Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T09:37:38.002Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2014

Belal E. Baaquie
Affiliation:
National University of Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Path Integrals and Hamiltonians
Principles and Methods
, pp. 409 - 412
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baaquie, Belai E. (2004). Quantum Finance. Cambridge, UK: Cambridge University Press.
Baaquie, B. E. (2009). Interest rates in quantum finance: The Wilson expansion and Hamiltonian. Phys. Rev. E, 80(Oct), 046119.Google Scholar
Baaquie, Belal E. (2010). Interest Rates and Coupon Bonds in Quantum Finance. Cambridge, UK: Cambridge University Press.
Baaquie, B. E. (2013a). Financial modeling and quantum mathematics. Computers and Mathematics with Applications, 65, 1665–1673.Google Scholar
Baaquie, B. E. (2013b). Statistical microeconomics. Physica A, 19(1), 4400–4416.Google Scholar
Baaquie, Belal E. (2013c). Action with acceleration I: Euclidean Hamiltonian and path integral. Int. J. Mod. Phys. A, 28, 1350137.Google Scholar
Baaquie, Belal E. (2013d). Action with acceleration II: Euclidean Hamiltonian and Jordan blocks. Int. J. Mod. Phys. A, 28, 1350138.Google Scholar
Baaquie, Belal E. (2013e). The Theoretical Foundations of Quantum Mechanics. New York, USA: Springer.
Baaquie, B. E. and Martin, F. (2005). Quantum psyche: Quantum field theory of the human psyche. NeuroQuantology, 3(5), 7–42.Google Scholar
Baaquie, B. E. and Yang, Cao. (2014). Option volatility and the acceleration Lagrangian. Physica A, 393, 337–363.Google Scholar
Baaquie, Belal E., Yang, Cao, Lau, Ada, and Tang, Pan (2012). Path integral for equities: Dynamic correlation and empirical analysis. Physica A, 391(4), 1408–1427.Google Scholar
Ballentine, L. E. (1998). Quantum Mechanics: A Modern Development. Singapore: World Scientific.
Bell, J. (2004). Speakable and Unspeakable in Quantum Mechanics. 2nd edn. Cambridge, UK: Cambridge University Press.
Bender, Carl M. and Mannheim, Philip D. (2008a). Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart. Phys.Rev. D, 78(Jul), 025022.Google Scholar
Bender, Carl M. and Mannheim, Philip D. (2008b). No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model. Phys. Rev. Lett., 100(Mar), 110402.Google Scholar
Bender, C. M. and Mannheim, P. D. (2010). PT symmetry and necessary and sufficient conditions for the reality of energy eigenvalues. Phy. Lett. A, 1616.Google Scholar
Bender, Carl M. and Mannheim, Philip D. (2011). PT-symmetry in relativistic quantum mechanics. Phys. Rev. D, 84(Nov), 105038.Google Scholar
Creutz, M. and Freedman, B. (1981). A statistical approach to quantum mechanics. Annals of Physics, 132, 427–462.Google Scholar
Das, A. (2006). Field Theory: A Path Integral Approach. Singapore: World Scientific.
Dirac, P.A.M. (1964). Lectures on Quantum Mechanics. New York: Belfer Graduate School of Science Monographs Series 2.
Dirac, P. A. M. (1999). The Principles of Quantum Mechanics. 4th edn. Oxford, UK: Oxford University Press.
Feynman, R.P. (1948). Space-time approach to non-relativistic quantum mechanics. Rev. Mod Phys, 20(Apr), 367–387.Google Scholar
Feynman, R.P. and Hibbs, A.R. (1965). Quantum Mechanics and Path Integrals. New York, USA: McGraw-Hill.
Fontanini, Michele and Trodden, Mark. (2011). Tackling higher derivative ghosts with the Euclidean path integral. Phys.Rev. D, 83(May), 103518.Google Scholar
Gottfried, K. and Yan, T-.M. (2003). Quantum Mechanics. 2nd edn. Heidelberg, Germany: Springer.
Haven, E. and Khrennikov, A. (2013). Quantum Social Science. Cambridge, UK: Cambridge University Press.
Hawking, S. W. and Hertog, Thomas (2002). Living with ghosts. Phys. Rev. D, 65(May), 103515.Google Scholar
Jones, H.F. and Rivers, R.J. (2009). Which Green functions does the path integral for quasi-Hermitian Hamiltonians represent?Physics Letters A, 373.Google Scholar
Kandirmaz, N. and Sever, R. (2011). Path integral solution of PT-/non-PT-symmetric and non-Hermitian Hulthen potential. Acta Polytechnica, 0(0), 38–42.Google Scholar
Kardar, M. (2007). Statistical Theory of Fields. Cambridge, UK: Cambridge University Press.
Kleinert, H. (1986). Path integral for second derivative Lagrangian. J. Math. Phy., 27(Dec), 3003–3013.Google Scholar
Kleinert, H. (1990). Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, and Financial Markets. Singapore: World Scientific.
Landau, L. D. and Lifshitz, L. M. (2003). Quantum Mechanics: Non-Relativistic Theory. Third edn. Vol. 3. Amsterdam, Holland: Elsevier Science.
Mannheim, P.D. (2011a). Comprehensive solution to the cosmological constant, zero-point energy, and quantum gravity problems. Gen. Rel. Gravitation, 43, 703–750.Google Scholar
Mannheim, P.D. (2011b). Making the case for conformal gravity. Foundations of Physics, 37, 532.Google Scholar
Mannheim, Philip D. and Davidson, Aharon (2000). Fourth order theories without ghosts. arXiv preprint hep-th/0001115.
Mannheim, P. D. and Davidson, A. (2005). Dirac quantization of the Pais-Uhlenbeck fourth order oscillator. Phys. Rev. A, 71(Apr), 042110.Google Scholar
Mostafazadeh, A. (2002). Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. Journal of Mathematical Physics, 43(8), 3944–3951.Google Scholar
Papon, P., Leblond, J., and Meije, P. H.E. (2002). The Physics of Phase Transitions. New York, USA: Springers.
Phillips, R., Kondev, J., Theriot, J., and Garcia, H. (2008). Physical Biology of the Cell. New York, USA: Garland Science.
Polyakov, A. M. (1987). Gauge Fields and Strings. New York, USA: Harwood Academic Publishers.
Risken, M. (1988). The Fokker-Planck Equation. Heidelberg, Germany: Springer.
Rivers, R.J. (2011). Path integrals for Pseudo-Hermitian Hamiltonians. International Journal of Theoretical Physics, 50, 1081–1096.Google Scholar
Scholtz, F. G., Geyer, H. B., and Hahne, F. J. W. (1992). Quasi-Hermitian operators in quantum mechanics and the variational principle. Annals of Physics, 213(1), 74101.Google Scholar
Simon, J.Z. (1990). Higher-derivative Lagrangians, nonlocality, problems, and solutions. Phys. Rev. D, 41(Jun), 3720–3733.Google Scholar
Stapp, H. P. (1963). The Copenhagen interpretation. Am. J. Phys., 40(8), 1098.Google Scholar
Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys.Rev.B, 41(Apr), 7892–7895.Google Scholar
Wang, Q., Chia, S., and Zhang, J. (2010). PT symmetry as a generalization of Hermiticity”. Journal of Physics, A, 43, 295301.Google Scholar
Weinberg, S. (2013). Lectures on Quantum Mechanics. Cambridge, UK: Cambridge University Press.
Wilson, K. G. (1969). Non-Lagrangian models in current algebra. Physical Review, 179, 1499–1512.Google Scholar
Wilson, Kenneth G. (1983). The renormalization group and critical phenomena. Rev. Mod. Phys., 55(Jul), 583–600.Google Scholar
Wilson, K. G. and Zimmermann, W. (1972). Operator product expansions and composite field operators in the general framework of quantum field theory. Communications in Mathematical Physics, 24(2), 87–106.Google Scholar
Witten, E. (1989). Quantum field theory and Jones polynomial. Communications in Mathematical Physics, 121(3), 351–399.Google Scholar
Wu, T.T. and Yu, M.L. (2002). Theory and application of Fermi pseudo-potential in one dimension. Journal of Mathematical Physics, 43(12), 5949.Google Scholar
Yang, Cao (2012). Higher Derivative Models and Libor Market Model in Quantum Finance. Ph.D. thesis, National University of Singapore, Department of Physics, 2 Science Drive 3, Singapore 117551.
Zinn-Justin, J. (1993). Quantum Field Theory and Critical Phenomenon. Oxford, UK: Oxford University Press.
Zinn-Justin, J. (2005). Path Integrals in Quantum Mechanics. Oxford, UK: Oxford University Press.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Belal E. Baaquie, National University of Singapore
  • Book: Path Integrals and Hamiltonians
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511842450.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Belal E. Baaquie, National University of Singapore
  • Book: Path Integrals and Hamiltonians
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511842450.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Belal E. Baaquie, National University of Singapore
  • Book: Path Integrals and Hamiltonians
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511842450.021
Available formats
×