Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T17:33:43.775Z Has data issue: false hasContentIssue false

7 - Methods for Simultaneous Electrophysiology and Optogenetics In Vivo

from Part II - Opsin Biology, Tools, and Technology Platform

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 93 - 108
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., Keller, P.J., 2013. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413420.CrossRefGoogle Scholar
Berndt, A., Yizhar, O., Gunaydin, L.A., Hegemann, P., Deisseroth, K., 2009. Bi-stable neural state switches. Nat. Neurosci. 12, 229234.CrossRefGoogle ScholarPubMed
Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K., 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 12631268.CrossRefGoogle ScholarPubMed
Cao, H., Gu, L., Mohanty, S.K., Chiao, J.-C., 2013. An integrated μLED optrode for optogenetic stimulation and electrical recording. IEEE Trans. Biomed. Eng. 60, 225229.CrossRefGoogle ScholarPubMed
Chow, B.Y., Han, X., Dobry, A.S., Qian, X., Chuong, A.S., Li, M., Henninger, M.A., Belfort, G.M., Lin, Y., Monahan, P.E., Boyden, E.S., 2010. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98102.CrossRefGoogle ScholarPubMed
Clancy, K.B., Schnepel, P., Rao, A.T., Feldman, D.E., 2015. Structure of a single whisker representation in layer 2 of mouse somatosensory cortex. J. Neurosci. 35, 39463958.CrossRefGoogle Scholar
Deisseroth, K., Feng, G., Majewska, A.K., Miesenböck, G., Ting, A., Schnitzer, M.J., 2006. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 1038010386.CrossRefGoogle ScholarPubMed
Drake, K.L., Wise, K.D., Farraye, J., Anderson, D.J., BeMent, S.L., 1988. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35, 719732.CrossRefGoogle ScholarPubMed
Eggermann, E., Kremer, Y., Crochet, S., Petersen, C.C.H., 2014. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep. 9, 16541660.CrossRefGoogle Scholar
Favre-Bulle, I.A., Preece, D., Nieminen, T.A., Heap, L.A., Scott, E.K., Rubinsztein-Dunlop, H., 2015. Scattering of sculpted light in intact brain tissue, with implications for optogenetics. Sci. Rep. 5, 11501.CrossRefGoogle ScholarPubMed
Fendyur, A., Spira, M.E., 2012. Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes. Front. Neuroengineering 5, 21.CrossRefGoogle ScholarPubMed
Galvani, L., Volta, A., Zambelli, J., 1791. Aloysii Galvani De Viribus Electricitatis in Motu Musculari Commentarius. Bononiae: Ex Typographia Instituti Scientiarium.CrossRefGoogle Scholar
Gentet, L.J., Kremer, Y., Taniguchi, H., Huang, Z.J., Staiger, J.F., Petersen, C.C.H., 2012. Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat. Neurosci. 15, 607612.CrossRefGoogle ScholarPubMed
Ghosh, K.K., Burns, L.D., Cocker, E.D., Nimmerjahn, A., Ziv, Y., Gamal, A.E., Schnitzer, M.J., 2011. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871878.CrossRefGoogle Scholar
Gradinaru, V., Thompson, K.R., Zhang, F., Mogri, M., Kay, K., Schneider, M.B., Deisseroth, K., 2007. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 1423114238.CrossRefGoogle ScholarPubMed
Grinvald, A., Cohen, L.B., Lesher, S., Boyle, M.B., 1981. Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array. J. Neurophysiol. 45, 829840.CrossRefGoogle ScholarPubMed
Guo, Z.V., Hart, A.C., Ramanathan, S., 2009. Optical interrogation of neural circuits in Caenorhabditis elegans. Nat. Methods 6, 891896.CrossRefGoogle ScholarPubMed
Guo, Z.V., Hires, S.A., Li, N., O’Connor, D.H., Komiyama, T., Ophir, E., Huber, D., Bonardi, C., Morandell, K., Gutnisky, D., Peron, S., Xu, N., Cox, J., Svoboda, K., 2014. Procedures for behavioral experiments in head-fixed mice. PLoS One 9, e88678.CrossRefGoogle ScholarPubMed
Han, X., Chow, B.Y., Zhou, H., Klapoetke, N.C., Chuong, A., Rajimehr, R., Yang, A., Baratta, M.V., Winkle, J., Desimone, R., Boyden, E.S., 2011. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5, 18.CrossRefGoogle Scholar
Hegemann, P., Möglich, A., 2011. Channelrhodopsin engineering and exploration of new optogenetic tools. Nat. Methods 8, 3942.CrossRefGoogle ScholarPubMed
Henze, D.A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K.D., Buzsáki, G., 2000. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84, 390400.CrossRefGoogle ScholarPubMed
Hochbaum, D.R., Zhao, Y., Farhi, S.L., Klapoetke, N., Werley, C.A., Kapoor, V., Zou, P., Kralj, J.M., Maclaurin, D., Smedemark-Margulies, N., Saulnier, J.L., Boulting, G.L., Straub, C., Cho, Y.K., Melkonian, M., Wong, G.K.-S., Harrison, D.J., Murthy, V.N., Sabatini, B.L., Boyden, E.S., Campbell, R.E., Cohen, A.E., 2014. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825833.CrossRefGoogle ScholarPubMed
Huber, D., Petreanu, L., Ghitani, N., Ranade, S., Hromádka, T., Mainen, Z., Svoboda, K., 2008. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 6164.CrossRefGoogle ScholarPubMed
Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M., Hirase, H., 2011. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70, 124127.CrossRefGoogle ScholarPubMed
Jouhanneau, J.-S., Ferrarese, L., Estebanez, L., Audette, N.J., Brecht, M., Barth, A.L., Poulet, J.F.A., 2014. Cortical fosGFP expression reveals broad receptive field excitatory neurons targeted by POm. Neuron 84, 10651078.CrossRefGoogle ScholarPubMed
Katz, Y., Yizhar, O., Staiger, J., Lampl, I., 2013. Optopatcher – an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation. J. Neurosci. Methods 214, 113117.CrossRefGoogle ScholarPubMed
Kim, T., McCall, J.G., Jung, Y.H., Huang, X., Siuda, E.R., Li, Y., Song, J., Song, Y.M., Pao, H.A., Kim, R.-H., Lu, C., Lee, S.D., Song, I.-S., Shin, G., Al-Hasani, R., Kim, S., Tan, M.P., Huang, Y., Omenetto, F.G., Rogers, J.A., Bruchas, M.R., 2013. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211216.CrossRefGoogle Scholar
Kipke, D.R., Shain, W., Buzsáki, G., Fetz, E., Henderson, J.M., Hetke, J.F., Schalk, G., 2008. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28, 1183011838.CrossRefGoogle Scholar
Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z., Wang, J., Xie, Y., Yan, Z., Zhang, Y., Chow, B.Y., Surek, B., Melkonian, M., Jayaraman, V., Constantine-Paton, M., Wong, G.K.-S., Boyden, E.S., 2014. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338346.CrossRefGoogle ScholarPubMed
Kwon, K.Y., Lee, H.-M., Ghovanloo, M., Weber, A., Li, W., 2015. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front. Syst. Neurosci. 9, 69.CrossRefGoogle ScholarPubMed
Lee, D., Shtengel, G., Osborne, J.E., Lee, A.K., 2014. Anesthetized- and awake-patched whole-cell recordings in freely moving rats using UV-cured collar-based electrode stabilization. Nat. Protoc. 9, 27842795.CrossRefGoogle Scholar
Lima, S.Q., Miesenböck, G., 2005. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141152.CrossRefGoogle ScholarPubMed
Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D., Tsien, R.Y., 2013. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 14991508.CrossRefGoogle ScholarPubMed
Lin, J.Y., Lin, M.Z., Steinbach, P., Tsien, R.Y., 2009. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 18031814.CrossRefGoogle ScholarPubMed
Manita, S., Suzuki, T., Homma, C., Matsumoto, T., Odagawa, M., Yamada, K., Ota, K., Matsubara, C., Inutsuka, A., Sato, M., Ohkura, M., Yamanaka, A., Yanagawa, Y., Nakai, J., Hayashi, Y., Larkum, M.E., Murayama, M., 2015. A top-down cortical circuit for accurate sensory perception. Neuron 86, 13041316.CrossRefGoogle ScholarPubMed
McAlinden, N., Gu, E., Dawson, M.D., Sakata, S., Mathieson, K., 2015. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe. Front. Neural Circuits 9, 25.CrossRefGoogle ScholarPubMed
Miesenböck, G., De Angelis, D.A., Rothman, J.E., 1998. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192195.CrossRefGoogle ScholarPubMed
Miesenböck, G., Rothman, J.E., 1997. Patterns of synaptic activity in neural networks recorded by light emission from synaptolucins. Proc. Natl. Acad. Sci. U. S. A. 94, 34023407.CrossRefGoogle ScholarPubMed
Montgomery, K.L., Yeh, A.J., Ho, J.S., Tsao, V., Mohan Iyer, S., Grosenick, L., Ferenczi, E.A., Tanabe, Y., Deisseroth, K., Delp, S.L., Poon, A.S.Y., 2015. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969974.CrossRefGoogle ScholarPubMed
Muñoz, W., Tremblay, R., Rudy, B., 2014. Channelrhodopsin-assisted patching: in vivo recording of genetically and morphologically identified neurons throughout the brain. Cell Rep. 9, 23042316.CrossRefGoogle ScholarPubMed
Musall, S., von der Behrens, W., Mayrhofer, J.M., Weber, B., Helmchen, F., Haiss, F., 2014. Tactile frequency discrimination is enhanced by circumventing neocortical adaptation. Nat. Neurosci. 17, 15671573.CrossRefGoogle Scholar
Nakai, J., Ohkura, M., Imoto, K., 2001. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137141.CrossRefGoogle ScholarPubMed
Nakamura, S., Baratta, M.V., Pomrenze, M.B., Dolzani, S.D., Cooper, D.C., 2012. High fidelity optogenetic control of individual prefrontal cortical pyramidal neurons in vivo. F1000Research 1, 7.CrossRefGoogle ScholarPubMed
Ollerenshaw, D.R., Zheng, H.J.V., Millard, D.C., Wang, Q., Stanley, G.B., 2014. The adaptive trade-off between detection and discrimination in cortical representations and behavior. Neuron 81, 11521164.CrossRefGoogle ScholarPubMed
Packer, A.M., Russell, L.E., Dalgleish, H.W.P., Häusser, M., 2015. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140146.CrossRefGoogle ScholarPubMed
Pala, A., Petersen, C.C.H., 2015. In vivo measurement of cell-type-specific synaptic connectivity and synaptic transmission in layer 2/3 mouse barrel cortex. Neuron 85, 6875.CrossRefGoogle ScholarPubMed
Reutsky-Gefen, I., Golan, L., Farah, N., Schejter, A., Tsur, L., Brosh, I., Shoham, S., 2013. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat. Commun. 4, 1509.CrossRefGoogle ScholarPubMed
Royer, S., Zemelman, B.V., Barbic, M., Losonczy, A., Buzsáki, G., Magee, J.C., 2010. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31, 22792291.CrossRefGoogle ScholarPubMed
Rubehn, B., Wolff, S.B.E., Tovote, P., Lüthi, A., Stieglitz, T., 2013. A polymer-based neural microimplant for optogenetic applications: design and first in vivo study. Lab. Chip 13, 579588.CrossRefGoogle ScholarPubMed
Ruiz, O., Lustig, B.R., Nassi, J.J., Cetin, A., Reynolds, J.H., Albright, T.D., Callaway, E.M., Stoner, G.R., Roe, A.W., 2013. Optogenetics through windows on the brain in the nonhuman primate. J. Neurophysiol. 110, 14551467.CrossRefGoogle ScholarPubMed
Sato, M., Ito, M., Nagase, M., Sugimura, Y.K., Takahashi, Y., Watabe, A.M., Kato, F., 2015. The lateral parabrachial nucleus is actively involved in the acquisition of fear memory in mice. Mol. Brain 8, 22.CrossRefGoogle ScholarPubMed
Schiemann, J., Puggioni, P., Dacre, J., Pelko, M., Domanski, A., van Rossum, M.C.W., Duguid, I., 2015. Cellular mechanisms underlying behavioral state-dependent bidirectional modulation of motor cortex output. Cell Rep. 11, 13191330.CrossRefGoogle ScholarPubMed
Siegle, J.H., Carlen, M., Meletis, K., Tsai, L.-H., Moore, C.I., Ritt, J., 2011. Chronically implanted hyperdrive for cortical recording and optogenetic control in behaving mice. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 75297532.Google ScholarPubMed
Stark, E., Koos, T., Buzsáki, G., 2012. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J. Neurophysiol. 108, 349363.CrossRefGoogle ScholarPubMed
Sudo, Y., Okazaki, A., Ono, H., Yagasaki, J., Sugo, S., Kamiya, M., Reissig, L., Inoue, K., Ihara, K., Kandori, H., Takagi, S., Hayashi, S., 2013. A blue-shifted light-driven proton pump for neural silencing. J. Biol. Chem. 288, 2062420632.CrossRefGoogle ScholarPubMed
Tolhurst, D.J., Smyth, D., Thompson, I.D., 2009. The sparseness of neuronal responses in ferret primary visual cortex. J. Neurosci. 29, 23552370.CrossRefGoogle ScholarPubMed
Wang, J., Wagner, F., Borton, D.A., Zhang, J., Ozden, I., Burwell, R.D., Nurmikko, A.V., van Wagenen, R., Diester, I., Deisseroth, K., 2012. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 9, 016001.CrossRefGoogle ScholarPubMed
Wang, Y., Gong, Q., Li, Y.Y., Li, A.Z., Zhang, Y.G., Cao, C.F., Xu, H.X., Cui, J., Gao, J.J., 2015. A wireless remote high-power laser device for optogenetic experiments. Laser Phys. 25, 045601.CrossRefGoogle Scholar
Wentz, C.T., Bernstein, J.G., Monahan, P., Guerra, A., Rodriguez, A., Boyden, E.S., 2011. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8, 046021.CrossRefGoogle ScholarPubMed
Yoon, I., Hamaguchi, K., Borzenets, I.V., Finkelstein, G., Mooney, R., Donald, B.R., 2013. Intracellular neural recording with pure carbon nanotube probes. PLoS One 8, e65715.CrossRefGoogle Scholar
Zemelman, B.V., Lee, G.A., Ng, M., Miesenböck, G., 2002. Selective photostimulation of genetically chARGed neurons. Neuron 33, 1522.CrossRefGoogle ScholarPubMed
Zhang, F., Prigge, M., Beyrière, F., Tsunoda, S.P., Mattis, J., Yizhar, O., Hegemann, P., Deisseroth, K., 2008. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631633.CrossRefGoogle ScholarPubMed
Zhang, J., Laiwalla, F., Kim, J.A., Urabe, H., Van Wagenen, R., Song, Y.-K., Connors, B.W., Zhang, F., Deisseroth, K., Nurmikko, A.V., 2009. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J. Neural Eng. 6, 055007.CrossRefGoogle ScholarPubMed
Zorzos, A.N., Boyden, E.S., Fonstad, C.G., 2010. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35, 41334135.CrossRefGoogle ScholarPubMed
Zorzos, A.N., Scholvin, J., Boyden, E.S., Fonstad, C.G., 2012. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt. Lett. 37, 48414843.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×