Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T13:19:30.513Z Has data issue: false hasContentIssue false

11 - Neuronal Grammar and Algorithms

Published online by Cambridge University Press:  15 December 2009

Friedemann Pulvermüller
Affiliation:
Medical Research Council, Cambridge
Get access

Summary

This chapter addresses the question of how to translate grammatical algorithms into the language of neuronal sets.

Regular Associations, Associative Rules

There has been some discussion about the question of whether the human mind and brain use neuronal principles and connections for processing grammatically related information, or whether it uses rules and algorithms specified by grammar theories (Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett, 1996; Pinker, 1994). This proposal suggests that these positions, which are sometimes considered to exclude each other, are, in fact, both correct. This is not meant in the sense that there are two modules or systems, one for neural networks and the other one for rule algorithms (Pinker, 1997), but in the sense that rules are abstract descriptions of the neuronal machinery, as they are, without any doubt, descriptions of aspects of human behavior and action (Baker & Hacker, 1984).

If rules and algorithms are adequate descriptions of aspects of human behavior and action, they must have a basis in neuronal structure and function. As stressed in the discussion of the McCulloch–Pitts theory (Section 6.1), a neuronal network can be reformulated using calculus or by a logical formula. It is therefore reasonable to ask which putative neurobiological counterparts exist for syntactic rules and, conversely, how a neuron circuit sensitive to serial order can be adequately described algorithmically.

The cortex is an associative memory and would therefore be difficult to imagine it ignoring the correlation of words and morphemes in its input.

Type
Chapter
Information
The Neuroscience of Language
On Brain Circuits of Words and Serial Order
, pp. 207 - 214
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×