Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-15T04:07:53.297Z Has data issue: false hasContentIssue false

7 - Regular singularities

Published online by Cambridge University Press:  05 August 2012

Kiran S. Kedlaya
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

In the next part of the book, which begins with Chapter 8, we will use the results from the previous chapters to make a detailed analysis of ordinary differential equations over nonarchimedean fields of characteristic 0, the motivating case being that of positive residual characteristic. However, before doing so it may be helpful to demonstrate how the results apply in a somewhat simpler setting.

In this chapter, we reconstruct some of the traditional Fuchsian theory of regular singular points of meromorphic differential equations. (The treatment is modeled on [80, §3].) We first introduce a quantitative measure of the irregularity of a singular point. We then recall how, in the case of a regular singularity (i.e., a singularity with irregularity equal to zero), one has an algebraic interpretation, using the notion of exponents, of the eigenvalues of the monodromy operator around the singular point. We then describe how to compute formal solutions of meromorphic differential equations and go on to sketch the proof of Fuchs's theorem, that the formal solutions of a regular meromorphic differential equation actually converge in some disc. We finally establish the Turrittin–Levelt–Hukuhara decomposition theorem, which gives a decomposition of an arbitrary formal differential module that is analogous to the eigenspace decomposition of a complex linear transformation. The search for an appropriate p-adic analogue of this result will lead us in Part V to the p-adic local monodromy theorem.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Regular singularities
  • Kiran S. Kedlaya, Massachusetts Institute of Technology
  • Book: <I>p</I>-adic Differential Equations
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511750922.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Regular singularities
  • Kiran S. Kedlaya, Massachusetts Institute of Technology
  • Book: <I>p</I>-adic Differential Equations
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511750922.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Regular singularities
  • Kiran S. Kedlaya, Massachusetts Institute of Technology
  • Book: <I>p</I>-adic Differential Equations
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511750922.009
Available formats
×