Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-07T23:21:22.131Z Has data issue: false hasContentIssue false

8 - Photonic Glass Waveguide for White-Light Generation

Published online by Cambridge University Press:  24 April 2019

Chun Jiang
Affiliation:
Shanghai Jiao Tong University, China
Pei Song
Affiliation:
Shanghai University of Engineering Science
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Steigerwald, D. A., Bhat, J. C., Collins, D., Fletcher, R. M., Holcomb, M. O., Ludowise, M. J.., Martin, P. S., & Rudaz, S. L., Illumination with solid state lighting technology, IEEE J. Selc Top Quantum Electronics, 8, 2002, 310–20.Google Scholar
Jüstel, T., Nikol, H., & Ronda, C., New developments in the field of luminescent materials for lighting and displays, Angew. Chem. Int. Ed. 37, 1998, 3084–103.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Zhang, Rui, Lin, Hang, Yu, Yunlong, Chen, Daqin, Xu, Ju, & Wang, Yuansheng, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass”, Laser Photonics Rev, 8, No, 1, 158164 (2014).Google Scholar
Park, J. H. & Steckl, A. J.. Laser action in Eu-doped GaN thin-film cavity at room temperature, App Phys Lett, 85(20), 2004, p. 4588.CrossRefGoogle Scholar
Shur, M. S. & Žukauskas, A., Solid-state lighting: Toward superior iillumination, Proc IEEE, 93, 2005, pp. 1691–703.CrossRefGoogle Scholar
Kim, J. S., Jeon, P. E., Choi, J. C., Park, H. L., Mho, S. I., & Kim, G. C., Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8: Eu2+, Mn2+ phosphor, Appl. Phys. Lett., 84, 2004, pp. 2931–3.Google Scholar
Xie, R.-J., Hirosaki, N., Mitomo, M., Takashi, K., & Sakuma, K., Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors, Appl. Phys. Lett, 88, 2006, pp. 101–4.CrossRefGoogle Scholar
Zhou, J., Wu, Z., Zhang, Z., Liu, W., & Dang, H., Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin. Wear, 249, 2001, 333–7.Google Scholar
Stouwdam, J. W. & van Veggel, F. C. J. M., Improvement in the luminescence properties and process ability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification, Langmuir, 20, 2004, 11763–71.Google Scholar
Joshi, B. C., Enhanced Eu3+ emission by non-radiative energy transfer from Tb3+ in zinc phosphate glass, J. Non-Cryst. Solids, 180, 1995, 217–20.Google Scholar
Wang, Jianshe, Bo, Shuhui, Song, Limei, Hu, Jin, Liu, Xinhou, & Zhen, Zhen, One-step synthesis of highly water-soluble LaF3:Ln3+ nanocrystals in methanol without using any ligands, Nanotechnology, 18, 2007, pp. 465605.CrossRefGoogle ScholarPubMed
Ananias, D., Carlos, L. D., & Rocha, J., Unusual full-colour phosphors: Na3Ln -Si3O9, Optical Materials, 28, 2006, pp. 582–6.Google Scholar
Duan, Cheng-jun, Chen, Hao-hong, Yang, Xin-xin, & Zhao, Jing-tai, Luminescence properties of Eu3+, Tb3+ or Tm3+ activated Ca4GdO(BO3)3 under X-ray and UV excitation, Optical Materials, 28, 2006, pp. 956–61.CrossRefGoogle Scholar
DiMaio, Jeffrey R., Kokuoz, Baris, & Ballato, John, White light emissions through down-conversion of rare-earth doped LaF3 nanoparticles, Optics Express, 14(23), 2006, pp. 11412–7.Google Scholar
Milliez, Janet, Rapaport, Alexandra, Bass, Mochael, Cassanho, Arlete, & Jenssen, Hans P., High-brightness white-light source based on up-conversion phosphors, J. Disp Tech, 2(3), pp. 307–11, 2006.Google Scholar
Suyver, J. F., Aebische, A., Biner, D., Gerner, P., Grimm, J., Heer, S., Krämer, K. W., Reinhard, C., & Güdel, H. U., Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon up conversion, Optical Materials, 27, 2007, 1111–30.Google Scholar
Lupei, A., Lupei, V., Gheorghe, C., Ikesue, A., & Osiac, E., Upconversion emission of RE3+ in Sc2O3 ceramic under 800 nm pumping, Optical Materials, 31(5), pp. 744–9, March 2009.Google Scholar
Percival, R. M, & Williams, J. R., Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fiber amplifier, Electron. Lett., 30(20), 1994, pp.1684–5.Google Scholar
Lozano, W. B., de Araujo, Cid B., & Messaddeq, Y., Enhanced frequency up-conversion in Er3+ doped fluorinated glass due to energy transfer from Tm3+, J. Non- Cryst. Solids, 311(2), 2007, pp. 318–23.Google Scholar
Schubert, E. F. & Kim, J. K., Solid-state light sources getting smart, Science, 308, 2005, pp. 1274–8.Google Scholar
Yi, G.-S. & Chow, G.-M., Colloidal LaF3: Yb, Er, LaF3: Yb, Ho and LaF3: Yb, Tm nano-crystals with multicolor up-conversion fluorescence, J. Am. Chem. Soc., 15, 2005, 4460–4.Google Scholar
Sivakumar, S., van Veggel, F. C. J. M, & Raudsepp, M., Bright white light through up-conversion of a single NIR source from sol-gel derived thin film made with Ln3+-doped LaF3 nanoparticles, J. Am. Chem. Soc., 127, 2005, 12464–5.CrossRefGoogle ScholarPubMed
Wang, F. & Liu, X., Up-conversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles, J. Am. Chem. Soc., 130, 2008, p. 5642.Google Scholar
Yeh, D. C., Petrin, R. R., Sibley, W. A., Madigou, V., Adam, J. L., & Suscavage, M. J., Energy transfer between Er3+ and Tm3+ ions in a barium fluoride- thorium fluoride glass, Phys. Rev. B, 39(1), 1989, pp. 8090.Google Scholar
Karásek, Mirek, Optimum design of Er3+/Yb3+ codoped fibers for large-signal high-pump-power applications, IEEE J. Quantum Electronics, 33(10), pp.1699–705, 1997.Google Scholar
Jiang, Chun, Gan, Fuxi, Zhang, Junzhou, Deng, Peizhen, & Huang, Guosong, Yb: Borate glass with high emission cross section, J. Solid State Chemistry, 144(2), 1999, pp. 449–53.Google Scholar
Ryba-Romanowski, W., Berkowski, M., Viana, B., & Aschehoug, P., Relaxation, dynamics of excited states of Tm3+ in SrGdGa3O7 crystals activated with Tm3+ and Tb3+, App. Phys B, 64(5), 1997, pp. 525–9.Google Scholar
Taylor, E. R. M., Ng, L. N., Nilsson, J., Caponi, R., Pagano, A., & Potenza, M., Sordo, B., Thulium-doped telluride fiber amplifier, IEEE Photon. Tech. Lett., 16(3), pp. 777–9, 2004.Google Scholar
Kasamatsu, Tadashi, Yano, Yutaka, & Ono, Takashi, 1.49-um-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems, J. Lightwave Tech., 20(10), 2002, pp. 1826–38.Google Scholar
Huang, Lihui, Animesh Jha, Shaoxiong Shen, & Xiaobo Liu, Broadband emission in Er3+-Tm3+ codoped tellurite fibre, Optics Express, 12(11), pp. 2429–34, May 31, 2004.Google Scholar
Jeong, H., Oh, K., Han, S. R., & Morse, T. F., Characterization of broadband amplified spontaneous emission from a Er3+-Tm3+ co-doped silica fiber, Chem. Phys. Lett., 367, 2003, pp. 507–12.CrossRefGoogle Scholar
Tanabe, S., Suzuki, K., Soga, N., & Hanada, T., Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in co-doped glasses by red-laser pumping, J. Lumin., 65(3), 1995, pp. 247–53.Google Scholar
Zou, Xuelu, Shikida, Aki, Yanagita, Hiroaki, & Toratani, Hisayoshi, Mechanisms of upconversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses, J. Non-Cryst. Solids, 181(1), 1995, pp. 100–10.Google Scholar
Huang, Lihui, Qin, Guanshi, Arai, Yusuke, Jose, Rajan, Suzuki, Takenobu, Ohis, Yasutake, Yamashita, Tatsuya, & Akimoto, Yusuke, Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals, J. App. Phys., 102(9), 2007, p. 093506.Google Scholar
Chun, Jiang & Xu, W., Modeling multiple rare earth-doped system for white light generation, J. Display Technol., 5(12), pp. 431–7, Dec. 2009.Google Scholar
Di Pasquale, F. & Federighi, M., Improved gain characteristics in high concentration Er3+/Yb3+-co-doped glass waveguide amplifiers, IEEE J. of Quantum Electron., 30(9), 1994, pp. 2127–31.Google Scholar
Karasek, M., Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump- power applications, IEEE J. Quantum Electron, 33, pp.1699–705, 1997.CrossRefGoogle Scholar
Yahel, Eldad & Hendy, Amos A., Modeling and optimization of short Er3+-Yb3+ co-doped fiber lasers, IEEE J. Quantum Electron., 39(11), 1997, pp.1444–51.Google Scholar
Jiang, Chun & Xu, W., Theoretical model of Yb3+-Er3+-Tm3+ -codoped system for white light generation, J. Display Technol., 5(8), pp. 312–8, Aug. 2009.Google Scholar
Gan, F. X., Optical and spectroscopic properties of glasses, Shanghai Science and Technology Press, pp. 245–6, November, 1992.Google Scholar
Shen, Shaoxiong, Jha, Animesh, Liu, Xiaobo, & Nataly, Mira, Telluride glasses for broadband amplifiers and integrated optics, J. Am. Ceram. Soc., 85(6), 2002, pp. 1391–5.CrossRefGoogle Scholar
Wang, F. & Liu, X., Up-conversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles, J. Am. Chem. Soc., 130, 2008, 5642.CrossRefGoogle Scholar
Lin, C. C., Liu, R. S., Tang, Y. S., & Hu, S. F., Full-color and thermally stable KSrPO4: Ln (Ln=Eu, Tb, Sm) phosphors for white-light-emitting diodes, J. Electrochemistry Soc.. , 155(9), 2008, pp. J248J251.CrossRefGoogle Scholar
Lakshminarayana, G., Yang, H., & Qiu, J., White light emission from Tm3+/Dy3+ co-doped oxyfluoride germinate, Journal of Solid State Chem., 182(4), 2009, pp. 669–76.Google Scholar
Yang, H., Lakshminarayana, G., Zhou, S., Teng, Y., & Qiu, J., Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses, Optics Express, 16(9), 2008, pp. 6731–5.Google ScholarPubMed
Liu, F., Ma, E., Chen, D., Yu, Y., & Wang, Y., ‘Tunable red-green upconversion luminescence in novel transparent glass ceramics containing Er:NaYF4 nanocrystals, J.Phys. Chem., 110(42), 2006, pp. 20843–6.Google Scholar
Hao, Z., Zhang, J., Zhang, X., Lu, S., & Wang, X., Blue-green-emitting phosphor CaSc2O4:Tb3+:Tunable luminescence manipulated by cross-relaxation, J. Electrochemical Soc., 156(3), 2009, pp. H193H196.Google Scholar
Lakshminarayana, G. & Qiu, J., Photoluminescence of Eu3+, Tb3+ and Tm3+-doped transparent SiO2-AL2O3-LiF-GdF3 glass ceramics, J. Alloy and Compounds, 476(1–2), 2009, pp. 720–7.Google Scholar
Nishibu, S., Nishio, T., Yonezawa, S., & Takashima, M., Fluorescence enhancement of oxide fluoride glass co-doped with TbF3 and SmF3, J. Luminescence, 126(2), 2007, pp. 369–70.Google Scholar
Prasad, S. V. G. V. A., Reddy, M. S., Kumar, V. R., & Veeraiah, N., Specific features of photo and thermoluminescence of Tb3+ ions in BaO-M2O3 (M=Ga, Al, In)-P2O5 glasses, J. Luminescence, 127(2), 2007, pp. 637–44.CrossRefGoogle Scholar
Kam, C. H. & Buddhudu, S., Luminescence and decay behaviour of Tb3+:ZrF4-BaF2-LaF3-YF3-AlF3-NaF optical glasses, Physica B, 337(1–4), 2003, pp. 237–44.CrossRefGoogle Scholar
Lakshminarayana, G. & Qiu, J., Photoluminescence of Pr3+, Sm3+ and Dy3+: SiO2-Al2O3-LiF-GdF3 glass ceramics and Sm3+, Dy3+: GeO2-B2O3-ZnO-LaF3 glasses, Physical B, 404(8–11), 2009, pp. 1169–80.CrossRefGoogle Scholar
Praveena, R., Venkatramu, V., Babu, P., & Jayasankar, C. K., Fluorescence spectroscopy of Sm3+ ions in P2O5-PbO-Nb2O5 glasses, Physical B, 403(19–20), 2008, pp. 3527–34.CrossRefGoogle Scholar
Holloway, W. W. Jr. & Kestigian, M., Energy transfer between the Sm3+, Eu3+, Tb3+, and Dy3+ ions in sodium rare-earth tungstates, J. Optical Soc. Am. B, 56, 1966, pp. 1171–4.Google Scholar
Liang, X., Yang, Y., Zhu, C., Yuan, S., Chen, G., Ping, Allan, & Xia, F., Luminescence properties of Tb3+-Sm3+ codoped glasses for white light emitting diodes, App. Phys. Lett., 91(9), 2007, pp. 091104-1–3.Google Scholar
Sun, X., Gu, M., Huang, S., Liu, X., Liu, B., & Ni, C., Enhancement of Tb3+ emission by non-radiative energy transfer from Dy3+ in silicate glass, Physical B, 404(1), 2009, pp. 111–4.CrossRefGoogle Scholar
Lin, H., Pun, E. Y., Wang, X., & Liu, X., Intense visible fluorescence and energy transfer in Dy3+, Tb3+, Sm3+ and Eu3+ doped rare-earth borate glasses, J. Alloy and Compounds, 390(1–2), 2005, pp. 197201.Google Scholar
Karásek, M., Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump-power applications, IEEE J. Quantum Electronics, 33(10), 1997, pp. 1699–705.CrossRefGoogle Scholar
Federighi, M. & Di Pasquale, F., The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentration, IEEE Photonics Tech. Lett., 7(3), 1995, pp. 303–5.Google Scholar
Mahato, K. K. & Rai, S. B., Laser spectroscopic studies of Tb3+-doped oxyfluoborate glass, Spectrochimica Acta Part A, 56(12), 2000, pp. 2333–40.Google Scholar
Praveena, R., Vijaya, R., & Jayasankar, C. K., Photoluminescence and energy transfer studies of Dy3+-doped fluorophosphates glasses, Spectrochimica Acta Part A, 70(3), 2008, pp. 577–86.Google Scholar
McCumber, D. E., Theory of phonon-terminated optical masers, Phys. Rev., 134(2A), 1964, pp. A299A306.Google Scholar
Miniscalco, W. J. & Quimby, R. S., General procedure for the analysis of Er3+ cross section, Optics Letters, 16(4), 1991, pp. 258–60.Google Scholar
Sun, L. X., Gong, H., Chen, B. J., Lin, H., & Pun, E. Y. B., Multicolor upconversion and color tunability in Tm3+/Ho3+/Yb3+ doped opaque aluminum tellurite ceramics, J. App. Phys., 105(10), 2009, p. 106109.Google Scholar
Xu, Wenbin & Jiang, Chun, ‘Modeling of tunable luminescence in multiple rare earth co-doped glasses’, J. Display Technol., 6(8), pp. 298305, August 2010.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×