Skip to main content Accessibility help
×
  • Cited by 115
Publisher:
Cambridge University Press
Online publication date:
December 2014
Print publication year:
2014
Online ISBN:
9781139020893

Book description

This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restricted inference are used in computing maximum likelihood estimators and developing distribution theory for inverse problems of this type. The authors have been active in developing these tools and present the state of the art and the open problems in the field. The earlier chapters provide an introduction to the subject, while the later chapters are written with graduate students and researchers in mathematical statistics in mind. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature.

Reviews

‘Shape constraints arise naturally in many statistical applications and are becoming increasingly popular as a means of combining the best of the parametric and nonparametric worlds. This book, written by two experts in the field, gives a detailed treatment of many of their attractive features. I have no doubt it will be a valuable resource for researchers, students, and others interested in learning about this fascinating area.’

Richard Samworth - University of Cambridge

‘I recommend this impressive book very enthusiastically to both young and senior researchers interested in shape-restricted nonparametric estimation. Closing an important gap in the literature, it contains not only classical material on nonparametric estimation of monotone functions in a series of application fields but also an introduction to advanced themes that are the topic of active ongoing research - in particular, estimation of convex functions, interval censoring, higher dimensional models, and other complex models in order-restricted inference. Interesting and enjoyable, the book clearly motivates models and methods by illustrative data examples and intuitive heuristic explanations of the necessary asymptotic mathematical theory, accompanied by clear and detailed proofs of the theory.’

Enno Mammen - Institute of Applied Mathematics, Heidelberg University

‘A comprehensive study of the state of the art in nonparametric shape-restricted inference by two experts in the field. A clear-cut cogent presentation style, along with a careful exposition of the mathematics as well as the algorithmic aspects of the optimization problems involved, makes this a very well-rounded text that should prove an asset to both mathematically trained scientists seeking a rigorous exposure to the field and statistical researchers interested in the ‘current status’ of affairs in shape-restricted inference.’

Moulinath Banerjee - University of Michigan, Ann Arbor

'The book provides an up-to-date comprehensive review of both classical and new methods for shape constrained estimators. It does so in a clear and well-explained manner, including many real-world examples to motivate the methodology and theory. As such it contains a nice mix of theory and applications, and so should be of interest to both students and researchers. … I thoroughly enjoyed reading this book: it gives a detailed treatment of most relevant features of shape constrained estimation, and does so in a manner that makes it immensely readable, whether you are a novice or an expert in the area.'

Dennis Kristensen Source: MathSciNet Mathematical Reviews (www.ams.org/mr-database)

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Albers, M.G. 2012. Boundary Estimation of Densities with Bounded Support Google Scholar. Master's thesis. ETH Zürich.
Andersen, P.K., and Rønn, B.B. 1995. Anonparametric test for comparing two samples where all observations are either left- or right-censored. Biometrics, 51 CrossRef | Google Scholar | PubMed, 323–329.
Andersen, P.K., Borgan, O., Gill, R.D., and Keiding, N. 1993. Statistical models based on counting processes. New York CrossRef | Google Scholar: Springer.
Anevski, D. 2003. Estimating the derivative of a convex density. Statistica neerlandica, 57 CrossRef | Google Scholar(2), 245–257.
Anevski, D. 2007. Interarrival times in a counting process and bird watching. Statistica Neerlandica, 61 CrossRef | Google Scholar, 198–208.
Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., and Silverman, E. 1955. An empirical distribution function for sampling with incomplete information. Ann. Math. Statist., 26 CrossRef | Google Scholar, 641–647.
Balabdaoui, F., and Wellner, J.A. 2007. Estimation of a k-monotone density: limit distribution theory and the spline connection. Ann. Statist., 35 CrossRef | Google Scholar, 2536–2564.
Balabdaoui, F., Rufibach, K., and Wellner, J.A. 2009. Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist., 37 CrossRef | Google Scholar | PubMed, 1299–1331.
Ball, K., and Pajor, A. 1990. The entropy of convex bodies with “few” extreme points. Pages 25–32 of: Geometry of Banach spaces (Strobl, 1989). London Math. Soc. Lecture Note Ser., vol. 158. Cambridge Google Scholar: Cambridge Univ. Press.
Banerjee, M., and Wellner, J.A. 2001. Likelihood ratio tests for monotone functions. Ann. Statist., 29 Google Scholar, 1699–1731.
Banerjee, M., and Wellner, J.A. 2005. Confidence intervals for current status data. Scand. J. Statist., 32 CrossRef | Google Scholar, 405–424.
Barlow, R.E., Bartholomew, D.J., Bremner, J.M., and Brunk, H.D. 1972. Statistical inference under order restrictions. The theory and application of isotonic regression. John Wiley & Sons, London–New York–Sydney Google Scholar. Wiley Series in Probability and Mathematical Statistics.
Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. 2006. Nonlinear programming. Third ed. Hoboken, NJ CrossRef | Google Scholar: Wiley-Interscience [John Wiley & Sons]. Theory and algorithms.
Bennett, C., and Sharpley, R.C. 1988. Interpolation of operators. Vol. 129 Google Scholar. Access Online via Elsevier.
Betensky, R.A., and Finkelstein, D.M. 1999. A non-parametric maximum likelihood estimator for bivariate interval censored data. Statist. Med., 18 CrossRef | Google Scholar | PubMed, 3089–3100.
Bickel, P.J., Klaassen, C.A.J., Ritov, Y., and Wellner, J.A. 1998. Efficient and adaptive estimation for semiparametric models. New York Google Scholar: Springer-Verlag. Reprint of the 1993 original.
Billingsley, P. 1995. Probability and measure. Third ed. Wiley Series in Probability and Mathematical Statistics. New York Google Scholar: John Wiley & Sons. A Wiley-Interscience Publication.
Birgé, L. 1999. Interval censoring: a nonasymptotic point of view. Math. Methods Statist., 8 Google Scholar, 285–298.
Birke, M., and Dette, H. 2007. Testing strict monotonicity in nonparametric regression. Math. Methods Statist., 16 CrossRef | Google Scholar, 110–123.
Birman, M.Š., and Solomjak, M.Z. 1967. Piecewise polynomial approximations of functions of classesWpα. Mat. Sb. (N.S.), 73 Google Scholar(115), 331–355.
Bogaerts, K., and Lesaffre, E. 2004. A new, fast algorithm to find the regions of possible support for bivariate interval-censored data. J. Comput. Graph. Statist., 13 CrossRef | Google Scholar, 330–340.
Böhning, D. 1982. Convergence of Simar's algorithm for finding the maximum likelihood estimate of a compound Poisson process. Ann. Statist., 10 CrossRef | Google Scholar, 1006–1008.
Böhning, D. 1986. A vertex-exchange-method in D-optimal design theory. Metrika, 33 CrossRef | Google Scholar, 337–347.
Carolan, C.A., and Dykstra, R.L. 1999. Asymptotic behavior of the grenander estimator at density flat regions. Canad. J. Statist., 27 CrossRef | Google Scholar, pp. 557–566.
Chernoff, H. 1964. Estimation of the mode. Ann. Inst. Statist. Math., 16 CrossRef | Google Scholar, 31–41.
Cule, M., Gramacy, R., and Samworth, R.J. 2009. LogConcDEAD: an R package for maximum likelihood estimation of a multivariate log-concave density. Journal of Statistical Software, 29 CrossRef | Google Scholar(2).
Cule, M., and Samworth, R.J. 2010. Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density. Electron. J. Stat., 4 CrossRef | Google Scholar, 254–270.
Cule, M., Samworth, R.J., and Stewart, M.I. 2010. Maximum likelihood estimation of a multi-dimensional log-concave density. J. Roy. Statist. Soc. Ser. B (Statistical Methodology), 72 CrossRef | Google Scholar(5), 545–607.
Dabrowska, D.M. 1988. Kaplan-Meier estimate on the plane. Ann. Statist., 16 CrossRef | Google Scholar, 1475–1489.
Daniels, H.E., and Skyrme, T.H.R. 1985. The maximum of a random walk whose mean path has a maximum. Adv. in Appl. Probab., 17 CrossRef | Google Scholar, 85–99.
Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B, 39 Google Scholar, 1–38. With discussion.
Dette, H., Neumeyer, N., and Pilz, K.F. 2006. A simple nonparametric estimator of a strictly monotone regression function. Bernoulli, 12 CrossRef | Google Scholar, 469–490.
Dietz, K., and Schenzle, D. 1985. Proportionate mixing models for age-dependent infection transmission. J. Math. Biol., 22 CrossRef | Google Scholar | PubMed, 117–120.
Donoho, D.L., and Liu, R.C. 1991. Geometrizing rates of convergence. II, III. Ann. Statist., 19 Google Scholar, 633–667, 668–701.
Dümbgen, L., and Rufibach, K. 2009. Maximum likelihood estimation of a log-concave density and its distribution function: basic properties and uniform consistency. Bernoulli, 15 CrossRef | Google Scholar, 40–68.
Dümbgen, L., and Rufibach, K. 2011. logcondens: computations related to univariate log-concave density estimation. Journal of Statistical Software, 39 CrossRef | Google Scholar, 1–28.
Durot, C. 2007. On the Lp-error of monotonicity constrained estimators. Ann. Statist., 35 CrossRef | Google Scholar, 1080–1104.
Durot, C. 2008. Testing convexity or concavity of a cumulated hazard rate. IEEE Trans. on Rel., 57 CrossRef | Google Scholar, 465–473.
Durot, C., Kulikov, V.N., and Lopuhaä, H.P. 2012. The limit distribution of the L∞-error of Grenander-type estimators. Ann. Statist., 40 CrossRef | Google Scholar(3), 1578–1608.
Durot, C., Groeneboom, P., and Lopuhaä, H.P. 2013. Testing equality of functions under monotonicity constraints. J. Nonparametr. Stat., 25 CrossRef | Google Scholar, 939–970.
Eggermont, P.P.B., and LaRiccia, V.N. 2000. Maximum likelihood estimation of smooth monotone and unimodal densities. Annals of statistics Google Scholar, 922–947.
Eggermont, P.P.B., and LaRiccia, VN. 2001a. Maximum penalized likelihood estimation: density estimation. Vol. 1. New York Google Scholar: Springer.
Eggermont, P.P.B., and LaRiccia, V.N. 2001b. Maximum penalized likelihood estimation: regression. Vol. 2. New York Google Scholar: Springer.
Fan, J. 1993. Local linear regression smoothers and their minimax efficiencies. Ann. Statist., 21 CrossRef | Google Scholar, 196–216.
Fedorov, V.V. 1971. Experimental design under linear optimality criteria. Teor. Verojatnost. i Primenen., 16 Google Scholar, 189–195.
Feuerverger, A., and Hall, P. 2000. Methods for density estimation in thick-slice versions of Wicksell's problem. J. Amer. Statist. Assoc., 95 CrossRef | Google Scholar(450), 535–546.
Feuerverger, A., Kim, P.T., and Sun, J. 2008. On optimal uniform deconvolution. J. Stat. Theory Pract., 2 CrossRef | Google Scholar, 433–451.
Fleming, T.R., and Harrington, D.P. 2011. Counting processes and survival analysis Google Scholar. Wiley.
Fougères, A.-L. 1997. Estimation de densites unimodales. Canadian Journal of Statistics, 25 CrossRef | Google Scholar(3), 375–387.
Gentleman, R., and Vandal, A.C. 2002. Nonparametric estimation of the bivariate CDF for arbitrarily censored data. Canad. J. Statist., 30 CrossRef | Google Scholar, 557–571.
Geskus, R.B. 1997. Estimation of Smooth Functionals with Interval Censored Data Google Scholar. Ph.D. thesis. Delft University of Technology.
Geskus, R.B., and Groeneboom, P. 1996. Asymptotically optimal estimation of smooth functionals for interval censoring. I. Statist. Neerlandica, 50 CrossRef | Google Scholar, 69–88.
Geskus, R.B., and Groeneboom, P. 1997. Asymptotically optimal estimation of smooth functionals for interval censoring. II. Statist. Neerlandica, 51 CrossRef | Google Scholar, 201–219.
Geskus, R.B., and Groeneboom, P. 1999. Asymptotically optimal estimation of smooth functionals for interval censoring, case 2. Ann. Statist., 27 Google Scholar, 627–674.
Gijbels, I., and Heckman, N.E. 2004. Nonparametric testing for a monotone hazard function via normalized spacings. J. Nonparametr. Stat., 16 CrossRef | Google Scholar, 463–477.
Gill, R.D., and Levit, B.Y. 1995. Applications of the Van Trees inequality: a Bayesian Cramér-Rao bound. Bernoulli, 1 CrossRef | Google Scholar, 59–79.
Giné, E., and Guillou, A. 2002. Rates of strong uniform consistency for multivariate kernel density estima-tors. Ann. Inst. H. Poincare Probab. Statist., 38 CrossRef | Google Scholar, 907–921. En l'honneur de J. Bretagnolle, D. Dacunha-Castelle, I. Ibragimov.
Good, I.J., and Gaskins, R.A. 1971. Nonparametric roughness penalties for probability densities. Biometrika, 58 CrossRef | Google Scholar, 255–277.
Grenander, U. 1956. On the theory of mortality measurement. II. Skand. Aktuarietidskr., 39 Google Scholar, 125–153 (1957).
Groeneboom, P. 1983. The concave majorant of Brownian motion. Ann. Probab., 11 CrossRef | Google Scholar, 1016–1027.
Groeneboom, P. 1985. Estimating a monotone density. Pages 539–555 of: Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1981). Wadsworth Statist./Probab. Ser. Belmont, CA: Wadsworth Google Scholar.
Groeneboom, P. 1989. Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields, 81 CrossRef | Google Scholar, 79–109.
Groeneboom, P. 1996. Lectures on inverse problems. Pages 67–164 of: Lectures on probability theory and statistics (Saint-Flour, 1994). Lecture Notes in Math., vol. 1648. Berlin: Springer Google Scholar.
Groeneboom, P. 2010. The maximum of Brownian motion minus a parabola. Electron. J. Probab., 15 CrossRef | Google Scholar, no. 62, 1930–1937.
Groeneboom, P. 2011. Vertices of the least concave majorant of Brownian motion with parabolic drift. Electron. J. Probab., 16 CrossRef | Google Scholar, no. 84, 2234–2258.
Groeneboom, P. 2012a. Convex hulls of uniform samples from a convex polygon. Adv. in Appl. Probab., 44 CrossRef | Google Scholar, 330–342.
Groeneboom, P. 2012b. Likelihood ratio type two-sample tests for current status data. Scand. J. Statist., 39 CrossRef | Google Scholar, 645–662.
Groeneboom, P. 2013a. The bivariate current status model. Electron. J. Stat., 7 CrossRef | Google Scholar, 1797–1845.
Groeneboom, P. 2013b. Nonparametric (smoothed) likelihood and integral equations. J. Statist. Plann. Inference, 143 CrossRef | Google Scholar, 2039–2065.
Groeneboom, P. 2014. Maximum smoothed likelihood estimators for the interval censoring model. Ann. Statist., 42 CrossRef | Google Scholar, 2092–2137.
Groeneboom, P., and Jongbloed, G. 2003. Density estimation in the uniform deconvolution model. Statist. Neerlandica, 57 CrossRef | Google Scholar, 136–157.
Groeneboom, P., and Jongbloed, G. 2012. Isotonic L2-projection test for local monotonicity of a hazard. J. Statist. Plann. Inference, 142 CrossRef | Google Scholar, 1644–1658.
Groeneboom, P., and Jongbloed, G. 2013 Google Scholara. Smooth and non-smooth estimates of a monotone hazard. Volume in the IMS Lecture Notes Monograph Series in honor of the 65th birthday of Jon Wellner. IMS.
Groeneboom, P., and Jongbloed, G. 2013b. Smooth and non-smooth estimates of a monotone hazard. Pages 174–196 of: From Probability to Statistics and Back: High-Dimensional Models and Processes–A Festschrift in Honor of Jon A. Wellner Google Scholar. Institute of Mathematical Statistics.
Groeneboom, P., and Jongbloed, G. 2013c. Testing monotonicity of a hazard: asymptotic distribution theory. Bernoulli, 19 CrossRef | Google Scholar, 1965–1999.
Groeneboom, P., and Jongbloed, G. 2014 Google Scholar. Nonparametric confidence intervals for monotone functions. http://arxiv.org/abs/1407.3491.
Groeneboom, P., and Ketelaars, T. 2011. Estimators for the interval censoring problem. Electron. J. Stat., 5 CrossRef | Google Scholar, 1797–1845.
Groeneboom, P., and Lopuhaä, H.P. 1993. Isotonic estimators of monotone densities and distribution func-tions: basic facts. Statist. Neerlandica, 47 CrossRef | Google Scholar, 175–183.
Groeneboom, P., and Pyke, R. 1983. Asymptotic normality of statistics based on the convex minorants of empirical distribution functions. Ann. Probab., 11 CrossRef | Google Scholar, 328–345.
Groeneboom, P., and Temme, N.M. 2011. The tail of the maximum of Brownian motion minus a parabola. Electron. Commun. Probab., 16 CrossRef | Google Scholar, 458–466.
Groeneboom, P., and Wellner, J.A. 1992. Information bounds and nonparametric maximum likelihood estimation. DMV Seminar, vol. 19. Basel CrossRef | Google Scholar: Birkhauser Verlag.
Groeneboom, P., and Wellner, J.A. 2001. Computing Chernoff's distribution. J. Comput. Graph. Statist., 10 CrossRef | Google Scholar, 388–400.
Groeneboom, P., Hooghiemstra, G., and Lopuhaä, H.P. 1999. Asymptotic normality of the L1 error of the Grenander estimator. Ann. Statist., 27 Google Scholar, 1316–1347.
Groeneboom, P., Jongbloed, G., and Wellner, J.A. 2001a. Estimation of a convex function: characterizations and asymptotic theory. Ann. Statist., 29 Google Scholar, 1653–1698.
Groeneboom, P., Jongbloed, G., and Wellner, J.A. 2001b. A canonical process for estimation of convex functions: the “invelope” of integrated Brownian motion +t4. Ann. Statist., 29 Google Scholar, 1620–1652.
Groeneboom, P., Jongbloed, G., and Wellner, J.A. 2008. The support reduction algorithm for computing non-parametric function estimates in mixture models. Scand. J. Statist., 35 CrossRef | Google Scholar | PubMed, 385–399.
Groeneboom, P., Maathuis, M.H., and Wellner, J.A. 2008a. Current status data with competing risks: consistency and rates of convergence of the MLE. Ann. Statist., 36 Google Scholar, 1031–1063.
Groeneboom, P., Maathuis, M.H., and Wellner, J.A. 2008b. Current status data with competing risks: limiting distribution of the MLE. Ann. Statist., 36 Google Scholar | PubMed, 1064–1089.
Groeneboom, P., Jongbloed, G., and Witte, B.I. 2010. Maximum smoothed likelihood estimation and smoothed maximum likelihood estimation in the current status model. Ann. Statist., 38 CrossRef | Google Scholar, 352–387.
Groeneboom, P., Jongbloed, G., and Michael, S. 2012. Consistency of maximum likelihood estimators in a large class of deconvolution models. Canad. J. Statist Google Scholar.
Groeneboom, P., Jongbloed, G., and Witte, B.I. 2012. A maximum smoothed likelihood estimator in the current status continuous mark model. J. Nonparametr. Stat., 24 CrossRef | Google Scholar, 85–101.
Groeneboom, P., Lalley, S.P., and Temme, N.M. 2013. Chernoff's distribution and differential equations of parabolic and Airy type Google Scholar. Submitted.
Hall, P. 1984. Central limit theorem for integrated square error of multivariate nonparametric density estimators. J. Multivariate Anal., 14 CrossRef | Google Scholar, 1–16.
Hall, P. 1992. Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann. Statist., 20 CrossRef | Google Scholar, 675–694.
Hall, P., and Horowitz, J.L. 2013. A simple bootstrap method for constructing nonparametric confidence bands for functions. Ann. Statist., 41 CrossRef | Google Scholar, 1892–1921.
Hall, P., and Smith, R.L. 1988. The kernel method for unfolding sphere size distributions. J. Comput. Phys., 74 CrossRef | Google Scholar, 409–421.
Hall, P., and Van Keilegom, I. 2005. Testing for monotone increasing hazard rate. Ann. Statist., 33 CrossRef | Google Scholar, 1109–1137.
Hampel, F.R. 1987. Design, modelling, and analysis of some biological datasets. Pages 111–115 of: Design, data and analysis, by some friends of Cuthbert Daniel. New York Google Scholar: Wiley.
Hansen, B.E. 1991. Nonparametric estimation of functionals for interval censored observations Google Scholar. Master's thesis. Delft University of Technology.
Hanson, D.L., and Pledger, G. 1976. Consistency in Concave Regression. Ann. Statist., 4 CrossRef | Google Scholar, 1038–1050.
Hoel, D.G., and Walburg, H.E. 1972. Statistical analysis of survival experiments. Journal of the National Cancer Institute, 49 Google Scholar | PubMed, 361–372.
Huang, J., and Wellner, J.A. 1995. Asymptotic normality of the NPMLE of linear functionals for interval censored data, case 1. Statist. Neerlandica, 49 CrossRef | Google Scholar, 153–163.
Huang, Y., and Louis, T.A. 1998. Nonparametric estimation of the joint distribution of survival time and mark variables. Biometrika, 85 CrossRef | Google Scholar, 7856–7984.
Hudgens, M.G., Satten, G.A., and Longini, Jr., I.M. 2001. Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation. Biometrics, 57 CrossRef | Google Scholar | PubMed, 74–80.
Hudgens, M.G., Maathuis, M.H., and Gilbert, P.B. 2007. Nonparametric estimation of the joint distribution of a survival time subject to interval censoring and a continuous mark variable. Biometrics, 63 CrossRef | Google Scholar, 372–380.
Ibragimov, I.A., and Linnik, Yu.V. 1971. Independent and stationary sequences of random variables. Wolters-Noordhoff Publishing, Groningen Google Scholar. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman.
Janson, S. 2013. Moments of the location of the maximum of Brownian motion with parabolic drift. Electron. Commun. Probab., 18 CrossRef | Google Scholar, no. 15, 1–8.
Janson, S., Louchard, G., and Martin-Löf, A. 2010. The maximum of Brownian motion with parabolic drift. Electron. J. Probab., 15 CrossRef | Google Scholar, no. 61, 1893–1929.
Jewell, N.P. 1982. Mixtures of exponential distributions. Ann. Statist, 10 CrossRef | Google Scholar, 479–484.
Jewell, N.P., and Kalbfleisch, J.D. 2004. Maximum likelihood estimation of ordered multinomial parameters. Biostatistics, 5 CrossRef | Google Scholar | PubMed, 291–306.
Jewell, N.P., van der Laan, M.J., and Henneman, T. 2003. Nonparametric estimation from current status data with competing risks. Biometrika, 90 CrossRef | Google Scholar, 183–197.
Johnstone, I.M., and Raimondo, M. 2004. Periodic boxcar deconvolution and Diophantine approximation. Ann. Statist., 32 Google Scholar, 1781–1804.
Jongbloed, G. 1998a. Exponential deconvolution: two asymptotically equivalent estimators. Statist. Neerlandica, 52 CrossRef | Google Scholar, 6–17.
Jongbloed, G. 1998b. The iterative convex minorant algorithm for nonparametric estimation. J. Comput. Graph. Statist., 7 Google Scholar, 310–321.
Jongbloed, G. 2001. Sieved maximum likelihood estimation in Wicksell's problem and related deconvolution problems. Scand. J. Statist., 28 CrossRef | Google Scholar, 161–183.
Jongbloed, G. 2009. Consistent likelihood-based estimation of a star-shaped distribution. Metrika, 69 CrossRef | Google Scholar, 265–282.
Jongbloed, G., and van der Meulen, F.H. 2009. Estimating a concave distribution function from data corrupted with additive noise. Ann. Statist., 37 CrossRef | Google Scholar, 782–815.
Kaipio, J.P., and Somersalo, E. 2005. Statistical and computational inverse problems. Vol. 160. New York Google Scholar: Springer.
Keiding, N. 1991. Age-specific incidence and prevalence: a statistical perspective. J. Roy. Statist. Soc. Ser. A, 154 Google Scholar(3), 371–412. With discussion.
Keiding, N., Begtrup, K., Scheike, T.H., and Hasibeder, G. 1996. Estimation from Current Status Data in Continuous Time. Lifetime Data Anal., 2 CrossRef | Google Scholar | PubMed, 119–129.
Keiding, N., Højbjerg Hansen, O.K., Sørensen, D.N., and Slama, R. 2012. The current duration approach to estimating time to pregnancy. Scand. J. Statist., 39 CrossRef | Google Scholar, 185–204.
Kim, J.K., and Pollard, D. 1990. Cube root asymptotics. Ann. Statist., 18 CrossRef | Google Scholar, 191–219.
Kitayaporn, D., Vanichseni, S., Mastro, T.D., Raktham, S., Vaniyapongs, T., Des Jarlais, D.C., Wasi, C., Young, N.L., Sujarita, S., Heyward, W.L., and Esparza, J. 1998. Infection with HIV-1 subtypes B and E in injecting drug users screened for enrollment into a prospective cohort in Bangkok, Thailand. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 19 CrossRef | Google Scholar, 289–295.
Klein, J.P., and Moeschberger, M.L. 2003. Survival Analysis: Techniques for Censored and Truncated Data. Statistics for Biology and Health. New York Google Scholar: Springer.
Komlós, J., Major, P., and Tusnády, G. 1975. An approximation of partial sums of independent RV's and the sample DF. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32 CrossRef | Google Scholar, 111–131.
Kosorok, M.R. 2008a. Bootstrapping the Grenander estimator. Pages 282–292 of: Beyond parametrics in interdisciplinary research: Festschrift in honor of Professor Pranab K. Sen. Inst. Math. Stat. Collect., vol. 1. Beachwood, OH Google Scholar: Inst. Math. Statist.
Kosorok, M.R. 2008b. Introduction to empirical processes and semiparametric inference. NewYork CrossRef | Google Scholar: Springer.
Kress, R. 1989. Linear integral equations. Applied Mathematical Sciences, vol. 82. Berlin CrossRef | Google Scholar: Springer-Verlag.
Kulikov, V.N. 2003. Direct and Indirect Use of Maximum Likelihood Google Scholar. Ph.D. thesis. Delft University of Technology.
Lesperance, M.L., and Kalbfleisch, J.D. 1992. An algorithm for computing the nonparametric MLE of a mixing distribution. J. Amer. Statist. Assoc., 87 CrossRef | Google Scholar, 120–126.
Li, C., and Fine, J.P. 2013. Smoothed nonparametric estimation for current status competing risks data. Biometrika, 100 CrossRef | Google Scholar, 173–187.
Lindsay, B.G. 1995. Mixture models: theory, geometry and applications. Pages i–163 of: NSF-CBMSregional conference series in probability and statistics Google Scholar. JSTOR.
Loève, M. 1963. Probability theory. Third ed. Princeton, NJ–Toronto–London Google Scholar: D. Van Nostrand Co.
Maathuis, M.H. 2005. Reduction algorithm for the NPMLE for the distribution function of bivariate interval-censored data. J. Comput. Graph. Statist., 14 CrossRef | Google Scholar, 352–362.
Maathuis, M.H., and Hudgens, M.G. 2011. Nonparametric inference for competing risks current status data with continuous, discrete or grouped observation times. Biometrika, 98 CrossRef | Google Scholar | PubMed, 325–340.
Maathuis, M.H., and Wellner, J.A. 2008. Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks. Scand. J. Statist., 35 CrossRef | Google Scholar | PubMed, 83–103.
Mackowiak, P.A., Wasserman, S.S., and Levine, M.M. 1992. A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. Journal of the American Medical Association, 268 Google Scholar | PubMed, 1578–1580.
Mammen, E. 1991. Nonparametric regression under qualitative smoothness assumptions. Ann. Statist., 19 CrossRef | Google Scholar, 741–759.
Marshall, A.W. 1969. Discussion on Barlow and van Zwets paper. Pages 174–176 of: Nonparametric Techniques in Statistical Inference. Proceedings of the First International Symposium on Nonparametric Techniques held at Indiana University, June Google Scholar.
Marshall, A.W., and Proschan, F. 1965. Maximum likelihood estimation for distributions with monotone failure rate. Ann. Math. Statist, 36 CrossRef | Google Scholar, 69–77.
McGarrity, K.S., Sietsma, J., and Jongbloed, G. 2014. Nonparametric inference in a stereological model with oriented cylinders applied to dual phase steel Google Scholar. Submitted for publication.
McLachlan, G.J., and Krishnan, T. 2007. The EM algorithm and extensions. Vol. 382. Hoboken, NJ Google Scholar: John Wiley & Sons.
Meister, A. 2009. Deconvolution problems in nonparametric statistics. Lecture Notes in Statistics, vol. 193. Berlin CrossRef | Google Scholar: Springer-Verlag.
Meyer, M.C. 2008. Inference using shape-restricted regression splines. Ann. Appl. Stat., 2 CrossRef | Google Scholar, 1013–1033.
Nane, G.F. 2013. Shape Constrained Nonparametric Estimation in the Cox Model Google Scholar. Ph.D. thesis. Delft University of Technology.
Neuhaus, G. 1993. Conditional rank tests for the two-sample problem under random censorship. Ann. Statist., 21 CrossRef | Google Scholar, 1760–1779.
Newcomb, S. 1886. A generalized theory of the combination of observations so as to obtain the best result. American Journal of Mathematics Google Scholar, 343–366.
Ohser, J., and Mücklich, F. 2000. Statistical analysis of microstructures in materials science. New York Google Scholar: John Wiley.
Pal, J.K. 2008. Spiking problem in monotone regression: Penalized residual sum of squares. Statist. Probab. Lett., 78 CrossRef | Google Scholar, 1548–1556.
Patil, G.P., and Rao, C.R. 1978. Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics, 34 CrossRef | Google Scholar, 179–189.
Peto, R., and Peto, J. 1972. Asymptotically efficient rank invariant test procedures. J.R. Statist. Soc. Series A, 135 CrossRef | Google Scholar, 184–207.
Pimentel, L.P.R. 2014. On the location of the maximum of a continuous stochastic process. J. Appl. Prob., 51 Google Scholar, 152–161.
Pitman, J.W. 1983. Remarks on the convex minorant of Brownian motion. Pages 219–227 of: Seminar on stochastic processes, 1982 (Evanston, Ill., 1982). Progr. Probab. Statist., vol. 5. Boston, MA Google Scholar: Birkhauser Boston.
Politis, D.N., Romano, J.P., and Wolf, M. 1999. Subsampling. Springer Series in Statistics. New York CrossRef | Google Scholar: Springer-Verlag.
Pollard, D. 1984. Convergence of stochastic processes. Springer Series in Statistics. New York CrossRef | Google Scholar: Springer-Verlag.
Prakasa Rao, B.L.S. 1969. Estimation of a unimodal density. Sankhyā Ser. A, 31 Google Scholar, 23–36.
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., and Spencer, J.Q.G. 2008. Luminescence dating: basics, methods and applications. Quaternary Science Journal, 57 Google Scholar, 95–149.
Proschan, F., and Pyke, R. 1967. Tests for monotone failure rate. Pages 293–312 of: Proc. Fifth Berkeley Sympos. Mathematical Statistics and Probability (Berkeley, Calif., 1965/66), Vol. III: Physical Sciences. Berkeley, CA Google Scholar: University of California Press.
R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria Google Scholar.
Ramsay, J.O. 1998. Estimating smooth monotone functions. J. R. Statist. Soc.: Series B (Statistical Methodology), 60 CrossRef | Google Scholar, 365–375.
Rebolledo, R. 1980. Central limit theorems for local martingales. Z. Wahrsch. Verw. Gebiete, 51 CrossRef | Google Scholar, 269–286.
Robertson, T., Wright, F.T., and Dykstra, R.L. 1988. Order restricted statistical inference. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Chichester Google Scholar: John Wiley & Sons.
Rosenblatt, M. 1956a. A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. U.S.A., 42 CrossRef | Google Scholar, 43–47.
Rosenblatt, M. 1956b. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27 CrossRef | Google Scholar, 832–837.
Ross, S.M. 2010. Introduction to probability models. Tenth ed. Burlington, MA Google Scholar: Harcourt/Academic Press.
Ruppert, D., Wand, M.P., and Carroll, R.J. 2003. Semiparametric regression. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 12. Cambridge CrossRef | Google Scholar: Cambridge University Press.
Schoemaker, A.L. 1996. What's normal? Temperature, gender, and heart rate. Journal of Statistics Education, 4 Google Scholar.
Schuhmacher, D., Hüsler, A., and Dümbgen, L. 2011. Multivariate log-concave distributions as a nearly parametric model. Statistics & Risk Modeling with Applications in Finance and Insurance, 28 Google Scholar(3), 277–295.
Schuster, E.F. 1985. Incorporating support constraints into nonparametric estimators of densities. Comm. Statist. A-Theory Methods, 14 Google Scholar, 1123–1136.
Sen, B., Banerjee, M., and Woodroofe, M.B. 2010. Inconsistency of bootstrap: the Grenander estimator. Ann. Statist., 38 CrossRef | Google Scholar, 1953–1977.
Silvapulle, M.J., and Sen, P.K. 2005. Constrained statistical inference: inequality, order and shape constraints. Hoboken, NJ Google Scholar: Wiley.
Silverman, B.W. 1978. Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist., 6 CrossRef | Google Scholar, 177–184.
Silverman, B.W. 1986. Density estimation for statistics and data analysis. Vol. 26. Boca Raton, FL CrossRef | Google Scholar: CRC press.
Simar, L. 1976. Maximum likelihood estimation of a compound Poissonprocess. Ann. Statist., 4 CrossRef | Google Scholar, 1200–1209.
Slama, R., Højbjerg Hansen, O.K., Ducot, B., Bohet, A., Sørensen, D., Allemand, L., Eijkemans, M.J., Rosetta, L., Thalabard, J.C., Keiding, N., et al. 2012. Estimation of the frequency of involuntary infertility on a nation-wide basis. Human reproduction, 27 CrossRef | Google Scholar | PubMed, 1489–1498.
Song, S. 2001. Estimation with Bivariate Interval Censored data Google Scholar. Ph.D. diss. University of Washington.
Sparre Andersen, E. 1954. On the fluctuations of sums of random variables. II. Math. Scand., 2 Google Scholar, 195–223.
Steinsaltz, D., and Orzack, S.H. 2011. Statistical methods forpaleodemography on fossil assemblages having small numbers of specimens: an investigation of dinosaur survival rates. Paleobiology, 37 CrossRef | Google Scholar, 113–125.
Sun, J. 2006. The statistical analysis of interval-censored failure time data. Statistics for Biology and Health. New York Google Scholar: Springer.
Talagrand, M. 1994. Sharper bounds for Gaussian and empirical processes. Ann. Probab., 22 CrossRef | Google Scholar, 28–76.
Talagrand, M. 1996. New concentration inequalities in product spaces. Invent. Math., 126 CrossRef | Google Scholar, 505–563.
Temme, N.M. 1985. A convolution integral equation solved by Laplace transformations. Pages 609–613 of: Proceedings of the international conference on computational and applied mathematics (Leuven, 1984), vol. 12/13 Google Scholar.
Tsai, W.-Y., Leurgans, S.E., and Crowley, J.J. 1986. Nonparametric estimation of a bivariate survival function in the presence of censoring. Ann. Statist., 14 CrossRef | Google Scholar, 1351–1365.
Tsybakov, A.B., and Zaiats, V. 2009. Introduction to nonparametric estimation. Vol. 11. New York CrossRef | Google Scholar: Springer.
Van de Geer, S.A. 1996. Rates of convergence for the maximum likelihood estimator in mixture models. J. Nonparametr. Statist., 6 CrossRef | Google Scholar, 293–310.
Van de Geer, S.A. 2000. Applications of empirical process theory. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 6. Cambridge Google Scholar: Cambridge University Press.
Van der Laan, M.J. 1996. Efficient estimation in the bivariate censoring model and repairing NPMLE. Ann. Statist., 24 Google Scholar, 596–627.
Van der Vaart, A.W. 1991. On differentiable functionals. Ann. Statist., 19 Google Scholar, 178–204.
Van der Vaart, A.W., and Van der Laan, M.J. 2003. Smooth estimation of a monotone density. Statistics: A Journal of Theoretical and Applied Statistics, 37 CrossRef | Google Scholar, 189–203.
Van der Vaart, A.W., and Wellner, J.A. 1996. Weak convergence and empirical processes. Springer Series in Statistics. New York CrossRef | Google Scholar: Springer-Verlag.
Van Eeden, C. 1956. Maximum likelihood estimation of ordered probabilities. Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math., 18 Google Scholar, 444–455.
Van Es, A.J., and Hoogendoorn, A.W. 1990. Kernel estimation in Wicksell's corpuscle problem. Biometrika, 77 Google Scholar, 139–145.
Van Es, A.J., and van Zuijlen, M.C.A. 1996. Convex minorant estimators of distributions in non-parametric deconvolution problems. Scand. J. Statist., 23 Google Scholar, 85–104.
Van Es, A.J., Jongbloed, G., and van Zuijlen, M.C.A. 1998. Isotonic inverse estimators for nonparametric deconvolution. Ann. Statist., 26 Google Scholar, 2395–2406.
Van Trees, H.L. 1968. Detection, estimation, and modulation theory. New York Google Scholar: Wiley.
Vanichseni, S., Kitayaporn, D., Mastro, T.D., Mock, P.A., Raktham, S., D.C., Des Jarlais, Sujarita, S., Srisuwanvilai, L.O., Young, N.L., Wasi, C., Subbarao, S., Heyward, W.L., Esparza, J., and Choopanya, K. 2001. Continued high HIV-1 incidence in a vaccine trial preparatory cohort of injection drug users in Bangkok, Thailand. AIDS, 15 CrossRef | Google Scholar, 397–405.
Vardi, Y. 1982. Nonparametric estimation in the presence of length bias. Ann. Statist., 10 Google Scholar, 616–620.
Walther, G. 2001. Multiscale maximum likelihood analysis of a semiparametric model, with applications. Ann. Statist., 29 Google Scholar, 1297–1319.
Wand, M.P., and Jones, M.C. 1995. Kernel smoothing. Vol. 60. Boca Raton, FL CrossRef | Google Scholar: Crc Press.
Watson, G.S. 1971. Estimating functionals of particle size distributions. Biometrika, 58 CrossRef | Google Scholar, 483–490.
Wellner, J.A. 1995. Interval censoring, case 2: alternative hypotheses. Pages 271–291 of: Analysis of censored data (Pune, 1994/1995). IMS Lecture Notes Monogr. Ser., vol. 27. Hayward, CA Google Scholar: Inst. Math. Statist.
Wellner, J.A., and Zhan, Y. 1997. A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data. J. Amer. Statist. Assoc., 92 CrossRef | Google Scholar, 945–959.
Wicksell, S.D. 1925. The corpuscle problem. Biometrika, 17 CrossRef | Google Scholar, 84–99.
Wicksell, S.D. 1926. The corpuscle problem: second memoir: case of ellipsoidal corpuscles. Biometrika, 18 Google Scholar, 151–172.
Woodroofe, M.B., and Sun, J. 1993. A penalized maximum likelihood estimate of f(0+) when f is nonincreasing. Statist. Sinica, 3 Google Scholar, 501–515.
Wright, S.J. 1997. Primal-dual interior-point methods. Vol. 54. Philadelphia, PA CrossRef | Google Scholar: Siam.
Wu, C.-F.J. 1983. On the convergence properties of the EM algorithm. Ann. Statist., 11 CrossRef | Google Scholar, 95–103.
Wynn, H.P. 1970. The sequential generation of D-optimum experimental designs. Ann. Math. Statist., 41 CrossRef | Google Scholar, 1655–1664.
Yu, B. 1997. Assouad, Fano, and Le Cam. Pages 423–435 of: Festschrift for Lucien Le Cam Google Scholar. Springer.
Zeidler, E. 1985. Nonlinear functional analysis and its applications. III. Variational methods and optimization. Translated from the German by Leo F. Boron. New York CrossRef | Google Scholar: Springer-Verlag.
Zhang, S., Karunamuni, R.J., and Jones, M.C. 1999. An improved estimator of the density function at the boundary. J. Amer. Statist. Assoc., 94 CrossRef | Google Scholar, 1231–1240.
Zhang, Y. 2006. Nonparametric k-sample tests with panel count data. Biometrika, 93 CrossRef | Google Scholar, 777–790.
Zhang, Y., Liu, W., and Zhan, Y. 2001. A nonparametric two-sample test of the failure function with interval censoring case 2. Biometrika, 88 CrossRef | Google Scholar, 677–686.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 7551 *
Loading metrics...

Book summary page views

Total views: 6370 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.