Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T00:33:59.006Z Has data issue: false hasContentIssue false

13 - Nonlinear Static and Dynamic Response of a Blood-Filled and Pressurized Human Aorta

Published online by Cambridge University Press:  25 October 2018

Marco Amabili
Affiliation:
McGill University, Montréal
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amabili, M. 2008 Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York, USA.CrossRefGoogle Scholar
Amabili, M. 2015 International Journal of Non-linear Mechanics 69, 109128. Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells.CrossRefGoogle Scholar
Amabili, M., Breslavsky, I. D. 2015 International Journal of Non-Linear Mechanics 77, 265273. Displacement dependent pressure load for finite deflection of shells and plates.CrossRefGoogle Scholar
Breslavsky, I. D., Amabili, M., Legrand, M. 2014 International Journal of Non-Linear Mechanics 58, 3040. Physically and geometrically non-linear vibrations of thin rectangular plates.CrossRefGoogle Scholar
Cardamone, L., Valentin, A., Eberth, J. F., Humphrey, J. D. 2009 Biomechanics and Modeling in Mechanobiology 8, 431446. Origin of axial prestretch and residual stress in arteries.CrossRefGoogle ScholarPubMed
Carew, T .E., Vaishnav, R. N., Patel, D. J. 1968 Circulation Research 23, 6168. Compressibility of the arterial wall.CrossRefGoogle ScholarPubMed
Chandra, S., Raut, S. S., Jana, A., Biederman, R. W., Doyle, M., Muluk, S. C., Finol, E. A. 2013 Journal of Biomechanical Engineering 135, 81001. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling.CrossRefGoogle ScholarPubMed
Chuong, C.-J., Fung, Y.-C. 1986 Residual stress in arteries. In: Schmid-Schönbein, G. W., Woo, S. L.-Y., Zweifach, B. W. (eds) Frontiers in Biomechanics. Springer-Verlag, New York, USA, pp. 117129.CrossRefGoogle Scholar
Courtial, E.-J., Fanton, L., Orkisz, M., Douek, P. C., Huet, L., Fulchiron, R. 2016 IRBM 37, 158164. Hyper-viscoelastic behavior of healthy abdominal aorta.CrossRefGoogle Scholar
Holzapfel, G. A. 2003 Structural and numerical models for the (visco)elastic response of arterial walls with residual stresses. In: Holzapfel, G. A., Ogden, R. W. (eds) Biomechanics of Soft Tissue in Cardiovascular Systems. Springer-Verlag, Wien, Austria, pp. 109184.CrossRefGoogle Scholar
Holzapfel, G. A. 2006a Journal of Theoretical Biology 238, 290302. Determination of material models for arterial walls from uniaxial extension tests and histological structure.CrossRefGoogle ScholarPubMed
Holzapfel, G. A. 2006b Nonlinear Solid Mechanics, corrected reprinted edition. Wiley, Chichester, UK.Google Scholar
Holzapfel, G. A., Gasser, T. C., Ogden, R. W. 2000 Journal of Elasticity 61, 148. A new constitutive framework for arterial wall mechanics and a comparative study of material models.CrossRefGoogle Scholar
Holzapfel, G. A., Gasser, T. C., Stadler, M. 2002 European Journal of Mechanics A/Solids 21, 441463. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis.CrossRefGoogle Scholar
Holzapfel, G. A., Niestrawska, J. A., Ogden, R. W., Reinisch, A. J., Schriefl, A. J. 2015 Journal of the Royal Society Interface 12, 20150188. Modelling non-symmetric collagen fibre dispersion in arterial walls.CrossRefGoogle ScholarPubMed
Holzapfel, G. A., Ogden, R. W. 2010 Journal of the Royal Society Interface 7, 787799. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.CrossRefGoogle Scholar
Holzapfel, G. A., Sommer, G., Auer, M., Regitnig, P., Ogden, R. W. 2007 Annals of Biomedical Engineering 35, 530545. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening.CrossRefGoogle ScholarPubMed
Horny, L., Netusil, M., Vonavkova, T. 2014 Biomechanics and Modeling in Mechanobiology 13, 783799. Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta.CrossRefGoogle ScholarPubMed
Humphrey, J. D. 2002 Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer-Verlag, New York, USA.CrossRefGoogle Scholar
Gasser, T. C., Ogden, R. W., Holzapfel, G. A. 2006 Journal of the Royal Society Interface 3, 1535. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.CrossRefGoogle ScholarPubMed
Labrosse, M. R., Gerson, E. R., Veinot, J. P., Beller, C. J. 2013 Journal of the Mechanical Behaviour of Biomedical Materials 17, 4455. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress.CrossRefGoogle Scholar
Li, K., Ogden, R. W., Holzapfel, G. A. 2018a Journal of the Mechanics and Physics of Solids 110, 3853. Modeling fibrous biological tissues with a general invariant that excludes compressed fibers.CrossRefGoogle Scholar
Li, K., Ogden, R. W., Holzapfel, G. A. 2018b Journal of the Royal Society Interface 15, 20170766. A discrete fiber dispersion method for excluding fibers under compression in the modelling of fibrous tissues.CrossRefGoogle ScholarPubMed
Mills, C., Gabe, I., Gault, J., Mason, D., Ross, J., Braunwald, E., Shillingford, J. 1970 Cardiovascular Research 4, 405417. Pressure-flow relationships and vascular impedance in man.CrossRefGoogle ScholarPubMed
Morrison, T. M., Choi, G., Zarins, C. K., Taylor, C. A. 2009 Journal of Vascular Surgery 49, 10291036. Circumferential and longitudinal cyclic strain of the human thoracic aorta: Age-related changes.CrossRefGoogle ScholarPubMed
Nichols, W., O'Rourke, M., Vlachopoulos, C. 2011 McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. CRC Press, Boca Raton, FL, USA.Google Scholar
Sassani, S. G., Kakisis, J., Tsangaris, S., Sokolis, D. P. 2015 Journal of the Mechanical Behaviour of Biomedical Materials 49, 141161. Layer-dependent wall properties of abdominal aortic aneurysms: experimental study and material characterization.CrossRefGoogle ScholarPubMed
Schriefl, A. J., Zeindlinger, G., Pierce, D. M., Regitnig, P., Holzapfel, G. A. 2012 Journal of the Royal Society Interface 9, 12751286. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries.CrossRefGoogle ScholarPubMed
Spadaccio, C., Rainer, A., Barbato, R., Chello, M., Meyns, B. 2013 International Journal of Cardiology 168, 50285029. The fate of large-diameter Dacron® vascular grafts in surgical practice: are we really satisfied?CrossRefGoogle ScholarPubMed
Tubaldi, E., Païdoussis, M. P., Amabili, M. 2018 Journal of Biomechanical Engineering 140, 061004. Nonlinear dynamics of Dacron aortic prostheses conveying pulsatile flow.CrossRefGoogle ScholarPubMed
Weisbecker, H., Pierce, D. M., Regitnig, P., Holzapfel, G. A. 2012 Journal of the Mechanical Behaviour of Biomedical Materials 12, 93106. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening.CrossRefGoogle ScholarPubMed
Westerhof, N., Lankhaar, J.-W., Westerhof, B. E. 2009 Medical & Biological Engineering & Computing 47, 131141. The arterial Windkessel.CrossRefGoogle ScholarPubMed
Westerhof, N., Noordergraaf, A. 1970 Journal of Biomechanics 3, 357379. Arterial viscoelasticity: a generalized model.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×