Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-07T02:57:09.665Z Has data issue: false hasContentIssue false

Section 1 - Basic and Computational Neuroscience

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further Reading

Chapman, JA, Kirkness, EF, Simakov, O, et al. The dynamic genome of Hydra. Nature 2010;464:592–6. https://doi.org/10.1038/nature08830Google Scholar
Cisneros-Franco, JM, Voss, P, Thomas, ME, de Villers-Sidani, E. Critical periods of brain development. Handb Clin Neurol 2020;173:7588. https://doi.org/10.1016/B978-0-444-64150-2.00009-5. PMID: 32958196.Google Scholar
Darnell, D, Gilbert, SF. Neuroembryology. Wiley Interdiscip Rev Dev Biol 2017;6(1):10.1002/wdev.215. https://doi.org/10.1002/wdev.215. Epub 2016 Dec 1. PMID: 27906497; PMCID: PMC5193482.Google Scholar
Ellenbroek, B, Youn, J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech 2016;9(10):1079–87. https://doi.org/10.1242/dmm.026120. PMID: 27736744; PMCID: PMC5087838.CrossRefGoogle ScholarPubMed
Felter, D, O’Banion, M, Maida, M. Netter’s Atlas of Neuroscience (Netter Basic Science). Elsevier, 2021.Google Scholar
Ishikawa, Y, Yamamoto, N, Yoshimoto, M, Ito, H. The primary brain vesicles revisited: are the three primary vesicles (forebrain/midbrain/hindbrain) universal in vertebrates? Brain Behav Evol 2012;79(2):7583. https://doi.org/10.1159/000334842Google Scholar
Kazama, H. Systems neuroscience in Drosophila: conceptual and technical advantages. Neuroscience 2015;296:314. https://doi.org/10.1016/j.neuroscience.2014.06.035. Epub 2014 Jun 25. PMID: 24973655.Google Scholar
Krebs, C, Weinberg, J, Akesson, E, Dilli, E. Lippincott Illustrated Reviews: Neuroscience. Wolters Kluwer, 2017.Google Scholar
Passingham, R. How good is the macaque monkey model of the human brain? Curr Opin Neurobiol 2009;19(1):611. https://doi.org/10.1016/j.conb.2009.01.002. Epub 2009 Mar 2. PMID: 19261463; PMCID: PMC2706975.Google Scholar
Purves, D, Augustine, G, Fitzpatrick, D, et al. Neuroscience. Sinauer Associates, 2017.Google Scholar
Sengupta, P, Samuel, AD. Caenorhabditis elegans: a model system for systems neuroscience. Curr Opin Neurobiol 2009;19(6):637–43. https://doi.org/10.1016/j.conb.2009.09.009. Epub 2009 Nov 4. PMID: 19896359; PMCID: PMC2904967.Google Scholar
Stewart, AM, Braubach, O, Spitsbergen, J, Gerlai, R, Kalueff, AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 2014;37(5):264–78. https://doi.org/10.1016/j.tins.2014.02.011. Epub 2014 Apr 9. PMID: 24726051; PMCID: PMC4039217.Google Scholar
Trembley, A. Mémoires pour servir à l’histoire d’un genre de polypes d’eau douce, à bras en forme de cornes. A Leide, Chez Jean & Herman Verbeek, 1744.Google Scholar
Vieira, C, Pombero, A, García-Lopez, R, Gimeno, L, Echevarria, D, Martínez, S. Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 2010;54(1):720. https://doi.org/10.1387/ijdb.092853cvGoogle Scholar
TN, Wiesel, Hubel, DH. Single cell responses in striate cortex of kittens deprives of vision in one eye. J Neurophysiol 1963;26:1003–17. https://doi.org/10.1152/jn.1963.26.6.1003Google Scholar

Further Reading

Akter, F, Robba, C, Gupta, A. Multimodal monitoring in the neurocritical care unit. In Prabhakar, H, Ali, Z (eds.), Textbook of Neuroanesthesia and Neurocritical Care. Springer, 2019.Google Scholar
Cho, Won-Sang, Ha, Eun, Ko, Sang-Bae, Yang, Seungman, Kim, Hee Chan, Kim, Jeong. New Parameters for evaluating cerebral autoregulation and pressure–volume compensatory reserve in neurocritial patients. J Neurointens Care 2018;1:711. https://doi.org/10.32587/jnic.2018.00038.CrossRefGoogle Scholar
Czosnyka, M, Pickard, JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 2004;75:813–21. https://doi.org/10.1136/jnnp.2003.033126. PMID: 15145991; PMCID: PMC1739058.Google Scholar
Czosnyka, M, Smielewski, P, Timofeev, I, et al. Intracranial pressure: more than a number. Neurosurg Focus 2007;22(5):E10. https://doi.org/10.3171/foc.2007.22.5.11. PMID: 17613228.Google Scholar
Ragosta, M. Textbook of Clinical Hemodynamics. 2nd ed. Elsevier, 2017.Google Scholar
Silverman, A, Petersen, NH. Physiology, cerebral autoregulation. [Updated 2022 Feb 16]. StatPearls [Internet], 2022. www.ncbi.nlm.nih.gov/books/NBK553183/Google Scholar
Steiner, LA, Andrews, PJ. Monitoring the injured brain: ICP and CBF. Br J Anaesth 2006;97(1):2638. https://doi.org/10.1093/bja/ael110. Epub 2006Google Scholar
Wymer, DT, Patel, KP, Burke, WF 3rd, Bhatia, VK. Phase-contrast MRI: physics, techniques, and clinical applications. Radiographics 2020;40(1):122–40. https://doi.org/10.1148/rg.2020190039. PMID: 31917664.Google Scholar

References

Aarntzen, EH, Srinivas, M, Schreibelt, G, et al. Reducing cell number improves the homing of dendritic cells to lymph nodes upon intradermal vaccination. OncoImmunology 2013;2(7):e24661. https://doi.org/10.4161/onci.24661.Google Scholar
Alexander, BM, Cloughesy, TF. Adult glioblastoma. J Clin Oncol 2017;35(21):2402–09. https://doi.org/10.1200/JCO.2017.73.0119.Google Scholar
Allen, C, Paraskevakou, G, Liu, C, Iankov, ID, Zollman, P, Galanis, E. Oncolytic measles virus strains in the treatment of gliomas. Expert Opin Biol Ther 2008;8(2):213–20. https://doi.org/10.1517/14712598.8.2.213.CrossRefGoogle ScholarPubMed
Amin, MM, Shawky, A, Zaher, A, Abdelbary, M, Wasel, Y, Gomaa, M. Immune cell infiltrate in different grades of astrocytomas: possible role in the pathogenesis. Egypt J Pathol 2012;32(1):175–80. https://doi.org/10.1097/01.XEJ.0000415777.74514.34.Google Scholar
Andersson, U, Tracey, KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol 2012;30(1):313–35. https://doi.org/10.1146/annurev-immunol-020711-075015.Google Scholar
Andtbacka, RHI, Kaufman, HL, Collichio, F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol 2015;33(25):2780–8. https://doi.org/10.1200/JCO.2014.58.3377.Google Scholar
Bar‐Or, A, Fawaz, L, Fan, B, et al. Abnormal B‐cell cytokine responses a trigger of T‐cell–mediated disease in MS? Ann Neurol 2010;67(4):452–61. https://doi.org/10.1002/ana.21939.Google Scholar
Beaman, GM, Dennison, SR, Chatfield, LK, Phoenix, DA. Reliability of HSP70 (HSPA) expression as a prognostic marker in glioma. Mol Cell Biochem 2014;393(1–2):301–07. https://doi.org/10.1007/s11010-014-2074-7.CrossRefGoogle ScholarPubMed
Benarroch, EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc 1993;68(10):9881001. https://doi.org/10.1016/s0025-6196(12)62272-1.Google Scholar
Bodhankar, S, Chen, Y, Lapato, A, et al. Regulatory CD8+CD122+ T-cells predominate in CNS after treatment of experimental stroke in male mice with IL-10-secreting B-cells. Metab Brain Dis 2015;30(4):911–24. https://doi.org/10.1007/s11011-014-9639-8.Google Scholar
Brown, C, Badie, B, Barish, M, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 2015;21(18):4062–72. https://doi.org/10.1158/1078-0432.CCR-15-0428.Google Scholar
Browning, KN, Verheijden, S, Boeckxstaens, GE. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 2017;152(4):730–44. https://doi.org/10.1053/j.gastro.2016.10.046.CrossRefGoogle ScholarPubMed
Ceyzériat, K, Ben Haim, L, Denizot, A, et al. Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol Commun 2018;6(1): 104104. https://doi.org/10.1186/s40478-018-0606-1.Google Scholar
Ciocca, DR, Calderwood, SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005;10(2):86103. https://doi.org/10.1379/csc-99r.1.Google Scholar
Cohen, MH, Shen, YL, Keegan, P, Pazdur, R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. The Oncologist 2009;14(11):1131–8. https://doi.org/10.1634/theoncologist.2009-0121.Google Scholar
Crane, CA, Han, SJ, Ahn, B, et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res Off J Am Assoc Cancer Res 2013;19(1):205–14. https://doi.org/10.1158/1078-0432.CCR-11-3358.Google Scholar
Cunningham, CL, Martínez-Cerdeño, V, Noctor, SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 2013;33(10):4216–33. https://doi.org/10.1523/JNEUROSCI.3441-12.2013.CrossRefGoogle ScholarPubMed
Dampney, RAL. Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ 2016;40(3):283–96. https://doi.org/10.1152/advan.00027.2016.Google Scholar
Debinski, W, Gibo, DM, Hulet, SW, Connor, JR, Gillespie, GY. Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res Off J Am Assoc Cancer Res 1999;5(5):985–90.Google Scholar
Derecki, NC, Cardani, AN, Yang, CH, et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med 2010;207(5):1067–80. https://doi.org/10.1084/jem.20091419.Google Scholar
Desjardins, A, Sampson, JH, Peters, KB, et al. Oncolytic polio/rhinovirus recombinant (PVSRIPO) against recurrent glioblastoma (GBM): optimal dose determination. J Clin Oncol 2015;33(15_suppl):20682068. https://doi.org/10.1093/neuonc/nou209.5.Google Scholar
Desjardins, A, Sampson, JH, Peters, KB, et al. Patient survival on the dose escalation phase of the Oncolytic Polio/Rhinovirus Recombinant (PVSRIPO) against WHO grade IV malignant glioma (MG) clinical trial compared to historical controls. J Clin Oncol 2016;34(15_suppl):20612061. https://doi.org/10.1056/NEJMoa1716435.Google Scholar
Dirnagl, U, Klehmet, J, Braun, JS, et al. Stroke-induced immunodepression. Stroke 2007;38(2):770–3. https://doi.org/10.1161/01.STR.0000251441.89665.bc.Google Scholar
Dobrikova, EY, Broadt, T, Poiley-Nelson, J, et al. Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol Ther J Am Soc Gene Ther 2008;16(11):1865–72. https://doi.org/10.1038/mt.2008.184.Google Scholar
Dunn-Pirio, AM, Vlahovic, G. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer 2017;123(5):734–50. https://doi.org/10.1002/cncr.30371.CrossRefGoogle ScholarPubMed
Ek, M, Kurosawa, M, Lundeberg, T, Ericsson, A. Activation of vagal afferents after intravenous injection of interleukin-1β: role of endogenous prostaglandins. J Neurosci 1998;18(22):9471–9. https://doi.org/10.1523/JNEUROSCI.18-22-09471.1998.CrossRefGoogle ScholarPubMed
Fan, L, Zhang, C-J, Zhu, L, et al. FasL–PDPK1 pathway promotes the cytotoxicity of CD8+ T cells during ischemic stroke. Transl Stroke Res 2020;11(4):747–61. https://doi.org/10.1007/s12975-019-00749-0.Google Scholar
Farris, BY, Monaghan, KL, Zheng, W, et al. Ischemic stroke alters immune cell niche and chemokine profile in mice independent of spontaneous bacterial infection. Immun Inflamm Dis 2019;7(4):326–41. https://doi.org/10.1002/iid3.277.Google Scholar
Galanis, E, Bateman, A, Johnson, K, et al. Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas. Hum Gene Ther 2001;12(7):811–21. https://doi.org/10.1089/104303401750148766.CrossRefGoogle ScholarPubMed
Garon, EB, Rizvi, NA, Hui, R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015;372(21):2018–28. https://doi.org/10.1056/NEJMoa1501824.Google Scholar
Goehler, LE, Gaykema, RP, Hansen, MK, Anderson, K, Maier, SF, Watkins, LR. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci 2000;85(1–3):4959. https://doi.org/10.1016/S1566-0702(00)00219-8.CrossRefGoogle ScholarPubMed
Grauer, OM, Wesseling, P, Adema, GJ. Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol Zurich Switz 2009;19(4):674–93. https://doi.org/10.1111/j.1750-3639.2009.00315.x.Google Scholar
Grilli, M, Barbieri, I, Basudev, H, et al. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci 2000;12(7):2265–72. https://doi.org/10.1046/j.1460-9568.2000.00090.x.Google Scholar
Gromeier, M, Alexander, L, Wimmer, E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A 1996;93(6):2370–5. https://doi.org/10.1073/pnas.93.6.2370.Google Scholar
Gromeier, M, Bossert, B, Arita, M, Nomoto, A, Wimmer, E. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 1999;73(2):958–64. https://doi.org/10.1128/JVI.73.2.958-964.1999.Google Scholar
Gromeier, M, Lachmann, S, Rosenfeld, MR, Gutin, PH, Wimmer, E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A 2000;97(12):6803–8. https://doi.org/10.1073/pnas.97.12.6803.Google Scholar
Gross, G, Waks, T, Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 1989;86(24):10024–8. https://doi.org/10.1073/pnas.86.24.10024.Google Scholar
Gülke, E, Gelderblom, M, Magnus, T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 2018;11:1756286418774254. https://doi.org/10.1177/1756286418774254.Google Scholar
Guo, S, Luo, Y. Brain Foxp3+ regulatory T cells can be expanded by interleukin-33 in mouse ischemic stroke. Int Immunopharmacol 2020;81:106027. https://doi.org/10.1016/j.intimp.2019.106027.Google Scholar
Halford, S, Rampling, R, James, A, et al. Final results from a Cancer Research UK first in man phase I trial of Ima950 (a novel multi peptide vaccine) plus Gm-Csf in patients with newly diagnosed glioblastoma. Ann Oncol 2014;25:iv364. https://doi.org/10.1093/annonc/mdu342.10.Google Scholar
Hartmann, C, Meyer, J, Balss, J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol (Berl) 2009;118(4):469–74. https://doi.org/10.1007/s00401-009-0561-9.Google Scholar
Heimberger, AB, Crotty, LE, Archer, GE, et al. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 2000;103(1):1625. https://doi.org/10.1016/s0165-5728(99)00172-1.Google Scholar
Hodi, FS, O’Day, SJ, McDermott, DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.Google Scholar
Hodi, FS, Postow, MA, Chesney, JA, et al. Clinical response, progression-free survival (PFS), and safety in patients (pts) with advanced melanoma (MEL) receiving nivolumab (NIVO) combined with ipilimumab (IPI) vs IPI monotherapy in CheckMate 069 study. J Clin Oncol 2015;33(15_suppl):90049004.Google Scholar
Humphrey, PA, Wong, AJ, Vogelstein, B, et al. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci U S A 87: 42074211. https://doi.org/10.1073/pnas.87.11.4207.Google Scholar
Ito, M, Komai, K, Nakamura, T, Srirat, T, Yoshimura, A. Tissue regulatory T cells and neural repair. Int Immunol 2019;31(6):361–9. https://doi.org/10.1093/intimm/dxz031.Google Scholar
Janeway, C. Immunobiology: The Immune System in Health and Disease. 4th ed. Garland, 1999.Google Scholar
Jin, Wei-Na, Gonzales, R, Feng, Yan, et al. Brain ischemia induces diversified neuroantigen-specific T-cell responses that exacerbate brain injury. Stroke 2018;49(6):1471–8. https://doi.org/10.1161/STROKEAHA.118.020203.CrossRefGoogle ScholarPubMed
Johnson, BF, Clay, TM, Hobeika, AC, Lyerly, HK, Morse, MA. Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin Biol Ther 2007;7(4):449–60. https://doi.org/10.1517/14712598.7.4.449.Google Scholar
Kaufman, HL, Kohlhapp, FJ, Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2015;14(9):642–62. https://doi.org/10.1038/nrd.2016.178.Google Scholar
Kipnis, J, Cohen, H, Cardon, M, Ziv, Y, Schwartz, M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci 2004;101(21):8180–5. https://doi.org/10.1073/pnas.0402268101.Google Scholar
Korin, B, Ben-Shaanan, TL, Schiller, M, et al. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat Neurosci 2017;20(9):1300–9. https://doi.org/10.1038/nn.4610.Google Scholar
Korn, T, Kallies, A. T cell responses in the central nervous system. Nat Rev Immunol 2017;17(3):179–94. https://doi.org/10.1038/nri.2016.144.Google Scholar
Krummel, MF, Allison, JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995;182(2):459–65. https://doi.org/10.1084/jem.182.2.459.CrossRefGoogle ScholarPubMed
Lang, FF, Conrad, C, Gomez-Manzano, C, et al. First-in-human phase I clinical trial of oncolytic delta-24-RGD (DNX-2401) with biological endpoints: implications for viro-immunotherapy. Neuro Oncol 2014;16(Suppl 3): iii39. https://doi.org/10.1093/neuonc/nou208.61.Google Scholar
Levine, YA, Koopman, FA, Faltys, M, et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS One 2014;9(8):e104530e104530. https://doi.org/10.1371/journal.pone.0104530.Google Scholar
Li, P, Gan, Y, Sun, B-L, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol 2013;74(3):458–71. https://doi.org/10.1002/ana.23815.Google Scholar
Li, Q, Barres, BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 2018;18(4):225–42. https://doi.org/10.1038/nri.2017.125.Google Scholar
Liesz, A, Suri-Payer, E, Veltkamp, C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 2009;15(2):192–9. https://doi.org/10.1038/nm.1927.Google Scholar
Malkki, H. Trial watch: Glioblastoma vaccine therapy disappointment in Phase III trial. Nat Rev Neurol 2016;12(4):190. https://doi.org/10.1038/nrneurol.2016.38Google Scholar
Matute, C, Domercq, M, Pérez-Samartín, A, Ransom, BR. Protecting white matter from stroke injury. Stroke 2013;44(4):1204–11. https://doi.org/10.1161/STROKEAHA.112.658328.Google Scholar
Maude, SL, Barrett, D, Teachey, DT, Grupp, SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 2014;20(2):119–22. https://doi.org/10.1097/PPO.0000000000000035.Google Scholar
Medzhitov, R, Janeway, CA. Decoding the patterns of self and nonself by the innate immune system. Sci Am Assoc Adv Sci 2002;296(5566):298300. https://doi.org/10.1126/science.1068883.Google Scholar
Miao, H, Choi, BD, Suryadevara, CM, et al. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One 2014;9(4):e94281. https://doi.org/10.1371/journal.pone.0094281.Google Scholar
Mitchell, DA, Batich, KA, Gunn, MD, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 2015;519(7543):366–9. https://doi.org/10.1038/nature14320.Google Scholar
Mitchell, DA, Sampson, JH. Toward effective immunotherapy for the treatment of malignant brain tumors. Neurotherapeutics 2009;6(3):527–38. https://doi.org/10.1016/j.nurt.2009.04.003.Google Scholar
Miyamoto, A, Wake, H, Ishikawa, AW, et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 2016;7(1):12540. https://doi.org/10.1038/ncomms12540.Google Scholar
Mracsko, E, Liesz, A, Stojanovic, A, et al. Antigen dependently activated cluster of differentiation 8-positive T cells cause perforin-mediated neurotoxicity in experimental stroke. J Neurosci 2014;34(50):16784–95. https://doi.org/10.1523/JNEUROSCI.1867-14.2014.CrossRefGoogle ScholarPubMed
Musuka, TD, Wilton, SB, Traboulsi, M, Hill, MD. Diagnosis and management of acute ischemic stroke: speed is critical. CMAJ 2015;187(12):887–93. https://doi.org/10.1503/cmaj.140355.Google Scholar
Noh, M-Y, Lee, WM, Lee, S-J, Kim, HY, Kim, SH, Kim, YS. Regulatory T cells increase after treatment with poly (ADP-ribose) polymerase-1 inhibitor in ischemic stroke patients. Int Immunopharmacol 2018;60:104–10. https://doi.org/10.1016/j.intimp.2018.04.043.Google Scholar
Norden, DM, Muccigrosso, MM, Godbout, JP. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology 2015;96:2941. https://doi.org/10.1016/j.neuropharm.2014.10.028.Google Scholar
Olofsson, PS, Levine, YA, Caravaca, A, et al. Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron Med 2015;2(1):3742.Google Scholar
Pang, Y, Fan, L-W, Tien, L-T, et al. Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro. Brain Behav 2013;3(5):503–14. https://doi.org/10.1002/brb3.152.Google Scholar
Pavlov, VA. Cholinergic modulation of inflammation. Int J Clin Exp Med 2008;1(3):203–12.Google Scholar
Phuong, LK, Allen, C, Peng, K-W, et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003;63(10):2462–9.Google Scholar
Polyzoidis, S, Ashkan, K. DCVax®-L developed by Northwest Biotherapeutics. Hum Vaccines Immunother 2014;10(11):3139–45. https://doi.org/10.4161/hv.29276.Google Scholar
Pösel, C, Möller, K, Boltze, J, Wagner, D-C, Weise, G. Isolation and flow cytometric analysis of immune cells from the ischemic mouse brain. J Vis Exp 2016;108:e53658. https://doi.org/10.3791/53658.Google Scholar
Primiani, CT, Ryan, VH, Rao, JS, et al. Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging. PLoS One 2014;9(10):e110972. https://doi.org/10.1371/journal.pone.0110972.Google Scholar
Qin, X, Akter, F, Qin, L, et al. Adaptive immunity regulation and cerebral ischemia. Front Immunol 2020;11:689. https://doi.org/10.3389/fimmu.2020.00689.Google Scholar
Ransohoff, RM, Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012;12(9):623–35. https://doi.org/10.1038/nri3265.CrossRefGoogle ScholarPubMed
Ransohoff, RM, Kivisäkk, P, Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 2003;3(7):569–81. https://doi.org/10.1038/nri1130.Google Scholar
Ransohoff, RM, Schafer, D, Vincent, A, Blachère, NE, Bar-Or, A. Neuroinflammation: ways in which the immune system affects the brain. Neurotherapeutics 2015;12(4):896909. https://doi.org/10.1007/s13311-015-0385-3.Google Scholar
Robert-Tissot, C, Speiser, DE. Anticancer teamwork: cross-presenting dendritic cells collaborate with therapeutic monoclonal antibodies. Cancer Discov 2016;6(1):17–9. https://doi.org/10.1158/2159-8290.CD-15-1366.Google Scholar
Rock, KL. A new foreign policy: MHC class I molecules monitor the outside world. Immunol Today 1996;17(3):131–7. https://doi.org/10.1016/0167-5699(96)80605-0.Google Scholar
Rosa, M de la, Rutz, S, Dorninger, H, Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol 2004;34(9):2480–8. https://doi.org/10.1002/eji.200425274.Google Scholar
Sabharwal, L, Kamimura, D, Meng, J, et al. The Gateway Reflex, which is mediated by the inflammation amplifier, directs pathogenic immune cells into the CNS. J Biochem Tokyo 2014;156(6):299304. https://doi.org/10.1093/jb/mvu057.Google Scholar
Safdari, H, Hochberg, FH, Richardson, EP. Prognostic value of round cell (lymphocyte) infiltration in malignant gliomas. Surg Neurol 1985;23(3):221–6. https://doi.org/10.1016/0090-3019(85)90086-2.Google Scholar
Sampson, JH, Vlahovic, G, Sahebjam, S, et al. Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM): CHECKMATE-143. J Clin Oncol 2015;33(15_suppl):30103010.Google Scholar
Sasaki, A. Microglia and brain macrophages: an update. Neuropathology 2017;37(5):452–64. https://doi.org/10.1111/neup.12354.CrossRefGoogle ScholarPubMed
Schumacher, T, Bunse, L, Pusch, S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014;512(7514):324–7. https://doi.org/10.1038/nature13387.Google Scholar
Schwab, JM, Nguyen, TD, Meyermann, R, Schluesener, HJ. Human focal cerebral infarctions induce differential lesional interleukin-16 (IL-16) expression confined to infiltrating granulocytes, CD8+ T-lymphocytes and activated microglia/macrophages. J Neuroimmunol 2001;114(1):232–41. https://doi.org/10.1016/s0165-5728(00)00433-1.Google Scholar
Seifert, HA, Collier, LA, Chapman, CB, Benkovic, SA, Willing, AE, Pennypacker, KR. Pro-inflammatory interferon gamma signaling is directly associated with stroke induced neurodegeneration. J Neuroimmune Pharmacol 2014;9(5):679–89. https://doi.org/10.1007/s11481-014-9560-2.Google Scholar
Shen, P, Roch, T, Lampropoulou, V, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nat Lond 2014;507(7492):366–70. https://doi.org/10.1038/nature12979.CrossRefGoogle ScholarPubMed
Shen, Z, Bao, X, Wang, R. Clinical PET imaging of microglial activation: implications for microglial therapeutics in Alzheimer’s disease. Front Aging Neurosci 2018;10:314. https://doi.org/10.3389/fnagi.2018.00314.Google Scholar
Sofroniew, MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 2015;16(5):249–63. https://doi.org/10.1038/nrn3898.Google Scholar
Song, GJ, Suk, K. Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases. Front Aging Neurosci 2017;9:139139. https://doi.org/10.3389/fnagi.2017.00139.Google Scholar
Stephenson, J, Nutma, E, van der Valk, P, Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 2018;154(2):204–19. https://doi.org/10.1111/imm.12922.Google Scholar
Stern, JNH, Yaari, G, Vander Heiden, JA, et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 2014;6(248):248ra107248ra107. https://doi.org/10.1126/scitranslmed.3008879.Google Scholar
Tanabe, S, Yamashita, T. B-1a lymphocytes promote oligodendrogenesis during brain development. Nat Neurosci 2018;21(4):506–16. https://doi.org/10.1038/s41593-018-0106-4.Google Scholar
Tanabe, S, Yamashita, T. B lymphocytes: crucial contributors to brain development and neurological diseases. Neurosci Res 2019;139:3741. https://doi.org/10.1016/j.neures.2018.07.002.Google Scholar
Tang, Y, Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 2016;53(2):1181–94. https://doi.org/10.1007/s12035-014-9070-5.Google Scholar
Taxin, ZH, Neymotin, SA, Mohan, A, Lipton, P, Lytton, WW. Modeling molecular pathways of neuronal ischemia. In Blackwell, KT (ed.), Progress in Molecular Biology and Translational Science. Academic Press, 2014: 249–75. www.sciencedirect.com/science/article/pii/B9780123978974000140Google Scholar
Torres-Rosas, R, Yehia, G, Peña, G, et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 2014;20(3):291–5. https://doi.org/10.1038/nm.3479.Google Scholar
Tracey, KJ. The inflammatory reflex. Nat Lond 2002;420(6917):853–9. https://doi.org/10.1038/nature01321Google Scholar
Tracey, KJ. Reflex control of immunity. Nat Rev Immunol 2009;9(6):418–28. https://doi.org/10.1038/nri2566.Google Scholar
Ueno, M, Ueno-Nakamura, Y, Niehaus, J, Popovich, PG, Yoshida, Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci 2016;19(6):784–7. https://doi.org/10.1038/nn.4289.Google Scholar
Walter, U, Kolbaske, S, Patejdl, R, et al. Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. Eur J Neurol 2013;20(1):153–9. https://doi.org/10.1111/j.1468-1331.2012.03818.x.Google Scholar
Wang, J, Xing, H, Wan, L, Jiang, X, Wang, C, Wu, Y. Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother 2018;105:518–25. https://doi.org/10.1016/j.biopha.2018.05.143.Google Scholar
Waziri, A. Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am 2010;21(1):3142. https://doi.org/10.1016/j.nec.2009.08.005.Google Scholar
Wen, PY, Reardon, DA, Armstrong, TS, et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res 2019;25(19):5799–807. https://doi.org/10.1158/1078-0432.CCR-19-0261.Google Scholar
Wolf, SA, Boddeke, HWGM, Kettenmann, H. Microglia in physiology and disease. Annu Rev Physiol 2017;79(1):619–43. https://doi.org/10.1146/annurev-physiol-022516-034406.Google Scholar
Zagzag, D, Salnikow, K, Chiriboga, L, et al. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Investig J Tech Methods Pathol 2005;85(3):328–41. https://doi.org/10.1038/labinvest.3700233.Google Scholar
Zhang, J, Mao, X, Zhou, T, Cheng, X, Lin, Y. IL-17A contributes to brain ischemia reperfusion injury through calpain-TRPC6 pathway in mice. Neuroscience 2014;274:419–28. https://doi.org/10.1016/j.neuroscience.2014.06.001.Google Scholar
Zhao, Z, Nelson, AR, Betsholtz, C, Zlokovic, BV. Establishment and dysfunction of the blood–brain barrier. Cell 2015;163(5):1064–78. https://doi.org/10.1016/j.cell.2015.10.067.Google Scholar
Zhou, YJ, Messmer, MN, Binder, RJ. Establishment of tumor-associated immunity requires interaction of heat shock proteins with CD91. Cancer Immunol Res 2014;2(3):217–28. https://doi.org/10.1158/2326-6066.CIR-13-0132.Google Scholar
Zhou, Y-X, Wang, X, Tang, D, et al. IL-2mAb reduces demyelination after focal cerebral ischemia by suppressing CD8+ T cells. CNS Neurosci Ther 2019;25(4):532–43. https://doi.org/10.1111/cns.13084.Google Scholar
Ziv, Y, Ron, N, Butovsky, O, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006;9(2):268–75. https://doi.org/10.1038/nn1629.Google Scholar

Further Reading

Daneman, R, Prat, A. The blood–brain barrier. Cold Spring Harb Perspect Biol 2015;7(1):a020412. https://doi.org/10.1101/cshperspect.a020412. PMID: 25561720; PMCID: PMC4292164.Google Scholar
Debanne, D, Campanac, E, Bialowas, A, Carlier, E, Alcaraz, G. Axon physiology. Physiol Rev 2011;91(2):555602. https://doi.org/10.1152/physrev.00048.2009. PMID: 21527732.Google Scholar
Dessalles, CA, Babataheri, A, Barakat, AI. Pericyte mechanics and mechanobiology. J Cell Sci 2021;134(6):jcs240226. https://doi.org/10.1242/jcs.240226. PMID: 33753399.Google Scholar
Ghosh, SK. Camillo Golgi (1843–1926): scientist extraordinaire and pioneer figure of modern neurology. Anat Cell Biol 2020;53(4):385–92. https://doi.org/10.5115/acb.20.196. PMID: 33012727; PMCID: PMC7769101.Google Scholar
Hartline, DK, Colman, DR. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 2007;17:R29R35. https://doi.org/10.1016/j.cub.2006.11.042.Google Scholar
Kress, GJ, Mennerick, S. Action potential initiation and propagation: upstream influences on neurotransmission. Neuroscience 2009;158(1):211–22. https://doi.org/10.1016/j.neuroscience.2008.03.021.Google Scholar
Major, G, Larkman, AU, Jonas, P, Sakmann, B, Jack, JJ. Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 1994;14:4613–38. https://doi.org/10.1523/JNEUROSCI.14-08-04613.1994.Google Scholar
Sofroniew, MV, Vinters, HV. Astrocytes: biology and pathology. Acta Neuropathol 2010;119(1):735. https://doi.org/10.1007/s00401-009-0619-8.Google Scholar
Wright, SH. Generation of resting membrane potential. Adv Physiol Educ 2004;28(1–4):139–42. https://doi.org/10.1152/advan.00029.2004. PMID: 15545342.Google Scholar

Further Reading

Anderson, P, Morris, R, Amaral, D, Bliss, T, O’Keefe, J. The Hippocampus. Oxford University Press, 2006.Google Scholar
Cowan, M, Cowan, WM, Sudhof, T. Synapses. Johns Hopkins University Press, 2000.Google Scholar
Mtui, E, Gruener, G, Dockery, P. Fitzgerald’s Clinical Neuroanatomy and Neuroscience. Elsevier, 2015.Google Scholar

Further Reading

Cheng, Z, Gu, Y. Vestibular system and self-motion. Front Cell Neurosci. 2018;12:456. https://doi.org/10.3389/fncel.2018.00456. PMID: 30524247; PMCID: PMC6262063.Google Scholar
Gilbertson, TA, Damak, S, Margolskee, RF. The molecular physiology of taste transduction. Curr Opin Neurobiol. 2000;10(4):519–27. https://doi.org/10.1016/s0959-4388(00)00118-5. PMID: 10981623.Google Scholar
Howlett, M, Smith, R, Kamermans, M. A novel mechanism of cone photoreceptor adaptation. PLoS Biology 2017;15(4):e2001210. https://doi.org/10.1371/journal.pbio.2001210.Google Scholar
Iacaruso, M, Gasler, I, Hofer, S. Synaptic organization of visual space in primary visual cortex. Nature 2017;547(7664):449–52. http://doi.org/10.1038/nature23019.Google Scholar
Khan, S, Chang, R. Anatomy of the vestibular system: a review. NeuroRehabilitation 2013;32(3):437–43. https://doi.org/10.3233/NRE-130866. PMID: 23648598.Google Scholar
Kinnamon, SC, Finger, TE. Recent advances in taste transduction and signaling. F1000Res 2019;8:F1000 Faculty Rev-2117. https://doi.org/10.12688/f1000research.21099.1. PMID: 32185015; PMCID: PMC7059786.Google Scholar
Lim, R, Brichta, AM. Anatomical and physiological development of the human inner ear. Hear Res 2016;338:921. https://doi.org/10.1016/j.heares.2016.02.004.Google Scholar
Luo, L. Principles of Neurobiology. 1st ed. Garland Science, 2015.Google Scholar
Pickles, JO. Auditory pathways: anatomy and physiology. Handb Clin Neurol 2015;129:325. https://doi.org/10.1016/B978-0-444-62630-1.00001-9. PMID: 25726260.Google Scholar
Recanzone, GH. Perception of auditory signals. Ann N Y Acad Sci 2011;1224:96108. https://doi.org/10.1111/j.1749-6632.2010.05920.x.Google Scholar
Simon, SA, de Araujo, IE, Gutierrez, R, Nicolelis, MA. The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci 2006;7(11):890901. https://doi.org/10.1038/nrn2006. PMID: 17053812.Google Scholar
Swienton, DJ, Thomas, AG. The visual pathway – functional anatomy and pathology. Semin Ultrasound CT MR 2014;35(5):487503. https://doi.org/10.1053/j.sult.2014.06.007. Epub 2014 Jun 25. PMID: 25217301.Google Scholar
Usrey, W, Alitto, H. Visual functions of the thalamus. Annu Rev Vision Sci 2015;1(1):351–71. https://doi.org/10.1146/annurev-vision-082114-035920.Google Scholar
Widmaier, E, Raff, H, Strang, K. Vander’s Human Physiology. 13th revised ed. McGraw Hill Higher Education, 2014.Google Scholar
Zhou, G, Lane, G, Cooper, SL, Kahnt, T, Zelano, C. Characterizing functional pathways of the human olfactory system. eLife 2019;8:e47177. https://doi.org/10.7554/eLife.47177. PMID: 31339489; PMCID: PMC6656430.Google Scholar

Further Reading

Bellingham, MC. Driving respiration: the respiratory central pattern generator. Clin Exp Pharmacol Physiol 1998;25(10):847–56.Google Scholar
Binder, MD, Kroin, JS, Moore, GP, Stuart, DG. The response of Golgi tendon organs to single motor unit contractions. J Physiol 1977;271(2):337–49.Google Scholar
Colón, A, Guo, X, Akanda, N, Cai, Y, Hickman, JJ. Functional analysis of human intrafusal fiber innervation by human γ-motoneurons. Sci Rep 2017;7(1):17202. https://doi.org/10.1038/s41598-017-17382-2.Google Scholar
Fallon, JB, Macefield, VG. Vibration sensitivity of human muscle spindles and Golgi tendon organs. Muscle Nerve 2007;36(1):21–9. https://doi.org/10.1002/mus.20796.Google Scholar
Friese, A, Kaltschmidt, JA, Ladle, DR, Sigrist, M, Jessell, TM, Arber, S. Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. PNAS [Internet] 2009 [cited 2021 Feb 8];106(32):13588–93. www.pnas.org/content/106/32/13588Google Scholar
Hunt, CC, Kuffler, SW. Stretch receptor discharges during muscle contraction. J Physiol 1951;113(2–3):298315.Google Scholar
Johnson, KO. The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 2001;11(4):455–61. https://doi.org/10.1016/s0959-4388(00)00234-8. PMID: 11502392.Google Scholar
Lyle, MA, Nichols, TR. Evaluating intermuscular Golgi tendon organ feedback with twitch contractions. J Physiol 2019;597(17):4627–42.Google Scholar
Marder, E, Calabrese, RL. Principles of rhythmic motor pattern generation. Physiol Rev 1996;76(3):687717.Google Scholar
Minassian, K, Hofstoetter, US, Dzeladini, F, Guertin, PA, Ijspeert, A. The human central pattern generator for locomotion: does it exist and contribute to walking? Neuroscientist 2017;23(6):649–63.Google Scholar
Nielsen, JB, Morita, H, Wenzelburger, R, Deuschl, G, Gossard, J-P, Hultborn, H. Recruitment gain of spinal motor neuron pools in cat and human. Exp Brain Res 2019;237(11):2897–909.Google Scholar
Pearson, K. The control of walking. Sci Am 1976;235(6):72–4, 7982, 83–6. https://doi.org/10.1038/scientificamerican1276-72.CrossRefGoogle ScholarPubMed
Stephens, JA, Reinking, RM, Stuart, DG. Tendon organs of cat medial gastrocnemius: responses to active and passive forces as a function of muscle length. J Neurophysiol 1975;38(5):1217–31. https://doi.org/10.1152/jn.1975.38.5.1217.Google Scholar
ten Donkelaar, HJ, Broman, J, van Domburg, P. The somatosensory system. In Clinical Neuroanatomy. Springer, 2020: 171255.Google Scholar
Watson, C, Kayalionglu, G (Eds.). The Spinal Cord. Elsevier, 2009.Google Scholar
Windhorst, U. Spinal cord and brainstem: motor output, sensors and basic circuits. In Greger, R, Windhorst, U (Eds.), Comprehensive Human Physiology: From Cellular Mechanisms to Integration. Springer, 1996: 9871006. https://doi.org/10.1007/978-3-642-60946-6_50.Google Scholar

References

Adrian, ED, Zotterman, Y. The impulses produced by sensory nerve endings: Part 3. Impulses set up by touch and pressure. J Physiol. 1926;61(4):465–83. https://doi.org/10.1113/jphysiol.1926.sp002308. PMID: 16993807; PMCID: PMC1514868.Google Scholar
Albright, TD. Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol. 1984;52(6):1106–30. https://doi.org/10.1152/jn.1984.52.6.1106. PMID: 6520628.Google Scholar
Gerstner, W, Kistler, WM. Spiking neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, 2002.Google Scholar
Greenwood, PE, Ward, LM. Single neuron models. In Stochastic Neuron Models. Mathematical Biosciences Institute Lecture Series, vol. 1.5. Springer, 2016. https://doi.org/10.1007/978-3-319-26911-5_2CrossRefGoogle Scholar
Lapicque, L. Recherches quantitatives sur l’excitation e´lectrique des nerfs traite´e comme une polarization. J Physiol Pathol Gen 1907;9:620–35.Google Scholar

Further Reading

Choi, RY, Coyner, AS, Kalpathy-Cramer, J, Chiang, MF, Campbell, JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol 2020;9(2):14. https://doi.org/10.1167/tvst.9.2.14. PMID: 32704420; PMCID: PMC7347027.Google Scholar
McCulloch, WS, Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 1943;5;115–33. https://doi.org/10.1007/BF02478259Google Scholar
Rowe, M. An introduction to machine learning for clinicians. Acad Med 2019;94(10):1433–6. https://doi.org/10.1097/ACM.0000000000002792. PMID: 31094727.Google Scholar
Sidey-Gibbons, JAM, Sidey-Gibbons, CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol 2019;19(1):64. https://doi.org/10.1186/s12874-019-0681-4. PMID: 30890124; PMCID: PMC6425557.Google Scholar

References

Abbasi-Asl, R, Chen, Y, Bloniarz, A, et al. The DeepTune framework for modeling and characterizing neurons in visual cortex area V4. bioRxiv 2018:465534. https://doi.org/10.1101/465534Google Scholar
Bao, P, She, L, McGill, M, and Tsao, DY. A map of object space in primate inferotemporal cortex. Nature 2020;583:103–08.Google Scholar
Bashivan, P, Kar, K, and DiCarlo, JJ. Neural population control via deep image synthesis. Science 2019;364(6439):eeav9436.Google Scholar
Brown, N and Sandholm, T. Superhuman AI for multiplayer poker. Science 2019;365:885–90. https://doi.org/10.1126/science.aay240.Google Scholar
Cagnan, H, Denison, T, McIntyre, C, and Brown, P. Emerging technologies for improved deep brain stimulation. Nat Biotechnol 2019;37:1024–33. https://doi.org/10.1038/s41587-019-0244-6.Google Scholar
Carandini, M and Heeger, D. Normalization as a canonical neural computation. Nat Rev Neurosci 2011;23:5162. https://doi.org/10.1038/nrn3136.Google Scholar
Cho, KO and Jang, HJ. Comparison of different input modalities and network structures for deep learning-based seizure detection. Scientific Rep 2020;10:111. https://doi.org/10.1038/s41598-019-56958-y.Google Scholar
Crick, F, Koch, C, Kreiman, G, and Fried, I. Consciousness and neurosurgery. Neurosurgery 2004;55:272–82. https://doi.org/10.1227/01.neu.0000129279.26534.76.Google Scholar
Dabney, W, Kurth-Nelson, Z, Uchida, N, et al. A distributional code for value in dopamine-based reinforcement learning. Nature 2020;577:671–5. https://doi.org/10.1038/s41586-019-1924-6.Google Scholar
DiCarlo, JJ, Zoccolan, D, and Rust, NC. How does the brain solve visual object recognition? Neuron 2012;73:415–34. https://doi.org/10.1016/j.neuron.2012.01.010.Google Scholar
Felleman, D and Van Essen, D. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1991;1:147. https://doi.org/10.1093/cercor/1.1.1-a.Google Scholar
Fergus, P, Hussain, A, Hignett, D, Al-Jumeily, D, Abdel-Aziz, K, and Hamdan, H. A machine learning system for automated whole-brain seizure detection. Appl Comput Informat 2016;12:7089. https://doi.org/10.1016/j.aci.2015.01.001.Google Scholar
Goodfellow, I, Pouget-Abadie, J, Mirza, M, et al. Generative adversarial nets. In Advances in Neural Information Processing Systems. Curran Associates, Inc., 2014: 2672–80.Google Scholar
Grote, T and Berens, P. On the ethics of algorithmic decision-making in healthcare. J Med Ethics 2020;46:205–11. https://doi.org/10.1136/medethics-2019-105586.Google Scholar
Gulshan, V, Peng, L, Coram, M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402–10. https://doi.org/10.1001/jama.2016.17216.Google Scholar
Hassabis, D, Kumaran, D, Summerfield, C, and Botvinick, M. Neuroscience-inspired artificial intelligence. Neuron 2017;95:245–58. https://doi.org/0.1016/j.neuron.2017.06.011.Google Scholar
He, K, Zhang, X, Ren, S, and Sun, J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015, pp. 1026–34. https://doi.org/10.1109/ICCV.2015.123.Google Scholar
Hubel, DH and Wiesel, TN. Receptive fields of single neurones in the cat’s striate cortex. J Physiol 1959;148:574. https://doi.org/10.1113/jphysiol.1959.sp006308.Google Scholar
Hubel, DH and Wiesel, TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 1962;160:106. https://doi.org/10.1113/jphysiol.1962.sp006837.Google Scholar
Kar, K, Kubilius, J, Schmidt, K, Issa, EB, and DiCarlo, JJ. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience 2019;22:974–83. https://doi.org/10.1038/s41593-019-0392-5.Google Scholar
Krizhevsky, A, Sutskever, I, and Hinton, GE. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems. Curran Associates, Inc., 2012:1097–105.Google Scholar
Kubilius, J, Schrimpf, M, Kar, K, et al. Brain-like object recognition with high-performing shallow recurrent ANNs. In Advances in Neural Information Processing Systems. Curran Associates, Inc., 2019: 12805–16.Google Scholar
Lillicrap, TP, Santoro, A, Marris, L, Akerman, CJ, and Hinton, G. Backpropagation and the brain. Nat Rev Neurosci 2020;21:335–46. https://doi.org/10.1038/s41583-020-0277-3.Google Scholar
Liu, H, Agam, Y, Madsen, J, and Kreiman, G. Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron 2009;62:281–90. https://doi.org/10.1016/j.neuron.2009.02.025.Google Scholar
Liu, Yang, Stiles, NRB, Meister, M. Augmented reality powers a cognitive assistant for the blind.eLife 2018;7:e37841. https://doi.org/10.7554/eLife.37841.Google Scholar
Lotter, W, Diab, A, Haslam, B, et al. Robust breast cancer detection in mammography and digital breast tomosynthesis using annotation-efficient deep learning approach. Nat Med 2021;27:244–9. https://doi.org/10.1038/s41591-020-01174-9.Google Scholar
McCulloch, W and Pitts, W. Logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 1943;5:115–33. https://doi.org/10.1007/BF02478259.Google Scholar
Mnih, V, Kavukcuoglu, K, Silver, D, et al. Human-level control through deep reinforcement learning. Nature 2015;518:529–33. https://doi.org/10.1038/nature14236.Google Scholar
Nguyen, A, Yosinski, J, and Clune, J. Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santiago, Chile, 2015, pp. 427–36. https://doi.org/10.1109/CVPR.2015.7298640.Google Scholar
Niketeghad, S and Pouratian, N. Brain machine interfaces for vision restoration: the current state of cortical visual prosthetics. Neurotherapeutics 2019;16:134–43. https://doi.org/10.1007/s13311-018-0660-1.Google Scholar
Olah, C, Mordvintsev, A, and Schubert, L. Feature visualization. Distill 2017;2:e7. https://distill.pub/2017/feature-visualization/.Google Scholar
Olshausen, BA and Field, DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 1996;381:607–09. https://doi.org/10.1038/381607a0.Google Scholar
Ponce, CR, Xiao, W, Schade, PF, Hartmann, TS, Kreiman, G, and Livingstone, MS. Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences. Cell 2019;177:9991009. https://doi.org/10.1016/j.cell.2019.04.005.Google Scholar
Poplin, R, Varadarajan, AV, Blumer, K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2018;2:158. https://doi.org/10.1038/s41551-018-0195-0.Google Scholar
Richards, BA, Lillicrap, TP, Beaudoin, P, et al. A deep learning framework for neuroscience. Nat Neurosci 2019;22:1761–70. https://doi.org/10.1038/s41593-019-0520-2.Google Scholar
Riesenhuber, M and Poggio, T. Hierarchical models of object recognition in cortex. Nat Neurosci 1999;2:1019–25. https://doi.org/10.1038/14819.Google Scholar
Rigby, MJ. Ethical dimensions of using artificial intelligence in health care. AMA J Ethics 2019;21:121–4. https://doi.org/10.1001/amajethics.2019.121.Google Scholar
Roe, AW, Chen, G, Xu, AG, and Hu, J. A roadmap to a columnar visual cortical prosthetic. Curr Opin Physiol 2020;16:6878. https://doi.org/10.1016/j.cophys.2020.06.009.Google Scholar
Russakovsky, O, Deng, J, Su, H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis 2015;115:211–52. https://doi.org/10.1007/s11263-015-0816-y.Google Scholar
Sacks, O. The Man who Mistook His Wife for a Hat. Picador, 2002.Google Scholar
Schrimpf, M, Kubilius, J, Hong, H, et al. Brain-score: which artificial neural network for object recognition is most brain-like? BioRxiv 2018:407007. https://doi.org/10.1101/407007.Google Scholar
Serre, T. Deep learning: the good, the bad, and the ugly. Annu Rev Vision Sci 2019;5:399426. https://doi.org/10.1146/annurev-vision-091718-014951.Google Scholar
Siddiqui, MK, Morales-Menendez, R, Huang, X, and Hussain, N. A review of epileptic seizure detection using machine learning classifiers. Brain Informat 2020;7:118. https://doi.org/10.1186/s40708-020-00105-1.Google Scholar
Silver, D, Huang, A, Maddison, CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016;529:484–9. https://doi.org/10.1038/nature16961.Google Scholar
Silver, D, Hubert, T, Schrittwieser, J, et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018;362:1140–4. https://doi.org/10.1126/science.aar6404.Google Scholar
Silver, D, Schrittwieser, J, Simonyan, K, et al. Mastering the game of Go without human knowledge. Nature 2017;550:354–9. https://doi.org/10.1038/nature24270Google Scholar
Szegedy, C, Zaremba, W, Sutskever, I, et al. Intriguing properties of neural networks. arXiv 2013; preprint arXiv:1312.6199. https://doi.org/10.48550/arXiv.1312.6199.Google Scholar
Tam, Wk, Wu, T, Zhao, Q, Keefer, E, and Yang, Z. Human motor decoding from neural signals: a review. BMC Biomed Eng 2019;1:22. https://doi.org/10.1186/s42490-019-0022-z.Google Scholar
Tang, H, Schrimpf, M, Lotter, W, et al. Recurrent computations for visual pattern completion. PNAS 2018;28:8835–40. https://doi.org/10.1073/pnas.1719397115.Google Scholar
Ting, DSW, Cheung, CYL, Lim, G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017;318:2211–23. https://doi.org/10.1001/jama.2017.18152..Google Scholar
Vaswani, A, Shazeer, N, Parmar, N, et al. Attention is all you need. In Advances in Neural Information Processing Systems. Curran Associates, Inc., 2017: 59986008. https://doi.org/10.48550/arXiv.1706.03762.Google Scholar
Vayena, E, Blasimme, A, and Cohen, IG. Machine learning in medicine: addressing ethical challenges. PLoS Med 2018;15:e1002689. https://doi.org/10.1371/journal.pmed.1002689.Google Scholar
Vinyals, O, Babuschkin, I, Czarnecki, WM, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019;575:350–4. https://doi.org/10.1038/s41586-019-1724-z.Google Scholar
Walker, EY, Sinz, FH, Cobos, E, et al. Inception loops discover what excites neurons most using deep predictive models. Nat Neurosci 2019;22:2060–5. https://doi.org/10.1038/s41593-019-0517-x.Google Scholar
Yamins, DL, Hong, H, Cadieu, CF, Solomon, EA, Seibert, D, and DiCarlo, JJ. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 2014;111:8619–24. https://doi.org/10.1073/pnas.1403112111.Google Scholar
Zador, AM. A critique of pure learning and what artificial neural networks can learn from animal brains. Nat Commun 2019;10:17. https://doi.org/10.1038/s41467-019-11786-6.Google Scholar
Zeiler, MD and Fergus, R. Visualizing and understanding convolutional networks. In Fleet, D, Pajdla, T, Schiele, B, Tuytelaars, T (Eds.), Computer Vision – European Conference on Computer Vision 2014. Lecture Notes in Computer Science, vol. 8689. Springer, 2014: pp. 818–33. https://doi.org/10.1007/978-3-319-10590-1_53.Google Scholar
Zhang, M, Feng, J, Ma, KT, Lim, JH, Zhao, Q, and Kreiman, G. Finding any Waldo with zero-shot invariant and efficient visual search. Nat Commun 2018;9:115. https://doi.org/10.1038/s41467-018-06217-x.Google Scholar

Further Reading

Blitsztein, JK, Hwang, J. Introduction to Probability. CRC Press, 2019.Google Scholar
MacKay, DJC. Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003.Google Scholar
Wasserman, L. All of Statistics. Springer, 2004.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×