Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-nxk7g Total loading time: 0 Render date: 2024-10-19T20:52:06.066Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2016

Velimir Jurdjevic
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AM] R., Abraham and J., Marsden, Foundations of Mechanics, Benjamin-Cummings, Reading, MA, 1978.
[Ad] J. F., Adams, Lectures on Lie Groups, Mathematics Lecture Notes Series,W. A. Benjamin, New York, 1969.
[Al] M., Adler, On a trace functional for formal pseudo-differential operators and symplectic structure of the Korteweg-de Vries equation, Invent. Math. 50 (1979), 219–249.Google Scholar
[AB] A., Agrachev, B., Bonnard, M., Chyba and I., Kupka, Sub-Riemannian sphere in Martinet flat case, ESAIM: Control, Optimization and Calculus of Variations 2 (1997), 377–448.Google Scholar
[AS] A., Agrachev and Y., Sachkov, Control Theory from the Geometric Point of View, Encyclopedia of Mathematical Sciences, vol. 87, Springer-Verlag, New York, 2004.
[Ap] R. Appell, E. and Lacour, , Principes de la theorie des fonctions elliptiques et applications, Gauthier-Villars, Paris, 1922.
[Ar] V. I., Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1978.
[AKh] V. I., Arnold and B., Khesin, Topological Methods in Hydrodynamics, App. Math. Sci. (125), Springer-Verlag, New York, 1998.
[AKN] V. I., Arnold, V.V., Kozlov, and A. I., Neistadt, Mathematical aspects of classical and celestial mechanics, In Encyclopedia of Mathematical Sciences, Vol 3, Springer-Verlag, Berlin-Heidelberg, 1988.
[Bl] A. G., Bliss, Calculus of Variations, American Mathematical Society, LaSalle, IL, 1925.
[BR] A. I, Bobenko, A. G., Reyman and M. A., Semenov-Tian Shansky, The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions, Comm. Math. Phys 122 (1989), 321–354.Google Scholar
[Bg1] O., Bogoyavlenski, New integrable problem of classical mechanics, Comm. Math. Phys. 94 (1984), 255–269.Google Scholar
[Bg2] O., Bogoyavlenski, Integrable Euler equations on SO4 and their physical applications, Comm. Math. Phys. 93 (1984), 417–436.Google Scholar
[Bv] A.V., Bolsinov, A completeness criterion for a family of functions in involution obtained by the shift method, Soviet Math. Dokl. 38 (1989), 161–165.Google Scholar
[BJ] B., Bonnard, V., Jurdjevic, I., Kupka and G., Sallet, Transitivity of families of invariant vector fields on semi-direct products of Lie groups, Trans. Amer. Math. Soc. 271 (1982), 525–535.Google Scholar
[BC] B., Bonnard and M., Chyba, Sub-Riemannian geometry: the Martinet case (Conference on Geometric Control and Non-Holonomic Mechanics, Mexico City, 1996, edited by V. Jurdjevic and R.W. Sharpe), Canad. Math. Soc. Conference Proceedings, 25 (1998), 79–100.Google Scholar
[Bo] A., Borel, Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. USA, 40 (1954), 1147–1151.Google Scholar
[BT] R., Bott and W., Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, Springer-Verlag, New York, (1982).
[Br1] R., Brockett, Control theory and singular Riemannian geometry, in New Directions in Applied Mathematics (P., Hilton and G., Young, eds.), Springer- Verlag, New York, 1981, 11–27.
[Br2] R., Brockett, Nonlinear control theory and differential geometry, Proceedings of the International Congress of Mathematicians, Aug. 16–24 (1983), Warszawa, 1357–1368.
[BGN] R., Brockett, S., Glazer, and N., Khaneja, Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer, Phys. Rev. A 65(3), 032301, (2002).Google Scholar
[BG] R., Bryant and P., Griffiths, Reductions for constrained variational problems and 1/2∫κ2ds, Amer. Jour. Math. 108 (1986), 525–570.Google Scholar
[Br] J.P, Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Math. (108), Birkhauser, Boston, Mass, 1993.
[Cr] C., Carathéodory, Calculus of Variations, reprinted by Chelsea in 1982, Teubner, 1935.
[C1] E., Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math.France 54 (1927), 114–134.
[C2] E., Cartan, Leçons sur les invariants integraux, Herman, Paris, 1958.
[CK] A. l., Castro and J., Koiller, On the dynamicMarkov–Dubins problem: from path planning in robotics and biolocomotion to computational anatomy, Regular and Chaotic Dynamics 18, No. 1–2 (2013), 1–20.Google Scholar
[Ch] J., Cheeger and D., Ebin, Comparison Theorems in Reimannian Geometry, North-Hollond, Amsterdam, 1975.
[CL] E. A., Coddington and N., Levinson, Theory of Ordinary Differential Equations, McGraw Hill, New York, 1955.
[Dr] G., Darboux, La théory général des surfaces, Vol III, Translation of the Amer. Math. Soc. original publication Paris 1894, Chelsea, New York, 1972.
[D] P.A.M., Dirac, Generalized Hamiltonian Dynamics, Can. J. Math. 1 (1950), 129–148.Google Scholar
[DC] M. P., DoCarmo, Riemannian Geometry, Birkhäuser, Boston, MA, 1992.
[Drg] V., Dragovic, Geometrization and generalization of the Kowdewski top, Commun. Math. Phys. 298 (2010), 37–64.Google Scholar
[Db] L. E., Dubins, On curves of minimal ength with a constraint on the average curvature and with prescribed initial positions and tangents, Amer. J. Math. 79 (1957), 497–516.Google Scholar
[DKN] B. A., Dubrovin, I.M., Kirchever and S. P., Novikov, Integrable systems I, In Dynamical systems IV (V. I., Arnold and S. P., Novikov, eds.), Encylopaedia of Mathematical Sciences, Vol 4. (1990), Springer-Verlag, 174–271.
[Eb] P. B., Eberlein, Geometry of Nonpositively CurvedManifolds, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, IL, 1997.
[Ep] C. K., Epstein and M. I., Weinstein, A stable manifold theorem for the curve shortening equation, Comm. Pure Appl. Math. XL (1987), 119–139.Google Scholar
[E] L., Euler, Methodus inveniendi lineas curvas maximi minimive proprieatate gaudentes, sive solutio, problematis isoperimetrici lattisimo sensu accepti, Opera Omnia Ser. IaLausannae 24 (1744).Google Scholar
[Eu] L., Euler, Evolutio generalior formularum comparationi curvarum inserventium, Opera Omnia Ser Ia 20 (E347/1765), 318–354.
[Fa] L., Faddeev L. and L., Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1980.
[FJ] Y. Fedorov and B. Jovanovic, Geodesic flows and Newmann systems on Steifel varieties: geometry and integrability, Math. Z. 270, (3–4) (2012), 659–698.
[Fl1] H., Flaschka, Toda, latice, I: Existence of integrals, Phys. Rev. B3(9) (1974), 1924–1925.Google Scholar
[Fl2] H. Flaschka, Toda latice, II: Inverse scattering solution, Progr. Theor. Phys. 51 (1974), 703–716.
[Fk] V. A., Fock, The hydrogen atom and non-Euclidean geometry, Izv. Akad. Nauk SSSR, Ser. Fizika 8 (1935).Google Scholar
[FM] A. T., Fomenko and A. S., Mischenko, Euler equation on finite-dimensional Lie groups, Math USSR Izv. 12 (1978), 371–389.Google Scholar
[FT] A. T., Fomenko and V.V., Trofimov, Integrability in the sense of Louville of Hamiltonian systems on Lie algebras, (in Russian), Uspekhi Mat. Nauk 2(236) (1984), 3–56.Google Scholar
[FT1] A. T., Fomenko and V.V., Trofimov, Integrable systems on Lie algebras and symmetric spaces, in Advanced Studies in Contemporary Mathematics, Vol. 2, Gordon and Breach, 1988.
[GM] E., Gasparim, L., Grama and A.B., San Martin, Adjoint orbits of semisimple Lie groups and Lagrangian submanifolds, to appear, Proc. of Edinburgh Mat. Soc.
[GF] I. M., Gelfand and S.V., Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, (1963).
[Gb] V.V., Golubev, Lectures on the Integration of the Equations of Motion of a Heavy Body Around a Fixed Point, (in Russian), Gostekhizdat, Moscow, 1977.
[Gr] P., Griffiths, Exterior Differential Systems and the Calculus of Variations, Birkhäuser, Boston, MA, 1983.
[GH] P., Griffiths and J., Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978.
[GS] V., Guillemin and S., Sternberg, Variations on a Theme by Kepler, vol. 42 Amer. Math. Soc., 1990.
[Gy] G., Györgi, Kepler's equation, Fock Variables, Baery's equation and Dirac. brackets, Nyovo cimertio A 53 (1968), 717–736.Google Scholar
[Hm] R. S., Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65–221.Google Scholar
[H1] H., Hasimoto, Motion of a vortex filament and its relation to elastica, J. Phys. Soc. Japan (1971), 293–294.Google Scholar
[H2] H., Hasimoto, A soliton on the vortex filament, J. Fluid Mech. 51 (1972), 477–485.Google Scholar
[Hl] S., Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
[HV] D., Hilbert and S., Cohn-Vossen, Geometry and Imagination, Amer. Math. Soc., 1991.
[Hg] J., Hilgert, K. H., Hofmann and J. D., Lawson, Lie Groups, Convex Cones ans Semigroups, Oxford Univesity Press, Oxford, 1989.
[HM] E., Horozov and P., Van Moerbeke, The full geometry of Kowalewski's top and (1, 2) Abelian surfaces, Comm. Pure and App. Math. XLII (1989), 357-407.Google Scholar
[IS] C.|Ivanescu and A., Savu, The Kowalewski top as a reduction of a Hamiltonian system on Sp(4, R), Proc. Amer. Math. Soc. (to appear).
[IvS] T., Ivey T and D.A., Singer, Knot types, homotopies and stability of closed elastic curves, Proc. London Math. Soc 79 (1999), 429-450.Google Scholar
[Jb] C. G. J., Jacobi, Vorlesungen uber Dynamik, Druck und Verlag von G. Reimer, Berlin, 1884.
[J1] V., Jurdjevic, The Delauney-Dubins Problem, in Geometric Control Theory and Sub-Riemannian Geometry. (U., Boscain, J. P., Gauthier, A., Sarychev and M., Sigalotti, eds.) INDAM Series 5, Springer Intl. Publishing 2014, 219-239.
[Ja] V., Jurdjevic, The symplectic structure of curves in three dimensional spaces of constant curvature and the equations of mathematical physics, Ann. I. H. Poincare (2009), 1843-1515.Google Scholar
[Jr] V., JurdjevicOptimal control on Lie groups and integrable Hamiltonian systems, Regular and Chaotic Dyn. (2011), 514-535.Google Scholar
[Je] V., JurdjevicNon-Euclidean elasticae, Amer. J. Math. 117 (1995), 93-125.Google Scholar
[Jc] V., JurdjevicGeometric Control Theory, Cambridge Studues in Advanced Mathematics, vol. 52, Cambridge University Press, New York, 1997.
[JA] V., JurdjevicIntegrable Hamiltonian systems on Lie groups: Kowalewski type, Annals Math. 150 (1999), 605-644.Google Scholar
[Jm] V., JurdjevicHamiltonian systems on complex Lie groups and their Homogeneous spaces, Memoirs AMS, 178, (838) (2005).Google Scholar
[JM] V., Jurdjevic and R, Perez-Monroy, Variational problems on Lie groups and their homogeneous spaces: elastic curves, tops and constrained geodesic problems, in Non-linear Control Theory and its Applications (B., Bonnardet al., eds.) (2002), World Scientific Press, 2002, 3-51.
[JZ] V., Jurdjevic and J., Zimmerman, Rolling sphere problems on spaces of constant curvature, Math. Proc. Camb. Phil. Soc. 144 (2008), 729-747.Google Scholar
[Kl] R. E., Kalman, Y. C., Ho and K. S., Narendra, Controllability of linear dynamical systems, Contrib. Diff. Equations, 1 (1962), 186-213.Google Scholar
[Kn] H., Knörrer, Geodesics on quadrics and a mechanical problem of C. Newmann, J. Riene Angew. Math. 334 (1982) 69-78.Google Scholar
[Ki] A. A., Kirillov, Elements of the Theory of Representations, Springer, Berlin, 1976.
[KN] S., Kobayashi and K., Nomizu, Foundations of Differential Geometry, Vol I, Interscience Publishers, John Wiley and Sons, New York, 1963.
[Km] I. V., Komarov, Kovalewski top for the hydrogen atom, Theor. Math. Phys 47(1) (1981), 67-72.Google Scholar
[KK] I. V., Komarov and V. B., Kuznetsov, Kowalewski top on the Lie algebras o(4), e(3) and o(3,1), J. Phys. A 23(6) (1990), 841-846.Google Scholar
[Ks] B., Kostant, The solution of a generalized Toda latrtice and representation theory, Adv. Math. 39 (1979), 195-338.Google Scholar
[Kw] S., Kowalewski, Sur le problème de la rotation d'un corps, solide autor d'un point fixéActa Math. 12(1889), 177-232.Google Scholar
[LP] J., Langer and R., Perline, Poisson geometry of the filament equation, J. Nonlinear Sci., 1 (1978), 71-93.Google Scholar
[LS] J., Langer and D., Singer, The total squared curvature of closed curves, J. Diff. Geometry, 20 (1984), 1-22.Google Scholar
[LS1] J., Langer and D., Singer, Knotted elastic curves in R3, J. London Math. Soc. 2(30) (1984), 512-534.Google Scholar
[Lt] R, Silva Leite, M., Camarinha and P., Crouch, Elastic curves as solutions of Riemannian and sub-Riemannian control problems, Math. Control Signals Sys. 13 (2000), 140-155.Google Scholar
[LL] L. D., Landau and E. M., Lifshitz, Mechanics, 3rd edition, Pergamon Press, Oxford, 1976.
[Li] R., Liouville, Sur le movement d'un corps solide pesant suspendue autour d'un point fixé, Ada Math. 20 (1896), 81-93.Google Scholar
[LSu] W., Liu and H. J., Sussmann, Shortest Paths for Sub-Riemannian Metrics on Rank 2 Distributions, Amer. Math. Soc. Memoirs 564, Providence, RI, (1995).
[Lv] A. E., Love, A Treatise on the Mathematical Theory of Elasticity, 4th edition, Dover, New York, 1927.
[Lya] A. M., Lyapunov, On a certain property of the differential, equations of a heavy rigid body with a fixed pointSoobshch. Kharkov. Mat. Obshch. Ser. 2 4 (1894), 123-140.Google Scholar
[Mg] F. A., Magri, A simple model for the integrable Hamiltonian equation, J. Math. Phys. 19(1978), 1156-1162.Google Scholar
[Mn] S. V., Manakov, Note on the integration of Euler's equations of the dynamics of an n dimensional rigid body, Funct. Anal. Appl. 10 (1976), 328-329.Google Scholar
[MK] A. A., Markov, Some examples of the solution of a special kind of problem in greatest and lowest quantities (in Russian), Soobsch. Karkovsk. Mat. Obshch. (1887), 250-276.Google Scholar
[MZ] J., Millson and B. A., Zambro, A Kahter structure on the moduli spaces of isometric maps of a circle into Euclidean spaces, Invert. Math. 123(1) (1996), 35-59.Google Scholar
[Ml] J., Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21(3), (1976), 293-329.Google Scholar
[Mi1] D., Mittenhuber, Dubins' problem in hyperbolic spaces, in Geometric Control and Non-holonomic Mechanics (V., Jurdjevic and R. W., Sharpe, eds.), vol. 25, CMS Conference Proceedings American Mathematical Society Providence, RI, 1998, 115-152.
[Mo] F., Monroy-Pérez, Three dimensional non-Euclidean Dubins' problem, in Geometric Control and Non-Holonomic Mechanics (V., Jurdjevic and R. W., Sharpe, eds.), vol. 25, CMS Conference Proceedings Canadian Math. Soc., 1998, 153-181.
[Mt] R., Montgomery, Abnormal minimizers, SIAM J. Control Opt. 32(6) (1994), 1605-1620.Google Scholar
[Ms1] J., Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math. 23(4) (1970), 609–623.Google Scholar
[Ms2] J., Moser, Integrable Hamiltonian Systems and Spectral Theory, Lezioni Fermiane, Academia Nazionale dei Lincei, Scuola Normale, Superiore Pisa, 1981.
[Ms4] J., Moser, Finitely Many Mass Points on the Line Under the Influence of an Exponential Potential-an Integrable System, in Lecture notes in Physics, vol 38 Springer, Berlin, 1975, 97–101.
[Ms3] J., Moser, Various aspects of integrable Hamiltonian systems, in Dynamical Systems, C.I.M.E. Lectures, Bressanone, Italy, June, 1978, Progress in Mathematics, vol 8, Birkhauser, Boston, MA, 1980, 233–290.
[Na] I. P., Natanson, Theory of Function of a Real Variable, Urgar, 1995.
[Nm] C., Newmann, De probleme quodam mechanico, quod ad primam, integralium ultra-ellipticoram classem revocatumJ. Reine Angew. Math. 56 (1856).Google Scholar
[NP] L., Noakes L. and T., Popiel, Elastica on SO(3), J. Australian Math. Soc. 83(1) (2007), 105–125.Google Scholar
[NHP] L., Noakes, G., Heizinger and B., Paden, Cubic spines of curved spaces, IMA J. Math. Control Info. 6 (1989), 465–473.Google Scholar
[O1] Y., Osipov, Geometric interpretation of Kepler's problem, Usp. Mat. Nauk 24(2), (1972), 161.Google Scholar
[O2] Y., Osipov, The Kepler problem and geodesic flows in spaces of constant curvature, Celestial Mechanics 16 (1977), 191–208.Google Scholar
[Os] R., Osserman, From Schwarz to Pick to Ahlfors and beyond, Notices of AMS 46(8) (1997), 868–873.Google Scholar
[Pr] A. M., Perelomov, Integrable Systems of ClassicalMechanics and Lie Algebras, vol. I, Birkhauser Verlag, Basel, 1990.
[Pc] E., Picard, Oeuvres de Charles Hermite, Publiées sous les auspices de l'Academie des sciences, Tome I, Gauthier-Villars, Paris, 1917.
[Po] H., Poincaré, Les méthodes nouvelles de la mechanique celeste, Tome I, Gauthier-Villars, Paris, 1892.
[Pt] L. S., Pontryagin, V.G., Boltyanski, R.V., Gamkrelidze and E. F., Mishchenko, The Mathematical Theory of Optimal Processes, Translated from Russian by D. E., Brown, Pergamon Press, Oxford, 1964.
[Rt1] T., Ratiu, The motion of the free n-dimensional Rigid body, Indiana Univ.Math. J. 29(4), (1980), 602–629.Google Scholar
[Rt2] T., Ratiu, The C. Newmann problem as a completely integrable system on a coadjoint orbit, Trans. Amer. Mat. Soc. 264(2) (1981), 321–329.Google Scholar
[Rn] C. B., Rauner, The exponential map for the Lagrange problem on differentiable manifolds, Phil. Trans. Royal Soc. London, Ser. A 262 (1967), 299–344.Google Scholar
[Rm] A. G., Reyman, Integrable Hamiltonian systems connected with graded Lie algebras, J. Sov. Math. 19 (1982), 1507–1545.Google Scholar
[RS] A. G., Reyman and M. A. Semenov-Tian, Shansky, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations I., Invent. Math. 54 (1979), 81–100.Google Scholar
[RT] A. G., Reyman and M. A. Semenov-Tian, Shansky, Group-theoretic methods in the theory of finite-dimensional integrable systems, Encyclopaedia of Mathematical Sciences (V. I., Arnold and S. P., Novikov, eds.), Part 2, Chapter 2, Springer-Verlag, Berlin Heidelberg, 1994.
[Ro] H. L., Royden, Real Analysis, 3rd Edition, Prentice Hall, Englewood Cliffs, 1988.
[Sc] J., Schwarz, von, Das Delaunaysche Problem der Variationsrechung in kanonischen Koordinaten, Math. Ann. 110 (1934), 357–389.Google Scholar
[ShZ] C., Shabat and V., Zakharov, Exact theory of two dimensional self-focusing, and one dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62–69.Google Scholar
[Sh] R.W., Sharpe, Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Graduate Texts in Mathematics, Springer, New York, 1997.
[Sg1] C. L., Siegel, Symplectic Geometry, Amer. J. Math. 65 (1943), 1–86.Google Scholar
[Sg2] C. L., Siegel, Topics in Complex Function Theory, vol. 1: Elliptic Functions and Uniformization Theory, Tracts in Pure and Appl. Math. vol. 25, Wiley- Interscience, John Wiley and Sons, New York, 1969.
[Sg] E. D., Sontag, Mathematical Control Theory, Deterministic Finite-Dimensional Systems, Springer-Verlag, Berlin, 1990.
[So] J. M., Souriau, Structure des Systemes Dynamiques, Dunod, Paris, 1970.
[Sf] P., Stefan, Accessible sets, orbits and foliations with singularities, London Math. Soc. Proc., Ser. 3, 29 (1974), 699–713.Google Scholar
[St] S., Sternberg, Lectures on Differential Geometry, Prentice-Hall Inc, Englewood Cliffs, NJ, 1964.
[Sz] R., Strichartz, Sub-Riemannian Geometry, J. Diff. Geometry 24 (1986), 221–263.Google Scholar
[Sg] M., Sugiura, Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, 11(4) (1959).Google Scholar
[Ss] H. J., Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171–188.Google Scholar
[Ss1] H. J., Sussmann, A cornucopia of four-dimensional abnormal sub-Riemannian minimizers, in Sub-Riemannian Geometry (A., Bellaïche and J. J., Risler, eds), Progress in Mathematics, vol. 144, Birkhäuser, 1996, 341–364.
[Ss3] H. J., Sussmann, Shortest 3-dimensional paths with a prescribed curvature bound, in Proc. 34th Conf. on Decision and Control, New Orleans, 1995, 3306–3311.
[Ss4] H. J., Sussmann, The Markov-Dubins problem with angular acceleration, in Proc. 36th IEEE Conf. on Decision and Control, San Diego, CA, 1997, 2639–2643.
[Sy] W., Symes, Systems of Toda type, inverse spectral problems and representation theory, Invent. Math. 59 (1980), 13–53.Google Scholar
[To] M., Toda, Theory of Nonlinear Lattices, Springer, New York, 1981.
[Tr] E., Trelat, Some properties of the value function and its level sets for affine control systems with quadratic cost, J. Dyn. Contr. Syst. 6(4) (2000), 511–541.Google Scholar
[VS] J. von, Schwarz, Das Delaunische Problem der Variationsrechung in kanonischen Koordinaten, Math. Ann. 110 (1934), 357–389.Google Scholar
[W] K., Weierstrass, werke, Bd 7, Vorlesungen über Variationsrechung, Akadem. Verlagsges, Leipzig, 1927.
[Wl] A., Weil, Euler and the Jacobians of elliptic curves, in Arithmetic and Geometry (M., Artin and J., Tate, eds.), Progress in Mathematics, vol. 35, Birkhäuser, Boston, MA, 353–359.
[Wn] A., Weinstein, The local sructure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523–557.Google Scholar
[Wh] E. T., Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 3rd edition, Cambridge Press, Cambridge, 1927.
[Wf] J. A., Wolf, Spaces of Constant Curvature, 4th edition, Publish or Perish, Inc, Berkeley, CA, 1977.
[Yo] K., Yosida, Functional Analysis, Springer-Verlag, Berlin, 1965.
[Yg] L. C., Young, Lectures in the Calculus of Variations and Optimal Control Theory, W.B., Saunders, Philadelphia, PA, 1969.
[Zg1] S. L., Ziglin, Branching of solutions and non-existence of first, integrals in Hamiltonian mechanics I, Funkts. Anal. Prilozhen 16(3) (1982), 30–41.Google Scholar
[Zg2] S.L., Ziglin, Branching of solutions and non-existence of first, integrals in Hamiltonian mechanics II, Funkts. Anal. Prilozhen 17(1) (1981), 8–23.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Velimir Jurdjevic, University of Toronto
  • Book: Optimal Control and Geometry: Integrable Systems
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316286852.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Velimir Jurdjevic, University of Toronto
  • Book: Optimal Control and Geometry: Integrable Systems
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316286852.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Velimir Jurdjevic, University of Toronto
  • Book: Optimal Control and Geometry: Integrable Systems
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316286852.019
Available formats
×