Skip to main content Accessibility help
×
  • Cited by 105
Publisher:
Cambridge University Press
Online publication date:
July 2014
Print publication year:
2010
Online ISBN:
9781139193535

Book description

With signal combining and detection methods now representing a key application of signal processing in communication systems, this book provides a range of key techniques for receiver design when multiple received signals are available. Various optimal and suboptimal signal combining and detection techniques are explained in the context of multiple-input multiple-output (MIMO) systems, including successive interference cancellation (SIC) based detection and lattice reduction (LR) aided detection. The techniques are then analyzed using performance analysis tools. The fundamentals of statistical signal processing are also covered, with two chapters dedicated to important background material. With a carefully balanced blend of theoretical elements and applications, this book is ideal for both graduate students and practising engineers in wireless communications.

Reviews

‘Optimal Combining and Detection: Statistical Signal Processing for Communications covers fundamentals of signal detection and estimation and recent advances of multiple input multiple output (MIMO) detection. MIMO detection has become indispensable in modern wireless communication systems. I find the book very interesting and informative to wireless researchers and system engineers in both academia and industry. I believe that the book is also a very good text book for graduate students who are studying the advanced wireless communications technology.’

Fumiyuki Adachi - Tohoku University, Japan

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Agrell, E., Eriksson, T., Vardy, A. & Zeger, K. (2002), “Closest point search in lattices,” IEEE Trans. Inform. Theory 48(8), 2201–2214.
Alamouti, S. M. (1998), “A simple transmit diversity technique for wireless communications,” IEEE J. Selec. Areas in Commun. 16(8), 1451–1458.
Albert, A. E. & Gardner, L. A. (1966), Stochastic Approximation and Nonlinear Regression, MIT Press.
Anderson, B. & Moore, J. (1979), Optimal Filtering, Prentice-Hall.
Babai, L. (1986), “On Lovasz' lattice reduction and the nearest lattice point problem,” Combina-torica 6(1), 1–13.
Bienvenu, G. & Kopp, L. (1983), “Optimality of high resolution array processing using the eigensystem approach,” IEEE Trans. Acoust., Speech Signal Process. 31(5), 1234–1248.
Biglieri, E., Taricco, G. & Tulino, A. (2002), “Performance of space-time codes for a large number of antennas,” IEEE Trans. Inform. Theory 48(7), 1794–1803.
Cary, M. C. (2002), Lattice basis reduction algorithms and applications. unpublished manuscript. URL: www.cs.washington.edu/homes/cary
Chiani, M., Win, M. Z., Zanella, A., Mallik, R. K. & Winters, J. H. (2003), “Bounds and approximations for optimal combining of signals in the presence of multiple cochannel interferers and thermal noise,” IEEE Trans. Commun. 51(2), 296–307.
Choi, J. (2005a), “Nulling and cancellation detector for MIMO channels and its application to multistage receiver for coded signals: performance and optimization,” IEEE Trans. Wireless Commun. 5(5), 1207–1216.
Choi, J. (2005b), “On the partial MAP detection with applications to MIMO channels,” IEEE Trans. Signal Proc. 53(1), 158–167.
Choi, J. (2006), Adaptive and Iterative Signal Processing in Communications, Cambridge University Press.
Cohen, H. (1993), A Course in Computational Algebraic Number Theory, Springer-Verlag.
Conway, J. H. & Sloane, N. J. A. (1991), Sphere Packings, Lattices and Groups, Springer-Verlag.
Cover, T. M. & Thomas, J. A. (1991), Elements of Information Theory, Wiley.
Cox, D. R. & Hinkley, D. V (1974), Theoretical Statistics, Chapman and Hall.
Damen, M. O., El Gamal, H. & Caire, G. (2003), “On maximum-likelihood detection and the search for the closest lattice point,” IEEE Trans. Inform. Theory 49(10), 2389–2402.
Edelman, A. (1989), Eigenvalues and condition numbers of random matrices, PhD thesis, MIT. URL: www-math.mit.edu/edelman/comprehensive.html
Er, M. E. & Cantoni, A. (1983), “Derivative constraints for broad-band element space antenna array processors,” IEEE Trans. Acoust., Speech, Signal Process. 31(6), 1378–1393.
Ertel, R., Cardieri, P., Sowerby, K., Rappaport, T. & Reed, J. (1998), “Overview of spatial channel models for antenna array communication systems,” IEEE Personal Commun. pp. 10-22.
Fincke, U. & Pohst, M. (1985), “Improved methods for calculating vectors of short length in a lattice, including a complexity analysis,” Math. Comput. 44, 463-471.
Fischer, R. F. H. (2002), Precoding and Signal Shaping for Digital Transmission, Wiley-IEEE Press.
Forney, G. D. Jr.,(1988), “Coset codes. i. introduction and geometrical classification,” IEEE Trans. Inform. Theory 34(5), 1123–1151.
Foschini, G. (1996), “Layered space-time architecture for wireless communication in a fading environment when using multiple-element antennas,” Bell Labs Tech. Jour. 41-59.
Foschini, G., Chizhik, D., Gans, M., Papadias, C. & Valenzuela, R. (2003), “Analysis and performance of some basic space-time architectures,” IEEE J. Selected Areas Commun. 21(4), 303–320.
Foschini, G. & Gans, M. (1998), “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun. 6, 311–335.
Foschini, G., Golden, G., Valenzuela, R. & Wolniansky, P. (1999), “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,” IEEE J. Selected Areas Commun. 17(11), 1841–1852.
Frost, O. L. III (1972), “An algorithm for linearly constrained adaptive array processing,” Proc. IEEE 60(8), 926–935.
Gallager, R. G. (1994), “An inequality on the capacity region of multiple access multipath channels”. In R. E., Blahut, D. J., Costello, U., Maurer & T., Mittelholzer, eds., Communications and Cryptography: Two Sides of One Tapestry, Kluwar Academic Publishers.
Gan, Y. H. & Mow, W. H. (2005), “Complex lattice reduction algorithms for low-complexity MIMO detection,” in Proc. IEEE Global Telecommunications Conf., vol. 5, pp. 2953–2957.
Gan, Y. H., Ling, C. & Mow, W. H. (2006), Complex lattice reduction algorithm for low-complexity MIMO detection, Reprint.
Gesbert, D., Shafi, M., Shiu, D., Smith, P. J. & Naguib, A. (2003), “From theory to practice: An overview of mimo space-time coded wireless systems,” IEEE J. Selec. Areas Commun. 21(3), 281–302.
Goldsmith, A. (2005), Wireless Communications, Cambridge University Press.
Golub, G. H. & Loan, C. F. V (1983), Matrix Computations, The Johns Hopkins University Press.
Guey, J.-C., Fitz, M. P., Bell, M. R. & Kuo, W.-Y. (1999), “Signal design for transmitter diversity wireless communication systems over rayleigh fading channels,” IEEE Trans. Commun. 47(4), 527–537.
Guo, D., Shamai, S. & Verdu, S. (2005), “Mutual information and minimum mean-square error in gaussian channels,” IEEE Trans. Inform. Theory 51(4), 1261–1282.
Hagenauer, J., Offer, E. & Papke, L. (1996), “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inform. Theory 42(2), 429–445.
Hassibi, B. (2000), “An efficient square-root algorithm for BLAST,” in Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings, 2000 IEEE International Conference, vol. 2, pp. II737–II740.
Haykin, S. & Veen, B. V. (1999), Signals and Systems, John Wiley & Sons.
Hochwald, B. M., Peel, C. B. & Swindlehurst, A. L. (2005), “A vector-perturbation technique for near-capacity multichannel multiuser communications -part ii: Perturbation,” IEEETrans. Commun. 53(3), 537–544.
Hochwald, B. & ten Brink, S. (2003), “Achieving near-capacity on a multiple-antenna channel,” IEEE Trans. Commun. 51(3), 389–399.
Hoffstein, J., Pipher, J. & Silverman, J. H. (2002), An Introduction to Mathematical Cryptography, Springer Science + Business Media.
Hong, S.-C., Choi, J., Jung, Y.-H. & Kim, S. R. (2004), “Constrained MMSE receivers for CDMA systems in frequency-selective fading channels,” IEEE Trans. Wireless Commun. 3(5), 1393–1398.
Jafarkhani, H. (2005), Space-Time Coding, Cambridge University Press.
Jalden, J., Seethaler, D. & Matz, G. (2008), “Worst- and average-case complexity of LLL lattice reduction in MIMO wireless systems,” in Proc. IEEEICASSP, pp. 2685-2688.
Johnson, D. H. & Dudgeon, D. E. (1993), Array Signal Processing: Concepts and Techniques, Prentice-Hall.
Kannan, R. (1987), “Algorithmic geometry of numbers,” Annual Review of Comp. Sci. 2, 231–267.
Kaveh, M. & Barabell, A. J. (1986), “The statistical performance of the MUSIC and the minimumnorm algorithms in resolving plane waves in noise,” IEEE Trans. Acoust., Speech, Signal Process. 34(2), 331–341.
Kay, S. (1993), Fundamentals of Statistical Signal Processing, Estimation Theory, Prentice-Hall.
Kay, S. (1998), Fundamentals of Statistical Signal Processing, Detection Theory, Prentice-Hall.
Kim, K. J., Yue, J., Iltis, R. A. & Gibson, J. D. (2005), “A QRD-M/Kalman filter based detection and channel estimation algorithm for MIMO-OFDM systems,” IEEE Trans. Wireless Commun. 4(2), 710–721.
Kong, N. & Milstein, L. B. (1999), “Average SNR of a generalized diversity selection combining scheme,” IEEE Commun. Lett. 3(3), 57–59.
Kumaresan, R. & Tufts, D. W. (1983), “Estimating the angles of arrival of multiple plane waves,” IEEE Trans. Aerospace Electron. Syst. 19(1), 134–139.
Lee, H. B. & Wengrovitz, M. S. (1991), “Statistical characterization of the music nukk spectrum,” IEEE Trans. Signal Proc. 39(6), 1333–1347.
Lee, W. C. Y. (1982), Mobile Communication Engineering, McGraw-Hill.
Lehmann, E. L. (1983), Theory of Point Estimation, John Wiley & Sons.
Lenstra, A. K., Lenstra, J. H. W. & Lovasz, L. (1982), “Factorizing polynomials with rational coefficients,” Math. Ann. 216(4), 515–534.
Leon-Garcia, A. (1994), Probability and Random Processes for Electrical Engineering, 2nd edn, Addison-Wesley.
Li, P., Paul, D., Narasimhan, R. & Cioffi, J. (2006), “On the distribution of SINR for the MMSE MIMO receiver and performance analysis,” IEEE Trans. Inform. Theory 52(1), 271–286.
Liberti, J. C. Jr., & Rappaport, T. S. (1999), Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications, Prentice-Hall.
Ling, C. (2006), On the proximity factors of lattice reduction-aided decoding. Unpublished manuscript.
Luk, F. T. & Tracy, D. M. (2008), “An improved LLL algorithm,” Linear Algebra Appl. 248(2-3), 441-452.
Madhow, U. & Honig, M. (1994), “MMSE interference suppression for direct sequence spread spectrum CDMA,” IEEE Trans. Commun. 42(12), 3178–3188.
Monzingo, R. A. & Miller, T. W. (1980), Introduction to Adaptive Arrays, John Wiley & Sons.
Mow, W. H. (2003), ‘Universal lattice decoding: principle andrecent advances’, Wireless Commun. Mob. Comput. 3, 553–569.
Orfanidis, S. J. (1988), Optimum Signal Processing: An Introduction, 2nd edn, Macmillan.
Papoulis, A. (1984), Probability, Random Variables, and Stochastic Processes, 2nd edn, McGraw-Hill.
Paulraj, A., Gore, D. & Nabar, R. (2003), Introduction to Space-Time Wireless Communication, Cambridge University Press.
Paulraj, A. J., Gore, D. A., Nabar, R. U. & Bolcskei, H. (2004), “An overview of MIMO communications - a key to gigabit wireless,” Proc. IEEE 92(2), 198–218.
Paulraj, A. J. & Ng, B. C. (1998), “Space-time modems for wireless personal communications,” IEEE Person. Commun. 5, 36–48.
Peel, C. B., Hochwald, B. M. & Swindlehurst, A. L. (2005), “A vector-perturbation technique for near-capacity multichannel multiuser communications - part i: channel inversion and regular-ization,” IEEE Trans. Commun. 53(1), 195–202.
Pohst, M. (1993), Computational Algebraic Number Theory, Birkhauser Verlag. DMV Seminar.
Porat, B. (1994), Digital Processing of Random Signals: Theory and Methods, Prentice-Hall.
Proakis, J. G. (1995), Digital Communications, 3rd edn, McGraw-Hill.
Rapajic, P. B. & Vucetic, B. S. (1994), “Adaptive receiver structures for asynchronous CDMA systems,” IEEE J. Selec. Areas in Commun. 12(4), 685–697.
Rappaport, T. (1996), Wireless Communications: Principles and Practice, IEEE Press.
Reed, J. H. (2002), Software Radio: A Modern Approach to Radio Engineering, Prentice-Hall.
Richardson, T. & Urbanke, R. (2008), Modern Coding Theory, Cambridge University Press.
Sage, A. P. & Melsa, J. L. (1971), Estimation Theory with Applications to Communications and Control, McGraw-Hill.
Salz, J. (1985), “Digital transmission over cross-coupled linear channels,” AT & T Tech. Jour. 64, 1147–1159.
Sandell, M., Lillie, A., McNamara, D., Ponnampalam, V. & Miforf, D. (2007), “Complexity study of lattice reduction for mimo detection,” in Proc. IEEE Wireless Communications Networking Conf., pp. 1088-1092.
Scharf, L. L. (1991), Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, Addison-Wesley.
Schmidt, R. O. (1986), “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag. 34(3), 276–280.
Schnorr, C. P. & Euchner, M. (1994), “Lattice basis reduction: improved practical algorithms and solving subset sum problems,” Math. Program. 66, 181–191.
Schubert, M. & Boche, H. (2004), “Solution of the multiuser downlink beamforming problem with individual sinr constraints,” IEEE Trans. Veh. Tech. 53(1), 18–28.
Schwartz, M., Bennet, W. R. & Stein, S. (1966), Communication Systems and Techniques, McGraw-Hill.
Shin, H. & Lee, J. (2003), “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inform. Theory 49(10), 2636–2647.
Silverstein, J. W. & Bai, Z. D. (1995), “On the empirical distribution of eigenvalues of a class of large dimensional random matrices,” J. Multivariate Analysis 54, 175–192.
Solo, V. & Kong, X. (1995), Adaptive Signal Processing Algorithms: Stability and Performance, Prentice-Hall.
Taherzadeh, M., Mobasher, A. & Khandani, A. K. (2007a), “Communication over MIMO broadcast channels using lattice-basis reduction,” IEEE Trans. Inform. Theory 53(12), 4567–4582.
Taherzadeh, M., Mobasher, A. & Khandani, A. K. (2007b), “LLL reduction achieves the receive diversity in MIMO decoding,” IEEE Trans. Inform. Theory 53(12), 4801–4805.
Tarokh, V, Seshadri, N. & Calderbank, A. (1998), “Space-time codes for high data rate wireless communication: performance criterion and code construction,” IEEE Trans. Inform. Theory 44(2), 744–765.
Telatar, I. (1999), “Capacity of multiple-antenna gaussian channels,” Europ. Trans. Telecomm. 10, 585–595.
Tse, D. N. C. & Hanly, S. V. (1999), “Linear multiuser receivers: effective interferences, effective bandwidth and user capacity,” IEEE Trans. Inform. Theory 45(2), 641–657.
Tse, D. & Viswanath, P. (2005), Fundamentals ofWireless Communication, Cambridge University Press.
Tulino, A. M. & Verdu, S. (2004), Random Matrix Theory and Wireless Communications (Foundations and Trends in Commun. and Inform. Theory), Vol. 1, Now Publishers Inc.
Van Trees, H. L. (2002), Optimum Array Processing, John Wiley & Sons.
Veen, B. V. & Buckley, K. (1988), “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP Mag. 5, 4–24.
Ventura-Traveset, J., Caire, G., Biglieri, E. & Taricco, G. (1997), “Impact of diversity reception on fading channels with coded modulation - part i: coherent detection,” IEEE Trans. Commun. 45(5), 563–572.
Verdu, S. (1998), Multiuser Detection, Cambridge University Press.
Vikalo, H., Hassibi, B. & Kailath, T. (2004), “Iterative decoding for MIMO channels via modified sphere decoding,” IEEE Trans. Wireless Commun. 3(6), 2299–2311.
Viterbi, A. J. & Omura, J. K. (1979), Principles ofDigital Communication and Coding, McGraw-Hill.
Viterbo, E. & Boutros, J. (1999), “A universal lattice code decoder for fading channels,” IEEE Trans. Inform. Theory 45(5), 1639–1642.
Whalen, A. (1971), Detection ofSignals in Noise, Academic Press.
Wiener, N. (1949), Extrapolation, Interpolation, and Smoothing of Stationary Time Series, MIT Press.
Wilson, S. G. (1996), Digital Modulation and Coding, Prentice-Hall.
Windpassinger, C., Fischer, R. F. H. & Huber, J. B. (2004), “Lattice-reduction-aided broadcast precoding,” IEEE Trans. Commun. 52(12), 2057–2060.
Winters, J. H. (1998), “Smart antennas for wireless systems,” IEEE Person. Commun. 5(1), 23–27.
Winters, J. H., Salz, J. & Gitlin, R. D. (1994), “The impact of antenna diversity on the capacity of wireless communication systems,” IEEE Trans. Commun. 42(2/3/4), 1740-1751.
Wolniansky, P., Foschini, G., Golden, G. & Valenzuela, R. (1998), “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in IEEE Proc. ISSSE-98, pp. 295-300.
Wubben, D., Bohnke, R., Kuhn, V. & Kammeyer, K. D. (2004), “Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice reduction,” in Proc. IEEE International Conf. Communications, Paris, pp. 798-802.
Yao, H. (2003), Efficient Signal, Code, and Receiver Designs for MIMO Communication Systems, PhD thesis, MIT. URL: www.rle.mit.edu/dspg/documents/EfficientSignalCode.pdf
Yao, H. & Wornell, G. W. (2002), “Lattice-reduction-aided detectors for MIMO communication systems,” in Proc. IEEE Global Telecommunications Conf., Taiwan, pp. 424-428.
Zhang, Q. T. (1995), “Probability of resolution of the MUSIC algorithm,” IEEE Trans. Signal Proc. 43(4), 978–987.
Zheng, L. & Tse, D. N. C. (2003), “Diversity and multiplexing: a fundamental trade-off in multiple-antenna channels,” IEEE Trans. Inform. Theory 49(5), 1073–1096.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.