Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T07:11:48.410Z Has data issue: false hasContentIssue false

3 - Phylogenomics of Nematoda

from Part I - Next Generation Phylogenetics

Published online by Cambridge University Press:  05 June 2016

Mark Blaxter
Affiliation:
University of Edinburgh, UK
Georgios Koutsovoulos
Affiliation:
University of Edinburgh, UK
Martin Jones
Affiliation:
University of Edinburgh, UK
Sujai Kumar
Affiliation:
University of Edinburgh, UK
Ben Elsworth
Affiliation:
University of Edinburgh, UK
Peter D. Olson
Affiliation:
Natural History Museum, London
Joseph Hughes
Affiliation:
University of Glasgow
James A. Cotton
Affiliation:
Wellcome Trust Sanger Institute, Cambridge
Get access

Summary

Nematode diversity

Nematodes are characterized in the wider public and scientific community as being both rare (very few people have ever seen a nematode) and very well understood (the ‘model nematode’ Caenorhabditis elegans is one of the cornerstones of modern biology). However nematologists in particular, and many ecologists, know that nematodes are both numerically abundant and systematically diverse, dominating many ecosystems. The sheer abundance of free-living nematodes and their generally small body size, even as adults, can confound attempts to itemize the presence of species. Whereas 23 000 species have been formally described, estimates of true species-level abundance range from 0.5 million to over 10 million (Lambshead and Boucher 2003; Lambshead 1993; Blaxter 2011). The wide range in these estimates reflects differences in underpinning assumptions as to the efficiency of modern taxonomic methodologies and the likely species–area relationships for meiofaunal taxa. Indeed, many of the currently described taxa are relatively large organisms that are parasites of animals and plants, and the current taxonomic understanding of free-living species, particularly in the tropics and in marine sediments, is likely to be significantly lacking.

The small size of individual nematodes (most are less than 1 mm in longest body axis), and the even smaller size of diagnostic morphological characters, has rendered nematode systematics at deeper levels problematic (De Ley and Bert 2002; De Ley and Blaxter 2002; 2004; De Ley et al. 2005). What has been clear from over 150 years of nematode systematics is that morphological character sets have not yielded unequivocal support for any deeper branching patterns within Nematoda. Nematologists have thus been enthusiastic and productive adopters of molecular phylogenetic methods, and molecular data have been employed in analyses from species delimitation to inter-phylum relationships.

Nematoda is a phylum within Metazoa, placed in the superphylum Ecdysozoa (arthropods, priapulids and allies) (Aguinaldo et al. 1997). Based on both morphological and molecular data, the sister phylum to Nematoda is Nematomorpha, a species-poor group of parasites of arthropods. Here we discuss briefly the history of molecular analyses of nematode phylogenetics, and explore how multi-locus, genome-sequence-derived datasets are set to resolve many remaining issues. Resolving Nematoda is important for several phylum-specific reasons: defining the origins of parasitism in several different lineages, understanding the assembly of various ecosystems, mapping the patterns of diversification and revealing the evolutionary patterns in developmental and other systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, P., Gouzy, J., Aury, J. M., et al. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26, 882–4.CrossRefGoogle ScholarPubMed
Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., et al. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489–93.CrossRefGoogle ScholarPubMed
Bai, X., Adams, B. J., Ciche, T. A., et al. (2013). A lover and a fighter, the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS One, 8, e69618.CrossRefGoogle Scholar
Blaxter, M. L. (2004). The promise of a DNA taxonomy. Philosophical Transactions of the Royal Society of London B-Biological Sciences, 359, 669–79.CrossRefGoogle ScholarPubMed
Blaxter, M. (2011). Nematodes, the worm and its relatives. PLoS Biology, 9, e1001050.CrossRefGoogle ScholarPubMed
Blaxter, M. L., De Ley, P., Garey, J. R., et al. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, 392, 71–5.CrossRefGoogle ScholarPubMed
Blaxter, M., Floyd, R., Dorris, M., Eyualem, A. and De Ley, P. (2004). Utilising the new nematode phylogeny for studies of parasitism and diversity. In Nematology Monographs and Perspectives, ed. Cook, R. and Hunt, D. J.. Leiden, E.J. Brill; pp. 615–32.Google Scholar
Blaxter, M., Mann, J., Chapman, T., et al. (2005). Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society of London B-Biological Sciences, 360, 1935–43.CrossRefGoogle ScholarPubMed
Blaxter, M. L., Raghavan, N., Ghosh, I., et al. (1996). Genes expressed in Brugia malayi infective third stage larvae. Molecular and Biochemical Parasitology, 77, 77–96.CrossRefGoogle ScholarPubMed
Caporaso, J. G., Kuczynski, J., Stombaugh, J., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–6.CrossRefGoogle ScholarPubMed
Cotton, J. A., Lilley, C. J., Jones, L. M., et al. (2014). The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biology, 15, R43.CrossRefGoogle ScholarPubMed
Creer, S., Fonseca, V. G., Porazinska, D. L., et al. (2010). Ultrasequencing of the meiofaunal biosphere, practice, pitfalls and promises. Molecular Ecology, 19, 4–20.CrossRefGoogle ScholarPubMed
De Ley, P. and Bert, W. (2002). Video capture and editing as a tool for the storage, distribution and illustration of morphological characters of nematodes. Journal of Nematology, 34, 296–302.Google ScholarPubMed
De Ley, P. and Blaxter, M. L. (2002). Systematic position and phylogeny. In The Biology of Nematodes, ed. Lee, D.. London, Taylor & Francis; pp. 1–30.Google Scholar
De Ley, P. and Blaxter, M. (2004). A new system for Nematoda, combining morphological characters with molecular trees, and translating clades into ranks and taxa. In Nematology Monographs and Perspectives, ed. Cook, R. and Hunt, D. J.. Leiden, E.J. Brill; pp. 633–53.Google Scholar
De Ley, P., De Ley, I. T., Morris, K., et al. (2005). An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society of London B-Biological Sciences, 360, 1945–58.CrossRefGoogle ScholarPubMed
Derycke, S., Vanaverbeke, J., Rigaux, A., Backeljau, T. and Moens, T. (2010). Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS One, 5, e13716.CrossRefGoogle ScholarPubMed
Desjardins, C. A., Cerqueira, G. C., Goldberg, J. M., et al. (2013). Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. Nature Genetics, 45, 495–500.CrossRefGoogle ScholarPubMed
Dieterich, C., Clifton, S. W., Schuster, L. N., et al. (2008). The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nature Genetics, 40, 1193–8.CrossRefGoogle ScholarPubMed
Dorris, M., De Ley, P. and Blaxter, M. L. (1999). Molecular analysis of nematode diversity and the evolution of parasitism. Parasitology Today, 15, 188–93.CrossRefGoogle ScholarPubMed
Dorris, M., Viney, M. E. and Blaxter, M. L. (2002). Molecular phylogenetic analysis of the genus Strongyloides and related nematodes. International Journal for Parasitology, 32, 1507.CrossRefGoogle ScholarPubMed
Dunn, C. W., Hejnol, A., Matus, D. Q., et al. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452, 745–9.CrossRefGoogle ScholarPubMed
Elsworth, B., Wasmuth, J. and Blaxter, M. (2011). NEMBASE4, the nematode transcriptome resource. International Journal for Parasitology, 41, 881–94.CrossRefGoogle ScholarPubMed
Eyualem, A. and Blaxter, M. (2003). Comparison of biological, molecular and morphological methods of species identification in a set of cultured Panagrolaimus isolates. Journal of Nematology, 35, 119–28.Google Scholar
Floyd, R., Abebe, E., Papert, A. and Blaxter, M. (2002). Molecular barcodes for soil nematode identification. Molecular Ecology, 11, 839–50.CrossRefGoogle ScholarPubMed
Fonseca, V. G., Carvalho, G. R., Sung, W., et al. (2010). Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nature Communications, 1, 98.CrossRefGoogle ScholarPubMed
Foth, B. J., Tsai, I. J., Reid, A. J., et al. (2014). Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction. Nature Genetics, 46, 693–700.CrossRefGoogle ScholarPubMed
Gerstein, M. B., Lu, Z. J., Van Nostrand, E. L., et al. (2010). Integrative analysis of the Caenorhabditis elegans genome by the modENCODE Project. Science, 330, 1775–87.CrossRefGoogle ScholarPubMed
Ghedin, E., Wang, S., Spiro, D., et al. (2007). Draft genome of the filarial nematode parasite Brugia malayi. Science, 317, 1756–60.CrossRefGoogle ScholarPubMed
Godel, C., Kumar, S., Koutsovoulos, G., et al. (2012). The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets. FASEB Journal, 26, 4650–62.CrossRefGoogle ScholarPubMed
Harris, T. W., Baran, J., Bieri, T., et al. (2014). WormBase 2014, new views of curated biology. Nucleic Acids Research, 42, D789–93.CrossRefGoogle ScholarPubMed
Hassanin, A. (2006). Phylogeny of Arthropoda inferred from mitochondrial sequences, strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Molecular Phylogenetics and Evolution, 38, 100–16.CrossRefGoogle ScholarPubMed
Hassanin, A., Leger, N. and Deutsch, J. (2005). Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Systematic Biology, 54, 277–98.CrossRefGoogle Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. and Dewaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B, 270, 313–21.CrossRefGoogle ScholarPubMed
Holterman, M., Holovachov, O., Van Den Elsen, S., et al. (2008). Small subunit ribosomal DNA-based phylogeny of basal Chromadoria (Nematoda) suggests that transitions from marine to terrestrial habitats (and vice versa) require relatively simple adaptations. Molecular Phylogenetics and Evolution, 48, 758–63.CrossRefGoogle ScholarPubMed
Holterman, M., Karssen, G., Van Den Elsen, S., et al. (2009). Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology, 99, 227–35.CrossRefGoogle ScholarPubMed
Holterman, M., Van Der Wurff, A., Van Den Elsen, S., et al. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades. Molecular Biology and Evolution, 23, 1792–800.CrossRefGoogle ScholarPubMed
Jones, M., Gantenbein, B., Fet, V. and Blaxter, M. (2007). The effect of model choice on phylogenetic inference using mitochondrial sequence data, lessons from the scorpions. Molecular Phylogenetics and Evolution, 43, 583–95.CrossRefGoogle ScholarPubMed
Jones, M., Ghoorah, A. and Blaxter, M. (2011a). jMOTU and Taxonerator, turning DNA Barcode sequences into annotated operational taxonomic units. PLoS One, 6, e19259.CrossRefGoogle ScholarPubMed
Jones, M. O., Koutsovoulos, G. D. and Blaxter, M. L. (2011b). iPhy, an integrated phylogenetic workbench for supermatrix analyses. BMC Bioinformatics, 12, 30.CrossRefGoogle ScholarPubMed
Keddie, E. M., Higazi, T. and Unnasch, T. R. (1998). The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis. Molecular and Biochemical Parasitology, 95, 111–27.CrossRefGoogle ScholarPubMed
Kikuchi, T., Cotton, J. A., Dalzell, J. J., et al. (2011). Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathogens, 7, e1002219.CrossRefGoogle ScholarPubMed
Koutsovoulos, G., Makepeace, B., Tanya, V. N. and Blaxter, M. (2014). Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode. PLoS Genetics, 10, e1004397.CrossRefGoogle Scholar
Kumar, S. and Blaxter, M. L. (2011). Simultaneous genome sequencing of symbionts and their hosts. Symbiosis, 55, 119–26.CrossRefGoogle ScholarPubMed
Kumar, S., Koutsovoulos, G., Kaur, G. and Blaxter, M. (2012a). Toward 959 nematode genomes. Worm, 1, 1–9.CrossRefGoogle ScholarPubMed
Kumar, S., Schiffer, P. H. and Blaxter, M. (2012b). 959 Nematode Genomes, a semantic wiki for coordinating sequencing projects. Nucleic Acids Research, 40, D1295–300.CrossRefGoogle ScholarPubMed
Laing, R., Kikuchi, T., Martinelli, A., et al. (2013). The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biology, 14, R88.CrossRefGoogle ScholarPubMed
Lambshead, P. J. D. (1993). Recent developments in marine benthic biodiversity research. Oceanis, 19, 5–24.Google Scholar
Lambshead, P. J. D. and Boucher, G. (2003). Marine nematode deep-sea biodiversity – hyperdiverse or hype?Journal of Biogeography, 30, 475–85.CrossRefGoogle Scholar
Lartillot, N., Lepage, T. and Blanquart, S. (2009). PhyloBayes 3, a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics, 25, 2286–8.CrossRefGoogle ScholarPubMed
Lunt, D. H. and Hyman, B. C. (1997). Animal mitochondrial DNA recombination. Nature, 387, 247.CrossRefGoogle ScholarPubMed
Lunt, D. H., Kumar, S., Koutsovoulos, G. and Blaxter, M. L. (2014). The complex hybrid origins of the root knot nematodes revealed through comparative genomics. PeerJ, 2, e356.CrossRefGoogle ScholarPubMed
McCombie, W. R., Adams, M. D., Kelley, J. M., et al. (1992). Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. Nature Genetics, 1, 124–31.CrossRefGoogle ScholarPubMed
Meldal, B. H., Debenham, N. J., De Ley, P., et al. (2007). An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Molecular Phylogenetics and Evolution, 42, 622–36.CrossRefGoogle ScholarPubMed
Mitreva, M., Jasmer, D. P., Zarlenga, D. S., et al. (2011). The draft genome of the parasitic nematode Trichinella spiralis. Nature Genetics, 43, 228–35.CrossRefGoogle ScholarPubMed
Mortazavi, A., Schwarz, E. M., Williams, B., et al. (2010). Scaffolding a Caenorhabditis nematode genome with RNA-seq. Genome Research, 20, 1740–7.CrossRefGoogle ScholarPubMed
Nadler, S. A., Carreno, R. A., Mejia-Madrid, H., et al. (2007). Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology, 134, 1421–42.CrossRefGoogle ScholarPubMed
Opperman, C. H., Bird, D. M., Williamson, V. M., et al. (2008). Sequence and genetic map of Meloidogyne hapla, a compact nematode genome for plant parasitism. Proceedings of the National Academy of Sciences of the United States of America, 105, 14802–7.CrossRefGoogle ScholarPubMed
Park, J. K., Sultana, T., Lee, S. H., et al. (2011). Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences. BMC Genomics, 12, 392.CrossRefGoogle Scholar
Parkinson, J., Mitreva, M., Whitton, C., et al. (2004a). A transcriptomic analysis of the phylum Nematoda. Nature Genetics, 36, 1259–67.CrossRefGoogle ScholarPubMed
Parkinson, J., Whitton, C., Guiliano, D., Daub, J. and Blaxter, M. (2001). 200000 nematode expressed sequence tags on the Net. Trends in Parasitology, 17, 394–6.CrossRefGoogle ScholarPubMed
Parkinson, J., Whitton, C., Schmid, R., Thomson, M. and Blaxter, M. (2004b). NEMBASE, a resource for parasitic nematode ESTs. Nucleic Acids Research, 32, D427–30.CrossRefGoogle ScholarPubMed
Schiffer, P. H., Kroiher, M., Kraus, C., et al. (2013). The genome of Romanomermis culicivorax, revealing fundamental changes in the core developmental genetic toolkit in Nematoda. BMC Genomics, 14, 923.CrossRefGoogle ScholarPubMed
Schwarz, E. M., Hu, Y., Antoshechkin, I., et al. (2015). The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families. Nature Genetics, 47, 416–22.Google ScholarPubMed
Schwarz, E. M., Korhonen, P. K., Campbell, B. E., et al. (2013). The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biology, 14, R89.CrossRefGoogle ScholarPubMed
Srinivasan, J., Dillman, A. R., Macchietto, M. G., et al. (2013). The draft genome and transcriptome of Panagrellus redivivus are shaped by the harsh demands of a free-living lifestyle. Genetics, 193, 1279–95CrossRefGoogle Scholar
Stein, L. D. (2013). Using GBrowse 2.0 to visualize and share next-generation sequence data. Briefings in Bioinformatics, 14, 162–71.CrossRefGoogle ScholarPubMed
Stein, L. D., Bao, Z., Blasiar, D., et al. (2003). The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biology, 1, E45.CrossRefGoogle ScholarPubMed
Sulston, J. and Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Developmental Biology, 56, 110–56.CrossRefGoogle ScholarPubMed
Sulston, J. E., Schierenberg, E., White, J. G. and Thompson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology, 100, 64–119.CrossRefGoogle ScholarPubMed
Tang, Y. T., Gao, X., Rosa, B. A., et al. (2014). Genome of the human hookworm Necator americanus. Nature Genetics, 46, 261–9.CrossRefGoogle ScholarPubMed
The C. Elegans Genome Sequencing Consortium (1998). Genome sequence of the nematode C. elegans, a platform for investigating biology. Science, 282, 2012–8.
van Megen, H., Van Den Elsen, S., Holterman, M., et al. (2009). A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology, 11, 927–50.CrossRefGoogle Scholar
Wang, J., Mitreva, M., Berriman, M., et al. (2012). Silencing of germline-expressed genes by DNA elimination in somatic cells. Developmental Cell, 23, 1072–80.CrossRefGoogle ScholarPubMed
Waterston, R., Martin, C., Craxton, M., et al. (1992). A survey of expressed genes in Caenorhabditis elegans. Nature Genetics, 1, 114–23.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×