathy: an atypical presentation of the mtDNA 12S rRNA gene A1555G mutation. Am. J. Hum. Genet., 64, 295–300CrossRefGoogle ScholarPubMed
Sawa, A., Wiegand, G. W., Cooper, J.et al. (1999). Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat. Med., 5, 1194–8CrossRefGoogle ScholarPubMed
Schapira, A. H., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B. & Marsden, C. D. (1989). Mitochondrial complex I deficiency in Parkinson's disease. Lancet, 1, 1269CrossRefGoogle ScholarPubMed
Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P. & Marsden, C. D. (1990). Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem., 54, 823–7CrossRefGoogle ScholarPubMed
Schapira, A. H., Mann, V. M., Cooper, J. M.et al. (1990). Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. J. Neurochem., 55, 2142–5CrossRefGoogle ScholarPubMed
Schapira, A. H. V. (1994). Mitochondrial dysfunction in neurodegenerative disorders and ageing. In Mitochondrial Disorders in Neurology, ed. A. H. V. Schapira. & S. DiMauro, pp. 227–44, Oxford UK: Butterworth HeinemannCrossRef
Schols, L., Vorgerd, M., Schillings, M., Skipka, G. & Zange, J. (2001). Idebenone in patients with Friedreich ataxia. Neurosci. Lett., 29(306), 169–72CrossRefGoogle Scholar
Schon, E. A. (2000). Mitochondrial genetics and disease. Trends. Biochem. Sci., 25, 555–60CrossRefGoogle ScholarPubMed
Schon, E. A., Rizzuto, R., Moraes, C. T., Nakase, H., Zeviani, M. & DiMauro, S. (1989). A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science, 244, 346–9CrossRefGoogle ScholarPubMed
Schon, E. A., Koga, Y., Davidson, M., Moraes, C. T. & King, M. P. (1992). The mitochondrial tRNA(Leu)(UUR)) mutation in MELAS: a model for pathogenesis. Biochim. Biophys. Act., 1101, 206–9Google ScholarPubMed
Schon, E. A., Bonilla, E. & DiMauro, S. (1997). Mitochondrial DNA mutations and pathogenesis. J. Bioenerg. Biomembr., 29, 131–49CrossRefGoogle ScholarPubMed
Shoubridge, E. A., Karpati, G. & Hastings, K. E. (1990). Deletion mutants are functionally dominant over wild-type mitochondrial genomes in skeletal muscle fiber segments in mitochondrial disease. Cell, 62, 43–9CrossRefGoogle ScholarPubMed
Schulz, J. B., Matthews, R. T., Muqit, M. M., Browne, S. E. & Beal, M. F. (1995). Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J. Neurochem., 64, 936–9CrossRefGoogle ScholarPubMed
Schwarcz, R., Whetsell, W. O. Jr. & Mangano, R. M. (1983). Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science, 219, 316–18CrossRefGoogle ScholarPubMed
Servidei, S., Zeviani, M., Manfredi, G.et al. (1991). Dominantly inherited mitochondrial myopathy with multiple deletions of mitochondrial DNA: clinical, morphologic, and biochemical studies. Neurology, 41, 1053–9CrossRefGoogle ScholarPubMed
Shaw, P. J., Ince, P. G., Falkous, G. & Mantle, D. (1995). Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann. Neurol., 38, 691–5CrossRefGoogle ScholarPubMed
Shoffner, J. M., Lott, M. T., Lezza, A. M., Seibel, P., Ballinger, S. W. & Wallace, D. C. (1990). Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell, 61, 931–7CrossRefGoogle ScholarPubMed
Shoffner, J. M., Lott, M. T. & Wallace, D. C. (1991). MERRF: a model disease for understanding the principles of mitochondrial genetics. Rev. Neurol. (Paris., 147, 431–5Google ScholarPubMed
Silvestri, G., Ciafaloni, E., Santorelli, F. M.et al. (1993). Clinical features associated with the A–>G transition at nucleotide 8344 of mtDNA (“MERRF mutation”). Neurology, 43, 1200–6CrossRefGoogle Scholar
Simonian, N. A. & Hyman, B. T. (1993). Functional alterations in Alzheimer's disease: diminution of cytochrome oxidase in the hippocampal formation. J. Neuropathol. Exp. Neurol., 52, 580–5CrossRefGoogle ScholarPubMed
Singleton, A. B., Farrer, M., Johnson, J.et al. (2003). Alpha-Synuclein locus triplication causes Parkinson's disease. Science, 302, 841CrossRefGoogle ScholarPubMed
Smith, P. R., Cooper, J. M., Govan, G. G., Harding, A. E. & Schapira, A. H. (1994). Platelet mitochondrial function in Leber's hereditary optic neuropathy. J. Neurol. Sci., 122, 80–3CrossRefGoogle ScholarPubMed
Smith, P. R., Cooper, J. M., Govan, G. G., Riordan-Eva, P., Harding, A. E. & Schapira, A. H. (1995). Antibodies to human optic nerve in Leber's hereditary optic neuropathy. J. Neurol. Sci., 130, 134–8CrossRefGoogle ScholarPubMed
So, N., Berkovic, S., Andermann, F., Kuzniecky, R., Gendron, D. & Quesney, L. F. (1989). Myoclonus epilepsy and ragged-red fibres (MERRF). 2. Electrophysiological studies and comparison with other progressive myoclonus epilepsies. Brain, 112, 1261–76CrossRefGoogle ScholarPubMed
Strong, T. V., Tagle, D. A., Valdes, J. M.et al. (1993). Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nat. Genet., 5, 259–65CrossRefGoogle ScholarPubMed
Sue, C. M., Crimmins, D. S., Soo, Y. S.et al. (1998). Neuroradiological features of six kindreds with MELAS tRNA(Leu) A2343G point mutation: implications for pathogenesis. J. Neurol. Neurosurg. Psychiatr., 65, 233–40CrossRefGoogle ScholarPubMed
Sue, C. M., Karadimas, C., Checcarelli, N.et al. (2000). Differential features of patients with mutations in two COX assembly genes, SURF-1 and SCO2. Ann. Neurol., 47, 589–953.0.CO;2-D>CrossRefGoogle ScholarPubMed
Suomalainen, A., Kaukonen, J., Amati, P.et al. (1995). An autosomal locus predisposing to deletions of mitochondrial DNA. Nat. Genet., 9, 146–51CrossRefGoogle ScholarPubMed
Swerdlow, R. H., Parks, J. K., Miller, S. W.et al. (1996). Origin and functional consequences of the complex I defect in Parkinson's disease. Ann. Neurol., 40, 663–71CrossRefGoogle ScholarPubMed
Tabrizi, S. J., Cleeter, M. W., Xuereb, J., Taanman, J. W., Cooper, J. M. & Schapira, A. H. (1999). Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann. Neurol., 45, 25–323.0.CO;2-E>CrossRefGoogle ScholarPubMed
Tabrizi, S. J., Workman, J., Hart, P. E.et al. (2000). Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol., 47, 80–63.0.CO;2-K>CrossRefGoogle ScholarPubMed
Tabrizi, S. J., Blamire, A. M., Manners, D. N.et al. (2003). Creatine therapy for Huntington's disease: clinical and MRS findings in a 1-year pilot study. Neurology, 8(61), 141–2CrossRefGoogle Scholar
Tang, Y., Schon, E. A., Wilichowski, E., Vazquez-Memije, M. E., Davidson, E. & King, M. P. (2000). Rearrangements of human mitochondrial DNA (mtDNA): new insights into the regulation of mtDNA copy number and gene expression. Mol. Biol. Cel., 11, 1471–85CrossRefGoogle ScholarPubMed
Tatuch, Y., Christodoulou, J., Feigenbaum, A.et al. (1992). Heteroplasmic mtDNA mutation (T–G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am. J. Hum. Genet., 50, 852–8Google ScholarPubMed
Thobois, S., Vighetto, A., Grochowicki, M., Godinot, C., Broussolle, E. & Aimard, G. (1997). Leber “plus” disease: optic neuropathy, parkinsonian syndrome and supranuclear ophthalmoplegia. Rev. Neurol. (Paris., 153, 595–8Google ScholarPubMed
Tiranti, V., Hoertnagel, K., Carrozzo, R.et al. (1998). Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am. J. Hum. Genet., 63, 1609–21CrossRefGoogle ScholarPubMed
Truong, D. D., Harding, A. E., Scaravilli, F., Smith, S. J., Morgan-Hughes, J. A. & Marsden, C. D. (1990). Movement disorders in mitochondrial myopathies. A study of nine cases with two autopsy studies. Mov. Disord., 5, 109–17CrossRefGoogle ScholarPubMed
Tsairis, P.,Engel, W. K. & Kark, P. (1973). Familial myoclonic epilepsy syndrome associated with skeletal muscle mitochondrial abnormalities. Neurology, 23, 408Google Scholar
Tulinius, M. H., Holme, E., Kristiansson, B., Larsson, N. G. & Oldfors, A. (1991). Mitochondrial encephalomyopathies in childhood. II. Clinical manifestations and syndromes. J. Pediatr., 199, 251–9CrossRefGoogle Scholar
Coster, R., Lombres, A., Vivo, D. C.et al. (199). Cytochrome c oxidase-associated Leigh syndrome: phenotypic features and pathogenetic speculations. J. Neurol. Sci., 104, 97–111CrossRefGoogle Scholar
Ouweland, J. M., Lemkes, H. H., Ruitenbeek, W.et al. (1992). Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat. Genet., 1, 368–71CrossRefGoogle Scholar
Erven, P. M., Gabreels, F. J., Ruitenbeek, W., Renier, W. O. & Fischer, J. C. (1987). Mitochondrial encephalomyopathy. Association with an NADH dehydrogenase deficiency. Arch. Neurol., 44, 775–8CrossRefGoogle ScholarPubMed
Vielhaber, S., Kunz, D., Winkler, K.et al. (2000). Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadicamyotrophic lateral sclerosis. Brain, 123, 1339–48CrossRefGoogle ScholarPubMed
Vila, M. R., Gamez, J., Solano, A.et al. (2000). Uncoupling protein-1 mRNA expression in lipomas from patients bearing pathogenic mitochondrial DNA mutations. Biochem. Biophys. Res. Commun., 278(3), 800–2CrossRefGoogle ScholarPubMed
Wallace, D. C., Singh, G., Lott, M. T.et al. (1988). Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science, 242, 1427–30CrossRefGoogle ScholarPubMed
Weller, M. & Paul, S. M. (1993). 3-Nitropropionic acid is an indirect excitotoxin to cultured cerebellar granule neurons. Eur. J. Pharmacol., 248, 223–8Google ScholarPubMed
Wiedemann, F. R., Winkler, K., Kuznetsov, A. V.et al. (1998). Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J. Neurol. Sci., 156, 65–72CrossRefGoogle ScholarPubMed
Willems, J. L., Monnens, L. A., Trijbels, J. M.et al. (1977). Leigh's encephalomyelopathy in a patient with cytochrome c oxidase deficiency in muscle tissue. Pediatr., 60, 850–7Google Scholar
Wong, A., Yang, J., Cavadini, P.et al. (1999). The Freidreich's ataxia mutation confers cellular sensitivity to oxidative stress which is rescued by chelators of iron and calcium and inhibitors of apoptotis. Hum. Mol. Genet., 8, 425–30CrossRefGoogle Scholar
Zeviani, M., Amati, P., Bresolin, N.et al. (1991). Rapid detection of the A–G(8344) mutation of mtDNA in Italian families with myoclonus epilepsy and ragged-red fibers (MERRF). Am. J. Hum. Genet., 48, 203–11Google Scholar
Zhu, Z., Yao, J., Johns, T.et al. (1998). SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat. Genet., 20, 337–43.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×