Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T23:25:03.572Z Has data issue: false hasContentIssue false

12 - Advanced techniques

from Part II - Practice

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 345 - 368
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J.W., Landick, R., and Block, S. M. 2005. Direct observation of base-pair stepping by RNA polymerase. Nature, 438, 460–5.CrossRefGoogle ScholarPubMed
Ananthakrishnan, R., Guck, J., Wottawah, F., et al. 2006. Quantifying the contribution of actin networks to the elastic strength of fibroblasts. J. Theor. Biol., 242, 502–16.CrossRefGoogle ScholarPubMed
Arai, F., Ogawa, M., and Fukuda, T. 2000. Indirect manipulation and bilateral control of the microbe by the laser manipulated microtools. Pages 665–670 of Proc. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000, vol. 1.Google Scholar
Ashkin, A. 1970. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156–9.CrossRefGoogle Scholar
Basdogan, C., Kiraz, A., Bukusoglu, I., Varol, A., and Doğanay, S. 2007. Haptic guidance for improved task performance in steering microparticles with optical tweezers. Opt. Express, 15, 11 616–21.CrossRefGoogle ScholarPubMed
Berthelot, J., Ácimović, S. S., Juan, M. L., et al. 2014. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotech., 9, 295–9.CrossRefGoogle ScholarPubMed
Bowman, R.W., Gibson, G., Carberry, D., et al. 2011. iTweezers: Optical micromanipulation controlled by an Apple iPad. J. Opt., 13, 044002.CrossRefGoogle Scholar
Boyde, L., Ekpenyong, A., Whyte, G., and Guck, J. 2012. Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory. Appl. Opt., 51, 7934–44.CrossRefGoogle ScholarPubMed
Brambilla, G., Finazzi, V., and Richardson, D. 2004. Ultra-low-loss optical fiber nanotapers. Opt. Express, 12, 2258–63.CrossRefGoogle ScholarPubMed
Brambilla, G., Murugan, G. S., Wilkinson, J. S., and Richardson, D. J. 2007. Optical manipulation of microspheres along a subwavelength optical wire. Opt. Lett., 32, 3041–3.CrossRefGoogle ScholarPubMed
Capitanio, M., Cicchi, R., and Pavone, F. S. 2005. Position control and optical manipulation for nanotechnology applications. Eur. Phys. J. B, 46, 1–8.CrossRefGoogle Scholar
Capitanio, M., Maggi, D., Vanzi, F., and Pavone, F. S. 2007. FIONA in the trap: The advantages of combining optical tweezers and fluorescence. J. Opt. A Pure Appl. Opt., 9, S157–S163.CrossRefGoogle Scholar
Cheng, P., Jhiang, S. M., and Menq, C.-H. 2013. Real-time visual sensing system achieving high-speed 3D particle tracking with nanometer resolution. Appl. Opt., 52, 7530–9.CrossRefGoogle ScholarPubMed
Čižmár, T., Šiler, M., Šerý, M., et al. 2006. Optical sorting and detection of submicrometer objects in a motional standing wave. Phys. Rev. B, 74, 035105.CrossRefGoogle Scholar
Constable, A., Kim, J., Mervis, J., Zarinetchi, F., and Prentiss, M. 1993. Demonstration of a fiber-optical light-force trap. Opt. Lett., 18, 1867–9.CrossRefGoogle ScholarPubMed
Creely, C., Volpe, G., Singh, G. P., Soler, M., and Petrov, D. 2005. Raman imaging of floating cells. Opt. Express, 13, 6105–10.CrossRefGoogle ScholarPubMed
Ekpenyong, A. E., Posey, C. L., Chaput, J. L., et al. 2009. Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher. Appl. Opt., 48, 6344–54.CrossRefGoogle ScholarPubMed
Garcés-Chávez, V.,Dholakia, K., and Spalding, G. C. 2005. Extended-area optically induced organization of microparticles on a surface. Appl. Phys. Lett., 86, 031106.CrossRefGoogle Scholar
Gaugiran, S., Gétin, S., Fedeli, J., et al. 2005. Optical manipulation of microparticles and cells on silicon nitride waveguides. Opt. Express, 13, 6956–63.CrossRefGoogle ScholarPubMed
Gibson, G., Barron, L., Beck, F., Whyte, G., and Padgett, M. 2007. Optically controlled grippers for manipulating micron-sized particles. New J. Phys., 9, 14.CrossRefGoogle Scholar
Gordon, R., Kawano, M., Blakely, J. T., and Sinton, D. 2008. Optohydrodynamic theory of particles in a dual-beam optical trap. Phys. Rev. B, 77, 245125.CrossRefGoogle Scholar
Grieve, J. A., Ulcinas, A., Subramanian, S., et al. 2009. Hands-on with optical tweezers: A multitouch interface for holographic optical trapping. Opt. Express, 17, 3595–602.CrossRefGoogle ScholarPubMed
Grigorenko, A. N., Roberts, N. W., Dickinson, M. R., and Zhang, Y. 2008. Nanometric optical tweezers based on nanostructured substrates. Nature Photon., 2, 365–70.CrossRefGoogle Scholar
Gu, M., Haumonte, J.-B., Micheau, Y., Chon, J. W. M., and Gan, X. 2004. Laser trapping and manipulation under focused evanescent wave illumination. Appl. Phys. Lett., 84, 4236–8.CrossRefGoogle Scholar
Guck, J., Ananthakrishnan, R., Moon, T. J., Cunningham, C. C., and Käs, J. 2000. Optical deformability of soft biological dielectrics. Phys. Rev. Lett., 84, 5451–4.CrossRefGoogle ScholarPubMed
Guck, J., Ananthakrishnan, R., Mahmood, H., et al. 2001. The optical stretcher: A novel laser tool to micromanipulate cells. Biophys. J., 81, 767–84.CrossRefGoogle ScholarPubMed
Hell, S. W. 2008. Towards fluorescence nanoscopy. Nature Biotechnol., 21, 1347–55.Google Scholar
Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F., and Quidant, R. 2009. Self-induced backaction optical trapping of dielectric nanoparticles. Nature Phys., 5, 915–19.CrossRefGoogle Scholar
Juan, M. L., Righini, M., and Quidant, R. 2011. Plasmon nano-optical tweezers. Nature Photon., 5, 349–56.CrossRefGoogle Scholar
Kawata, S., and Sugiura, T. 1992. Movement of micrometer-sized particles in the evanescent field of a laser beam. Opt. Lett., 17, 772–4.CrossRefGoogle ScholarPubMed
Kawata, S., and Tani, T. 1996. Optically driven Mie particles in an evanescent field along a channeled waveguide. Opt. Lett., 21, 1768–70.CrossRefGoogle Scholar
Lankers, M., Popp, J., and Kiefer, W. 1994. Raman and fluorescence spectra of single optically trapped microdroplets in emulsions. Appl. Spectrosc., 48, 1166–8.CrossRefGoogle Scholar
McDonald, C., McPherson, M., McDougall, C., and McGloin, D. 2013. HoloHands: Games console interface for controlling holographic optical manipulation. J. Opt., 15, 035708.CrossRefGoogle Scholar
Mellor, C. D., Fennerty, T. A., and Bain, C. D. 2006. Polarization effects in optically bound particle arrays. Opt. Express, 14, 10 079–88.CrossRefGoogle ScholarPubMed
Mikhael, J., Roth, J., Helden, L., and Bechinger, C. 2008. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature, 454, 501–4.CrossRefGoogle ScholarPubMed
Monat, C., Domachuk, P., and Eggleton, B. J. 2007. Integrated optofluidics: A new river of light. Nature Photon., 1, 106–14.CrossRefGoogle Scholar
Néel, D., Gétin, S., Ferret, P., et al. 2009. Optical transport of semiconductor nanowires on silicon nitride waveguides. Appl. Phys. Lett., 94, 253115.CrossRefGoogle Scholar
Ng, L. N., Zervas, M. N., Wilkinson, J. S., and Luff, B. J. 2000. Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide. Appl. Phys. Lett., 76, 1993–5.CrossRefGoogle Scholar
Onda, K., and Arai, F. 2012. Multi-beam bilateral teleoperation of holographic optical tweezers. Opt. Express, 20, 3633–41.CrossRefGoogle ScholarPubMed
Pacoret, C., and Régnier, S. 2013. Invited Article: A review of haptic optical tweezers for an interactive microworld exploration. Rev. Sci. Instrumen., 84, 081301.CrossRefGoogle ScholarPubMed
Pacoret, C., Bowman, R., Gibson, G., et al. 2009. Touching the microworld with forcefeedback optical tweezers. Opt. Express, 17, 10259–64.CrossRefGoogle Scholar
Petrov, D. V. 2007. Raman spectroscopy of optically trapped particles. J. Opt. A Pure Appl. Opt., 9, S139–S156.CrossRefGoogle Scholar
Piñón, T. M., Castelli, A. R., Hirst, L. S., and Sharping, J. E. 2013. Fiber-optic trap-ona- chip platform for probing low refractive index contrast biomaterials. Appl. Opt., 52, 2340–5.CrossRefGoogle ScholarPubMed
Pitzek, M., Steiger, R., Thalhammer, G., Bernet, S., and Ritsch-Marte, M. 2009. Optical mirror trap with a large field of view. Opt. Express, 17, 19 414–23.CrossRefGoogle ScholarPubMed
Psaltis, D., Quake, S. R., and Yang, C. 2006. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442, 381–6.CrossRefGoogle ScholarPubMed
Righini, M., Zelenina, A. S.,Girard, C., and Quidant, R. 2007. Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys., 3, 477–80.CrossRefGoogle Scholar
Sagué, G., Vetsch, E., Alt, W., Meschede, D., and Rauschenbeutel, A. 2007. Cold-atom physics using ultrathin optical fibers: Light-induced dipole forces and surface interactions. Phys. Rev. Lett., 99, 163602.CrossRefGoogle ScholarPubMed
Sidick, E., Collins, S. D., and Knoesen, A. 1997. Trapping forces in a multiple-beam fiber-optic trap. Appl. Opt., 36, 6423–33.CrossRefGoogle Scholar
Singer, W., Frick, M., Bernet, S., and Ritsch-Marte, M. 2003. Self-organized array of regularly spaced microbeads in a fiber-optical trap. J. Opt. Soc. Am. B, 20, 1568–74.CrossRefGoogle Scholar
Skelton, S. E., Sergides, M., Patel, R., et al. 2012. Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers. J. Quant. Spectrosc. Rad. Transfer, 113, 2512–20.CrossRefGoogle Scholar
Tatarkova, S. A., Carruthers, A. E., and Dholakia, K. 2002. One-dimensional optically bound arrays of microscopic particles. Phys. Rev. Lett., 89, 283901.CrossRefGoogle ScholarPubMed
Thalhammer, G., Steiger, R., Bernet, S., and Ritsch-Marte, M. 2011. Optical macrotweezers: Trapping of highly motile micro-organisms. J. Opt., 13, 044024.CrossRefGoogle Scholar
van Dijk, M. A., Kapitein, L. C., van Mameren, J., Schmidt, C. F., and Peterman, E. J. G. 2004. Combining optical trapping and single-molecule fluorescence spectroscopy: Enhanced photobleaching of fluorophores. J. Phys. Chem. B, 108, 6479–84.CrossRefGoogle Scholar
Volpe, G., Quidant, R., Badenes, G., and Petrov, D. 2006. Surface plasmon radiation forces. Phys. Rev. Lett., 96, 238101.CrossRefGoogle ScholarPubMed
Volpe, G., Volpe, G., and Gigan, S. 2014a. Brownian motion in a speckle light field: Tunable anomalous diffusion and selective optical manipulation. Scientific Reports, 4, 3936.CrossRefGoogle Scholar
Volpe, G., Kurz, L., Callegari, A., Volpe, G., and Gigan, S. 2014b. Speckle optical tweezers: Micromanipulation with random light fields. Opt. Express, 22, 18 159–67.CrossRefGoogle ScholarPubMed
Wang, F., Reece, P. J., Paiman, S., et al. 2011. Nonlinear optical processes in optically trapped InP nanowires. Nano Lett., 11, 4149–53.CrossRefGoogle ScholarPubMed
Wang, F., Toe, W. J., Lee, W. M., et al. 2013. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. Nano Lett., 13, 1185–91.Google Scholar
Whyte, G.,Gibson, G., Leach, J., et al. 2006. An optical trapped microhand formanipulating micron-sized objects. Opt. Express, 14, 12 497–502.CrossRefGoogle ScholarPubMed
Xie, C., Dinno, M. A., and Li, Y. 2002. Near-infraredRaman spectroscopy of single optically trapped biological cells. Opt. Lett., 27, 249–51.CrossRefGoogle ScholarPubMed
Xin, H., Xu, R., and Li, B. 2012. Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Scientific Reports, 2, 818.CrossRefGoogle ScholarPubMed
Xin, H., Cheng, C., and Li, B. 2013. Trapping and delivery of Escherichia coli in a microfluidic channel using an optical nanofiber. Nanoscale, 5, 6720–4.CrossRefGoogle Scholar
Yildiz, A., Forkey, J. N., McKinney, S. A., et al. 2003. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science, 300, 2061–5.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×