Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-k8jzq Total loading time: 0 Render date: 2024-09-02T11:18:42.219Z Has data issue: false hasContentIssue false

4 - Summary

from Part I - Introduction

Published online by Cambridge University Press:  10 May 2010

Martin Maier
Affiliation:
Université du Québec, Montréal
Get access

Summary

The ultimate goal of the Internet and communications networks in general is to provide access to information when we need it, where we need it, and in whatever format we need it (Mukherjee, 2000). To achieve this goal wireless and optical technologies play a key role in future communications networks. Wireless and optical networks can be thought of as quite complementary. Optical fiber does not go everywhere, but where it does go, it provides a huge amount of available bandwidth. Wireless networks, on the other hand, potentially go almost everywhere and are thus able to support mobility and reachability, but they provide a highly bandwidth-constrained transmission channel, susceptible to a variety of impairments (Ramaswami, 2002). As opposed to the wireless channel, optical fiber exhibits a number of advantageous transmission properties such as low attenuation, large bandwidth, and immunity from electromagnetic interference. Future communications networks will be bimodal, capitalizing on the respective strengths of wireless and optical networks.

Historical review

Optical networks have been long recognized to have many beneficial properties. Among others, optical fiber is well suited to satisfy the growing demand for bandwidth, transparency, reliability, and simplified operation and management (Green, 1996). In this part, we have first reviewed the historical evolution of optical networks from point-to-point links to reconfigurable all-optical WDM networks of arbitrary topology. In our review, we introduced the basic concepts and techniques of optical networking, highlighted key optical network elements (e.g., reconfigurable OADM and OXC), elaborated on the rationale behind the design of all-optical networks, and outlined their similarities to SONET/SDH networks. Furthermore, we identified and explained the most important features of optical networks, namely, transparency, reconfigurability, survivability, scalability, and modularity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Summary
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Summary
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Summary
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.005
Available formats
×