Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-05T06:26:45.553Z Has data issue: false hasContentIssue false

Chapter 3 - Neuroimmune Interactions

from Section 1 - Basic and Computational Neuroscience

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

The immune system is a complex system that works to recognize and eliminate foreign antigens – any protein, carbohydrate, lipid, deoxyribonucleic acid, or small organic molecule that can produce an immune response – from the body, and is divided into two subdivisions: the innate immune system and the adaptive immune system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarntzen, EH, Srinivas, M, Schreibelt, G, et al. Reducing cell number improves the homing of dendritic cells to lymph nodes upon intradermal vaccination. OncoImmunology 2013;2(7):e24661. https://doi.org/10.4161/onci.24661.CrossRefGoogle ScholarPubMed
Alexander, BM, Cloughesy, TF. Adult glioblastoma. J Clin Oncol 2017;35(21):2402–09. https://doi.org/10.1200/JCO.2017.73.0119.Google Scholar
Allen, C, Paraskevakou, G, Liu, C, Iankov, ID, Zollman, P, Galanis, E. Oncolytic measles virus strains in the treatment of gliomas. Expert Opin Biol Ther 2008;8(2):213–20. https://doi.org/10.1517/14712598.8.2.213.CrossRefGoogle ScholarPubMed
Amin, MM, Shawky, A, Zaher, A, Abdelbary, M, Wasel, Y, Gomaa, M. Immune cell infiltrate in different grades of astrocytomas: possible role in the pathogenesis. Egypt J Pathol 2012;32(1):175–80. https://doi.org/10.1097/01.XEJ.0000415777.74514.34.CrossRefGoogle Scholar
Andersson, U, Tracey, KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol 2012;30(1):313–35. https://doi.org/10.1146/annurev-immunol-020711-075015.CrossRefGoogle ScholarPubMed
Andtbacka, RHI, Kaufman, HL, Collichio, F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol 2015;33(25):2780–8. https://doi.org/10.1200/JCO.2014.58.3377.Google Scholar
Bar‐Or, A, Fawaz, L, Fan, B, et al. Abnormal B‐cell cytokine responses a trigger of T‐cell–mediated disease in MS? Ann Neurol 2010;67(4):452–61. https://doi.org/10.1002/ana.21939.Google Scholar
Beaman, GM, Dennison, SR, Chatfield, LK, Phoenix, DA. Reliability of HSP70 (HSPA) expression as a prognostic marker in glioma. Mol Cell Biochem 2014;393(1–2):301–07. https://doi.org/10.1007/s11010-014-2074-7.Google Scholar
Benarroch, EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc 1993;68(10):9881001. https://doi.org/10.1016/s0025-6196(12)62272-1.CrossRefGoogle ScholarPubMed
Bodhankar, S, Chen, Y, Lapato, A, et al. Regulatory CD8+CD122+ T-cells predominate in CNS after treatment of experimental stroke in male mice with IL-10-secreting B-cells. Metab Brain Dis 2015;30(4):911–24. https://doi.org/10.1007/s11011-014-9639-8.Google Scholar
Brown, C, Badie, B, Barish, M, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 2015;21(18):4062–72. https://doi.org/10.1158/1078-0432.CCR-15-0428.Google Scholar
Browning, KN, Verheijden, S, Boeckxstaens, GE. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 2017;152(4):730–44. https://doi.org/10.1053/j.gastro.2016.10.046.CrossRefGoogle ScholarPubMed
Ceyzériat, K, Ben Haim, L, Denizot, A, et al. Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol Commun 2018;6(1): 104104. https://doi.org/10.1186/s40478-018-0606-1.Google Scholar
Ciocca, DR, Calderwood, SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005;10(2):86103. https://doi.org/10.1379/csc-99r.1.Google Scholar
Cohen, MH, Shen, YL, Keegan, P, Pazdur, R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. The Oncologist 2009;14(11):1131–8. https://doi.org/10.1634/theoncologist.2009-0121.Google Scholar
Crane, CA, Han, SJ, Ahn, B, et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res Off J Am Assoc Cancer Res 2013;19(1):205–14. https://doi.org/10.1158/1078-0432.CCR-11-3358.CrossRefGoogle Scholar
Cunningham, CL, Martínez-Cerdeño, V, Noctor, SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 2013;33(10):4216–33. https://doi.org/10.1523/JNEUROSCI.3441-12.2013.Google Scholar
Dampney, RAL. Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ 2016;40(3):283–96. https://doi.org/10.1152/advan.00027.2016.CrossRefGoogle ScholarPubMed
Debinski, W, Gibo, DM, Hulet, SW, Connor, JR, Gillespie, GY. Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res Off J Am Assoc Cancer Res 1999;5(5):985–90.Google ScholarPubMed
Derecki, NC, Cardani, AN, Yang, CH, et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med 2010;207(5):1067–80. https://doi.org/10.1084/jem.20091419.Google Scholar
Desjardins, A, Sampson, JH, Peters, KB, et al. Oncolytic polio/rhinovirus recombinant (PVSRIPO) against recurrent glioblastoma (GBM): optimal dose determination. J Clin Oncol 2015;33(15_suppl):20682068. https://doi.org/10.1093/neuonc/nou209.5.Google Scholar
Desjardins, A, Sampson, JH, Peters, KB, et al. Patient survival on the dose escalation phase of the Oncolytic Polio/Rhinovirus Recombinant (PVSRIPO) against WHO grade IV malignant glioma (MG) clinical trial compared to historical controls. J Clin Oncol 2016;34(15_suppl):20612061. https://doi.org/10.1056/NEJMoa1716435.CrossRefGoogle Scholar
Dirnagl, U, Klehmet, J, Braun, JS, et al. Stroke-induced immunodepression. Stroke 2007;38(2):770–3. https://doi.org/10.1161/01.STR.0000251441.89665.bc.Google Scholar
Dobrikova, EY, Broadt, T, Poiley-Nelson, J, et al. Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol Ther J Am Soc Gene Ther 2008;16(11):1865–72. https://doi.org/10.1038/mt.2008.184.Google Scholar
Dunn-Pirio, AM, Vlahovic, G. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer 2017;123(5):734–50. https://doi.org/10.1002/cncr.30371.Google Scholar
Ek, M, Kurosawa, M, Lundeberg, T, Ericsson, A. Activation of vagal afferents after intravenous injection of interleukin-1β: role of endogenous prostaglandins. J Neurosci 1998;18(22):9471–9. https://doi.org/10.1523/JNEUROSCI.18-22-09471.1998.CrossRefGoogle ScholarPubMed
Fan, L, Zhang, C-J, Zhu, L, et al. FasL–PDPK1 pathway promotes the cytotoxicity of CD8+ T cells during ischemic stroke. Transl Stroke Res 2020;11(4):747–61. https://doi.org/10.1007/s12975-019-00749-0.Google Scholar
Farris, BY, Monaghan, KL, Zheng, W, et al. Ischemic stroke alters immune cell niche and chemokine profile in mice independent of spontaneous bacterial infection. Immun Inflamm Dis 2019;7(4):326–41. https://doi.org/10.1002/iid3.277.CrossRefGoogle ScholarPubMed
Galanis, E, Bateman, A, Johnson, K, et al. Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas. Hum Gene Ther 2001;12(7):811–21. https://doi.org/10.1089/104303401750148766.Google Scholar
Garon, EB, Rizvi, NA, Hui, R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015;372(21):2018–28. https://doi.org/10.1056/NEJMoa1501824.CrossRefGoogle ScholarPubMed
Goehler, LE, Gaykema, RP, Hansen, MK, Anderson, K, Maier, SF, Watkins, LR. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci 2000;85(1–3):4959. https://doi.org/10.1016/S1566-0702(00)00219-8.Google Scholar
Grauer, OM, Wesseling, P, Adema, GJ. Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol Zurich Switz 2009;19(4):674–93. https://doi.org/10.1111/j.1750-3639.2009.00315.x.Google Scholar
Grilli, M, Barbieri, I, Basudev, H, et al. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci 2000;12(7):2265–72. https://doi.org/10.1046/j.1460-9568.2000.00090.x.Google Scholar
Gromeier, M, Alexander, L, Wimmer, E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A 1996;93(6):2370–5. https://doi.org/10.1073/pnas.93.6.2370.Google Scholar
Gromeier, M, Bossert, B, Arita, M, Nomoto, A, Wimmer, E. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 1999;73(2):958–64. https://doi.org/10.1128/JVI.73.2.958-964.1999.CrossRefGoogle ScholarPubMed
Gromeier, M, Lachmann, S, Rosenfeld, MR, Gutin, PH, Wimmer, E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A 2000;97(12):6803–8. https://doi.org/10.1073/pnas.97.12.6803.Google Scholar
Gross, G, Waks, T, Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 1989;86(24):10024–8. https://doi.org/10.1073/pnas.86.24.10024.Google Scholar
Gülke, E, Gelderblom, M, Magnus, T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 2018;11:1756286418774254. https://doi.org/10.1177/1756286418774254.Google Scholar
Guo, S, Luo, Y. Brain Foxp3+ regulatory T cells can be expanded by interleukin-33 in mouse ischemic stroke. Int Immunopharmacol 2020;81:106027. https://doi.org/10.1016/j.intimp.2019.106027.Google Scholar
Halford, S, Rampling, R, James, A, et al. Final results from a Cancer Research UK first in man phase I trial of Ima950 (a novel multi peptide vaccine) plus Gm-Csf in patients with newly diagnosed glioblastoma. Ann Oncol 2014;25:iv364. https://doi.org/10.1093/annonc/mdu342.10.Google Scholar
Hartmann, C, Meyer, J, Balss, J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol (Berl) 2009;118(4):469–74. https://doi.org/10.1007/s00401-009-0561-9.Google Scholar
Heimberger, AB, Crotty, LE, Archer, GE, et al. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 2000;103(1):1625. https://doi.org/10.1016/s0165-5728(99)00172-1.CrossRefGoogle ScholarPubMed
Hodi, FS, O’Day, SJ, McDermott, DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.Google Scholar
Hodi, FS, Postow, MA, Chesney, JA, et al. Clinical response, progression-free survival (PFS), and safety in patients (pts) with advanced melanoma (MEL) receiving nivolumab (NIVO) combined with ipilimumab (IPI) vs IPI monotherapy in CheckMate 069 study. J Clin Oncol 2015;33(15_suppl):90049004.CrossRefGoogle Scholar
Humphrey, PA, Wong, AJ, Vogelstein, B, et al. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci U S A 87: 42074211. https://doi.org/10.1073/pnas.87.11.4207.Google Scholar
Ito, M, Komai, K, Nakamura, T, Srirat, T, Yoshimura, A. Tissue regulatory T cells and neural repair. Int Immunol 2019;31(6):361–9. https://doi.org/10.1093/intimm/dxz031.Google Scholar
Janeway, C. Immunobiology: The Immune System in Health and Disease. 4th ed. Garland, 1999.Google Scholar
Jin, Wei-Na, Gonzales, R, Feng, Yan, et al. Brain ischemia induces diversified neuroantigen-specific T-cell responses that exacerbate brain injury. Stroke 2018;49(6):1471–8. https://doi.org/10.1161/STROKEAHA.118.020203.Google Scholar
Johnson, BF, Clay, TM, Hobeika, AC, Lyerly, HK, Morse, MA. Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin Biol Ther 2007;7(4):449–60. https://doi.org/10.1517/14712598.7.4.449.Google Scholar
Kaufman, HL, Kohlhapp, FJ, Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2015;14(9):642–62. https://doi.org/10.1038/nrd.2016.178.CrossRefGoogle ScholarPubMed
Kipnis, J, Cohen, H, Cardon, M, Ziv, Y, Schwartz, M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci 2004;101(21):8180–5. https://doi.org/10.1073/pnas.0402268101.Google Scholar
Korin, B, Ben-Shaanan, TL, Schiller, M, et al. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat Neurosci 2017;20(9):1300–9. https://doi.org/10.1038/nn.4610.Google Scholar
Korn, T, Kallies, A. T cell responses in the central nervous system. Nat Rev Immunol 2017;17(3):179–94. https://doi.org/10.1038/nri.2016.144.CrossRefGoogle ScholarPubMed
Krummel, MF, Allison, JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995;182(2):459–65. https://doi.org/10.1084/jem.182.2.459.CrossRefGoogle ScholarPubMed
Lang, FF, Conrad, C, Gomez-Manzano, C, et al. First-in-human phase I clinical trial of oncolytic delta-24-RGD (DNX-2401) with biological endpoints: implications for viro-immunotherapy. Neuro Oncol 2014;16(Suppl 3): iii39. https://doi.org/10.1093/neuonc/nou208.61.CrossRefGoogle Scholar
Levine, YA, Koopman, FA, Faltys, M, et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS One 2014;9(8):e104530e104530. https://doi.org/10.1371/journal.pone.0104530.Google Scholar
Li, P, Gan, Y, Sun, B-L, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol 2013;74(3):458–71. https://doi.org/10.1002/ana.23815.Google Scholar
Li, Q, Barres, BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 2018;18(4):225–42. https://doi.org/10.1038/nri.2017.125.Google Scholar
Liesz, A, Suri-Payer, E, Veltkamp, C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 2009;15(2):192–9. https://doi.org/10.1038/nm.1927.Google Scholar
Malkki, H. Trial watch: Glioblastoma vaccine therapy disappointment in Phase III trial. Nat Rev Neurol 2016;12(4):190. https://doi.org/10.1038/nrneurol.2016.38Google Scholar
Matute, C, Domercq, M, Pérez-Samartín, A, Ransom, BR. Protecting white matter from stroke injury. Stroke 2013;44(4):1204–11. https://doi.org/10.1161/STROKEAHA.112.658328.CrossRefGoogle ScholarPubMed
Maude, SL, Barrett, D, Teachey, DT, Grupp, SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 2014;20(2):119–22. https://doi.org/10.1097/PPO.0000000000000035.Google Scholar
Medzhitov, R, Janeway, CA. Decoding the patterns of self and nonself by the innate immune system. Sci Am Assoc Adv Sci 2002;296(5566):298300. https://doi.org/10.1126/science.1068883.Google Scholar
Miao, H, Choi, BD, Suryadevara, CM, et al. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One 2014;9(4):e94281. https://doi.org/10.1371/journal.pone.0094281.CrossRefGoogle Scholar
Mitchell, DA, Batich, KA, Gunn, MD, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 2015;519(7543):366–9. https://doi.org/10.1038/nature14320.Google Scholar
Mitchell, DA, Sampson, JH. Toward effective immunotherapy for the treatment of malignant brain tumors. Neurotherapeutics 2009;6(3):527–38. https://doi.org/10.1016/j.nurt.2009.04.003.Google Scholar
Miyamoto, A, Wake, H, Ishikawa, AW, et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 2016;7(1):12540. https://doi.org/10.1038/ncomms12540.CrossRefGoogle ScholarPubMed
Mracsko, E, Liesz, A, Stojanovic, A, et al. Antigen dependently activated cluster of differentiation 8-positive T cells cause perforin-mediated neurotoxicity in experimental stroke. J Neurosci 2014;34(50):16784–95. https://doi.org/10.1523/JNEUROSCI.1867-14.2014.Google Scholar
Musuka, TD, Wilton, SB, Traboulsi, M, Hill, MD. Diagnosis and management of acute ischemic stroke: speed is critical. CMAJ 2015;187(12):887–93. https://doi.org/10.1503/cmaj.140355.Google Scholar
Noh, M-Y, Lee, WM, Lee, S-J, Kim, HY, Kim, SH, Kim, YS. Regulatory T cells increase after treatment with poly (ADP-ribose) polymerase-1 inhibitor in ischemic stroke patients. Int Immunopharmacol 2018;60:104–10. https://doi.org/10.1016/j.intimp.2018.04.043.CrossRefGoogle ScholarPubMed
Norden, DM, Muccigrosso, MM, Godbout, JP. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology 2015;96:2941. https://doi.org/10.1016/j.neuropharm.2014.10.028.Google Scholar
Olofsson, PS, Levine, YA, Caravaca, A, et al. Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron Med 2015;2(1):3742.Google Scholar
Pang, Y, Fan, L-W, Tien, L-T, et al. Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro. Brain Behav 2013;3(5):503–14. https://doi.org/10.1002/brb3.152.Google Scholar
Pavlov, VA. Cholinergic modulation of inflammation. Int J Clin Exp Med 2008;1(3):203–12.Google Scholar
Phuong, LK, Allen, C, Peng, K-W, et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003;63(10):2462–9.Google Scholar
Polyzoidis, S, Ashkan, K. DCVax®-L developed by Northwest Biotherapeutics. Hum Vaccines Immunother 2014;10(11):3139–45. https://doi.org/10.4161/hv.29276.Google Scholar
Pösel, C, Möller, K, Boltze, J, Wagner, D-C, Weise, G. Isolation and flow cytometric analysis of immune cells from the ischemic mouse brain. J Vis Exp 2016;108:e53658. https://doi.org/10.3791/53658.Google Scholar
Primiani, CT, Ryan, VH, Rao, JS, et al. Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging. PLoS One 2014;9(10):e110972. https://doi.org/10.1371/journal.pone.0110972.Google Scholar
Qin, X, Akter, F, Qin, L, et al. Adaptive immunity regulation and cerebral ischemia. Front Immunol 2020;11:689. https://doi.org/10.3389/fimmu.2020.00689.Google Scholar
Ransohoff, RM, Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012;12(9):623–35. https://doi.org/10.1038/nri3265.Google Scholar
Ransohoff, RM, Kivisäkk, P, Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 2003;3(7):569–81. https://doi.org/10.1038/nri1130.Google Scholar
Ransohoff, RM, Schafer, D, Vincent, A, Blachère, NE, Bar-Or, A. Neuroinflammation: ways in which the immune system affects the brain. Neurotherapeutics 2015;12(4):896909. https://doi.org/10.1007/s13311-015-0385-3.Google Scholar
Robert-Tissot, C, Speiser, DE. Anticancer teamwork: cross-presenting dendritic cells collaborate with therapeutic monoclonal antibodies. Cancer Discov 2016;6(1):17–9. https://doi.org/10.1158/2159-8290.CD-15-1366.Google Scholar
Rock, KL. A new foreign policy: MHC class I molecules monitor the outside world. Immunol Today 1996;17(3):131–7. https://doi.org/10.1016/0167-5699(96)80605-0.Google Scholar
Rosa, M de la, Rutz, S, Dorninger, H, Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol 2004;34(9):2480–8. https://doi.org/10.1002/eji.200425274.Google Scholar
Sabharwal, L, Kamimura, D, Meng, J, et al. The Gateway Reflex, which is mediated by the inflammation amplifier, directs pathogenic immune cells into the CNS. J Biochem Tokyo 2014;156(6):299304. https://doi.org/10.1093/jb/mvu057.Google Scholar
Safdari, H, Hochberg, FH, Richardson, EP. Prognostic value of round cell (lymphocyte) infiltration in malignant gliomas. Surg Neurol 1985;23(3):221–6. https://doi.org/10.1016/0090-3019(85)90086-2.CrossRefGoogle ScholarPubMed
Sampson, JH, Vlahovic, G, Sahebjam, S, et al. Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM): CHECKMATE-143. J Clin Oncol 2015;33(15_suppl):30103010.Google Scholar
Sasaki, A. Microglia and brain macrophages: an update. Neuropathology 2017;37(5):452–64. https://doi.org/10.1111/neup.12354.Google Scholar
Schumacher, T, Bunse, L, Pusch, S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014;512(7514):324–7. https://doi.org/10.1038/nature13387.Google Scholar
Schwab, JM, Nguyen, TD, Meyermann, R, Schluesener, HJ. Human focal cerebral infarctions induce differential lesional interleukin-16 (IL-16) expression confined to infiltrating granulocytes, CD8+ T-lymphocytes and activated microglia/macrophages. J Neuroimmunol 2001;114(1):232–41. https://doi.org/10.1016/s0165-5728(00)00433-1.Google Scholar
Seifert, HA, Collier, LA, Chapman, CB, Benkovic, SA, Willing, AE, Pennypacker, KR. Pro-inflammatory interferon gamma signaling is directly associated with stroke induced neurodegeneration. J Neuroimmune Pharmacol 2014;9(5):679–89. https://doi.org/10.1007/s11481-014-9560-2.Google Scholar
Shen, P, Roch, T, Lampropoulou, V, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nat Lond 2014;507(7492):366–70. https://doi.org/10.1038/nature12979.Google Scholar
Shen, Z, Bao, X, Wang, R. Clinical PET imaging of microglial activation: implications for microglial therapeutics in Alzheimer’s disease. Front Aging Neurosci 2018;10:314. https://doi.org/10.3389/fnagi.2018.00314.CrossRefGoogle ScholarPubMed
Sofroniew, MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 2015;16(5):249–63. https://doi.org/10.1038/nrn3898.Google Scholar
Song, GJ, Suk, K. Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases. Front Aging Neurosci 2017;9:139139. https://doi.org/10.3389/fnagi.2017.00139.Google Scholar
Stephenson, J, Nutma, E, van der Valk, P, Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 2018;154(2):204–19. https://doi.org/10.1111/imm.12922.Google Scholar
Stern, JNH, Yaari, G, Vander Heiden, JA, et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 2014;6(248):248ra107248ra107. https://doi.org/10.1126/scitranslmed.3008879.Google Scholar
Tanabe, S, Yamashita, T. B-1a lymphocytes promote oligodendrogenesis during brain development. Nat Neurosci 2018;21(4):506–16. https://doi.org/10.1038/s41593-018-0106-4.CrossRefGoogle ScholarPubMed
Tanabe, S, Yamashita, T. B lymphocytes: crucial contributors to brain development and neurological diseases. Neurosci Res 2019;139:3741. https://doi.org/10.1016/j.neures.2018.07.002.Google Scholar
Tang, Y, Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 2016;53(2):1181–94. https://doi.org/10.1007/s12035-014-9070-5.Google Scholar
Taxin, ZH, Neymotin, SA, Mohan, A, Lipton, P, Lytton, WW. Modeling molecular pathways of neuronal ischemia. In Blackwell, KT (ed.), Progress in Molecular Biology and Translational Science. Academic Press, 2014: 249–75. www.sciencedirect.com/science/article/pii/B9780123978974000140Google Scholar
Torres-Rosas, R, Yehia, G, Peña, G, et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 2014;20(3):291–5. https://doi.org/10.1038/nm.3479.Google Scholar
Tracey, KJ. The inflammatory reflex. Nat Lond 2002;420(6917):853–9. https://doi.org/10.1038/nature01321Google Scholar
Tracey, KJ. Reflex control of immunity. Nat Rev Immunol 2009;9(6):418–28. https://doi.org/10.1038/nri2566.Google Scholar
Ueno, M, Ueno-Nakamura, Y, Niehaus, J, Popovich, PG, Yoshida, Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci 2016;19(6):784–7. https://doi.org/10.1038/nn.4289.Google Scholar
Walter, U, Kolbaske, S, Patejdl, R, et al. Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. Eur J Neurol 2013;20(1):153–9. https://doi.org/10.1111/j.1468-1331.2012.03818.x.Google Scholar
Wang, J, Xing, H, Wan, L, Jiang, X, Wang, C, Wu, Y. Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother 2018;105:518–25. https://doi.org/10.1016/j.biopha.2018.05.143.CrossRefGoogle ScholarPubMed
Waziri, A. Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am 2010;21(1):3142. https://doi.org/10.1016/j.nec.2009.08.005.Google Scholar
Wen, PY, Reardon, DA, Armstrong, TS, et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res 2019;25(19):5799–807. https://doi.org/10.1158/1078-0432.CCR-19-0261.Google Scholar
Wolf, SA, Boddeke, HWGM, Kettenmann, H. Microglia in physiology and disease. Annu Rev Physiol 2017;79(1):619–43. https://doi.org/10.1146/annurev-physiol-022516-034406.Google Scholar
Zagzag, D, Salnikow, K, Chiriboga, L, et al. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Investig J Tech Methods Pathol 2005;85(3):328–41. https://doi.org/10.1038/labinvest.3700233.Google Scholar
Zhang, J, Mao, X, Zhou, T, Cheng, X, Lin, Y. IL-17A contributes to brain ischemia reperfusion injury through calpain-TRPC6 pathway in mice. Neuroscience 2014;274:419–28. https://doi.org/10.1016/j.neuroscience.2014.06.001.Google Scholar
Zhao, Z, Nelson, AR, Betsholtz, C, Zlokovic, BV. Establishment and dysfunction of the blood–brain barrier. Cell 2015;163(5):1064–78. https://doi.org/10.1016/j.cell.2015.10.067.Google Scholar
Zhou, YJ, Messmer, MN, Binder, RJ. Establishment of tumor-associated immunity requires interaction of heat shock proteins with CD91. Cancer Immunol Res 2014;2(3):217–28. https://doi.org/10.1158/2326-6066.CIR-13-0132.Google Scholar
Zhou, Y-X, Wang, X, Tang, D, et al. IL-2mAb reduces demyelination after focal cerebral ischemia by suppressing CD8+ T cells. CNS Neurosci Ther 2019;25(4):532–43. https://doi.org/10.1111/cns.13084.Google Scholar
Ziv, Y, Ron, N, Butovsky, O, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006;9(2):268–75. https://doi.org/10.1038/nn1629.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×