Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T14:05:56.534Z Has data issue: false hasContentIssue false

22 - Optogenetics in Treating Retinal Disease

from Part V - Optogenetics in Vision Restoration and Memory

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 327 - 336
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azeredo da Silveira, R, Roska, B. 2011. Cell types, circuits, computation. Curr Opin Neurobiol 21: 664671.CrossRefGoogle ScholarPubMed
Bainbridge, JW, Smith, AJ, Barker, SS, Robbie, S, Henderson, R, et al. 2008. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358: 22312239.CrossRefGoogle Scholar
Bi, A, Cui, J, Ma, YP, Olshevskaya, E, Pu, M, et al. 2006. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50: 2333.CrossRefGoogle ScholarPubMed
Busskamp, V, Duebel, J, Balya, D, Fradot, M, Viney, TJ, et al. 2010. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329: 413417.CrossRefGoogle ScholarPubMed
Busskamp, V, Picaud, S, Sahel, JA, Roska, B. 2012. Optogenetic therapy for retinitis pigmentosa. Gene Ther 19: 169175.CrossRefGoogle ScholarPubMed
Busskamp, V, Roska, B. 2011. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr Opin Neurobiol 21: 942946.CrossRefGoogle Scholar
Chuong, AS, Miri, ML, Busskamp, V, Matthews, GA, Acker, LC, et al. 2014. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17: 11231129.CrossRefGoogle ScholarPubMed
Cideciyan, AV, Aleman, TS, Boye, SL, Schwartz, SB, Kaushal, S, et al. 2008. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 105: 1511215117.CrossRefGoogle ScholarPubMed
Dalkara, D, Byrne, LC, Klimczak, RR, Visel, M, Yin, L, et al. 2013. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5: 189ra76.CrossRefGoogle ScholarPubMed
Greenberg, KP, Pham, A, Werblin, FS. 2011. Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron 69: 713720.CrossRefGoogle ScholarPubMed
Hadjinicolaou, AE, Meffin, H, Maturana, MI, Cloherty, SL, Ibbotson, MR. 2015. Prosthetic vision: devices, patient outcomes and retinal research. Clin Exp Optom 98: 395410.CrossRefGoogle ScholarPubMed
Han, Z, Conley, SM, Makkia, RS, Cooper, MJ, Naash, MI. 2012. DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. J Clin Invest 122: 32213226.CrossRefGoogle Scholar
Hauswirth, WW, Aleman, TS, Kaushal, S, Cideciyan, AV, Schwartz, SB, et al. 2008. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a Phase I trial. Hum Gene Ther 19: 979990.CrossRefGoogle ScholarPubMed
Hendrickson, A. 1992. A morphological comparison of foveal development in man and monkey. Eye (Lond) 6(Pt 2): 136144.CrossRefGoogle ScholarPubMed
Humayun, MS, Dorn, JD, da Cruz, L, Dagnelie, G, Sahel, JA, et al. 2012. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology 119: 779788.CrossRefGoogle Scholar
Jiang, C, Moore, MJ, Zhang, X, Klassen, H, Langer, R, Young, M. 2007. Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis 13: 17831792.Google Scholar
Kienle, E, Senis, E, Borner, K, Niopek, D, Wiedtke, E, et al. 2012. Engineering and evolution of synthetic adeno-associated virus (AAV) gene therapy vectors via DNA family shuffling. J Vis Exp 62: 3819.Google Scholar
Kleinlogel, S, Feldbauer, K, Dempski, RE, Fotis, H, Wood, PG, et al. 2011. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci 14: 513518.CrossRefGoogle ScholarPubMed
Lagali, PS, Balya, D, Awatramani, GB, Munch, TA, Kim, DS, et al. 2008. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11: 667675.CrossRefGoogle Scholar
Lorach, H, Goetz, G, Mandel, Y, Lei, X, Kamins, TI, et al. 2015. Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration. Vision Res 111: 142148.CrossRefGoogle ScholarPubMed
Maguire, AM, Simonelli, F, Pierce, EA, Pugh, EN Jr., Mingozzi, F, et al. 2008. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358: 22402248.CrossRefGoogle ScholarPubMed
Ong, JM, da Cruz, L. 2012. A review and update on the current status of stem cell therapy and the retina. Br Med Bull 102: 133146.CrossRefGoogle ScholarPubMed
Packer, AM, Roska, B, Hausser, M. 2013. Targeting neurons and photons for optogenetics. Nat Neurosci 16: 805815.CrossRefGoogle ScholarPubMed
Pelli, DG, Bex, P. 2013. Measuring contrast sensitivity. Vision Res 90: 1014.CrossRefGoogle ScholarPubMed
Sahel, JA, Roska, B. 2013. Gene therapy for blindness. Annu Rev Neurosci 36: 467488.CrossRefGoogle Scholar
Schuchard, RA. 2005. Preferred retinal loci and macular scotoma characteristics in patients with age-related macular degeneration. Can J Ophthalmol 40: 303312.CrossRefGoogle ScholarPubMed
Singh, MS, MacLaren, RE. 2011. Stem cells as a therapeutic tool for the blind: biology and future prospects. Proc Biol Sci 278: 30093016.Google ScholarPubMed
Tibbetts, MD, Samuel, MA, Chang, TS, Ho, AC. 2012. Stem cell therapy for retinal disease. Curr Opin Ophthalmol 23: 226234.CrossRefGoogle ScholarPubMed
Wu, C, Ivanova, E, Zhang, Y, Pan, ZH. 2013. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS One 8: e66332.CrossRefGoogle ScholarPubMed
Zrenner, E, Bartz-Schmidt, KU, Benav, H, Besch, D, Bruckmann, A, et al. 2011. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278: 14891497.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×