Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-16T02:16:02.859Z Has data issue: false hasContentIssue false

3 - A Model of Citric Acid Production in the Mold Aspergillus niger

Published online by Cambridge University Press:  28 July 2009

Néstor V. Torres
Affiliation:
Universidad de la Laguna, Tenerife
Eberhard O. Voit
Affiliation:
Medical University of South Carolina
Get access

Summary

INTRODUCTION

This chapter addresses the question of how mathematical modeling can use detailed and localized biochemical information to deepen our understanding of biological functioning at the level of integrated metabolic pathways. It describes the cyclical process of mathematical modeling with the example of citric acid metabolism in Aspergillus niger. This system has some nice features that facilitate mathematical analysis and provide a good example for demonstrating the various steps of model design, analysis, and refinement. Although citric acid metabolism is quite complex and involves several biochemical pathways in two different cellular compartments, the system is relatively closed. Moreover, under conditions where A. niger synthesizes citric acid, this synthesis is essentially the only metabolic pathway of quantitative importance, the substrate is almost entirely glucose and/or fructose, and citric acid is the sole final product. The system is rich in external and internal controls, and the governing biochemical mechanisms are well documented with a comprehensive body of kinetic information. The intricate regulatory structure is a source of nonlinear responses that make nonmathematical approaches unsuitable.

Citric acid production in A. niger was first approached with mathematical modeling techniques by Meyrath (1967). He used a macroscopic approach based on mass and energy balances and concluded that up to 85% of the consumed hexoses could be converted into citric acid. Verhoff and Spradlin (1976) also presented a mass balance model with the aim of unraveling the metabolic pathways involved in citric acid biosynthesis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiba, S., and Matsuoka, M.: Identification of metabolic model: Citrate production from glucose by Candida lipolytica. Biotechnol. Bioeng. 21, 1373–86, 1979CrossRefGoogle Scholar
Alvarez-Vasquez, F.: Modelización, análisis y optimización del metabolismo del hongo Aspergillus niger en condiciones de producción de ácido cítrico. PhD dissertation, University of La Laguna, Spain, 2000
Alvarez-Vasquez, F., González-Alcón, C., and Torres, N. V.: Metabolism of citric acid production by Aspergillus niger: Model definition, steady state analysis and constrained optimization of the citric acid production rate. Biotechnol. Bioeng. 70(1), 82–108, 20003.0.CO;2-V>CrossRefGoogle ScholarPubMed
Amaranisingham, C. F., and Davis, B. D.: Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli. J. Biol. Chem. 240, 3664–8, 1965Google Scholar
Arisan-Atac, I., Wolschek, M., and Kubicek, C. P.: Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol. Lett. 140, 77–83, 1996CrossRefGoogle ScholarPubMed
Arts, E., Kubicek, C. P., and Röhr, M.: Regulation of phosphofructokinase from Aspergillus niger: Effect of fructose 2,6 bisphosphate on the action of citrate, ammonium ions and AMP. J. Gen. Microbiol. 133, 1195–9, 1987Google Scholar
Blázquez, M. A., Lagunas, R., Gancedo, C., and Gancedo, J. M.: Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 329, 51–4, 1993CrossRefGoogle ScholarPubMed
Bloom, S., and Johnson, M.: The pyruvate carboxylase of Aspergillus niger. J. Biol. Chem. 237, 2718–20, 1962Google ScholarPubMed
Boy-Marcotte, E., Lagniel, G., Perrot, M., Bussereau, F., Boudsocq, A., Jacquet, M., and Labarre, J.: The heat shock response in yeast: Differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol. Microbiol. 33(2), 274–83, 1999CrossRefGoogle ScholarPubMed
Briquet, M.: Transport of pyruvate and lactate in yeast mitochondria. Biochim. Biophys. Acta 459, 290–9, 1977CrossRefGoogle ScholarPubMed
Cleland, W. W., and Johnson, M. J.: Tracer experiments on the mechanism of citric acid formation by Aspergillus niger. J. Biol. Chem. 208, 679–92, 1954Google ScholarPubMed
Crow, V. L., and Wittenberger, C. L.: Separation and properties of NAD+- and NADP+-dependent glyceraldehyde-3-phosphate dehydrogenases from Streptococcus mutans. J. Biol. Chem. 254(4), 1134–42, 1979Google ScholarPubMed
Evans, C. T., Scragg, A. H., and Ratledge, C.: Regulation of citrate efflux from mitochondria of oleaginous and non-oleaginous yeast by adenine nucleotides. Eur. J. Biochem. 132, 609–15, 1981CrossRefGoogle Scholar
Evans, C. T., Scragg, A. H., and Ratledge, C.: A comparative study of citrate efflux from mitochondria of oleaginous and non-oleaginous yeast. Eur. J. Biochem. 130, 195–204, 1983CrossRefGoogle Scholar
Feir, H. A., and Suzuki, I.: Pyruvate carboxilase of Aspergillus niger: Kinetic study of a biotin-containing carboxilase. Can. J. Biochem. 47, 697–710, 1969CrossRefGoogle Scholar
Fell, D. A.: Metabolic control analysis – a survey of its theoretical and experimental development. Biochem. J. 286, 313–30, 1992CrossRefGoogle ScholarPubMed
Ferreira, A.: PLAS©: http://correio.cc.fc.ul.pt/~aenf/plas.html, 2000
Führer, L., Kubicek, C. P., and Röhr, M.: Pyridine nucleotide levels and ratios in Aspergillus niger. Can. J. Biochem. 26, 405–8, 1980Google ScholarPubMed
Groen, A. K., R. J. A. Wanders, H. V. Westerhoff, R. van der Meer, and J. M. Tager: Control of metabolic fluxes. In: H. Sies (Ed.), Metabolic Compartmentation (pp. 9–37). Academic Press, New York, 1982
Guebel, D., and Torres, N. V.: Optimization of the citric acid production by A. niger through a metabolic flux balance model. Elect. J. Biotechnol., in press
Habison, A., Kubicek, C. P., and Röhr, M.: Phosphofructokinase as a regulatory enzyme in citric acid producing Aspergillus niger. FEMS Microbiol. Lett. 5, 39–42, 1979CrossRefGoogle Scholar
Habison, A., Kubicek, C. P., and Röhr, M.: Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem. J. 209, 669–76, 1983CrossRefGoogle ScholarPubMed
Halestrap, A. P., Scott, R. D., and Thomas, A. P.: Mitochondrial pyruvate transport and its hormonal regulation. Int. J. Biochem. 11, 97–105, 1980CrossRefGoogle ScholarPubMed
Henry, M-F., and Nyns, E.-J.: Cyanide-insensitive respiration. An alternative mitochondrial pathway. Sub-Cell. Biochem. 4, 1–65, 1975Google ScholarPubMed
Henson, C. P., and Cleland, W. W.: Kinetic studies of glutamic-oxalacetate transaminase isoenzymes. Biochemistry 3, 338–48, 1964CrossRefGoogle Scholar
Jaklitsch, W., Kubicek, C. P., and Scrutton, M.: Intracellular location of enzymes involved in citrate production by Aspergillus niger. Can. J. Microbiol. 37, 823–7, 1991CrossRefGoogle ScholarPubMed
Kirimura, K., Hirowatari, Y., and Usami, S.: Alterations of respiratory systems in Aspergillus niger under the condition of citric acid fermentation. Agric. Biol. Chem. 51, 1299–303, 1987Google Scholar
Kirimura, K., Yoda, M., Shimizu, H., Sugano, S., Mizuno, M., Kino, K., and Usami, S.: Contribution of cyanide-insensitive respiratory pathway, catalyzed by the alternative oxidase to citric acid production in Aspergillus niger. Biosci. Biotechnol. Biochem. 64(10), 2034–9, 2000CrossRefGoogle ScholarPubMed
Kubicek, C. P.: Aspects of control of metabolic fluxes in microorganisms. Dechema-Monogr., VCH Verlagsgesellschaft 105, 81–95, 1987Google Scholar
Kubicek, C. P.: Organic acids. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 14). Cambridge University Press, Cambridge, U.K., 2001
Kubicek, C. P., and Röhr, M.: Influence of manganese on enzyme synthesis and citric acid accumulation in Aspergillus niger. Eur. J. Appl. Microbiol. 4, 167–173, 1977CrossRefGoogle Scholar
Kubicek, C. P., and Röhr, M.: The role of the tricarboxylic acid cycle in citric acid accumulation by Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 5, 263–71, 1978CrossRefGoogle Scholar
Kubicek, C. P., and Röhr, M.: Citric acid fermentation. CRC Crit. Rev. Biotechnol. 3(4), 331–73, 1986CrossRefGoogle Scholar
Kubicek, C. P., Hampel, W., and Röhr, M.: Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Arch. Microbiol. 123, 73–9, 1979CrossRefGoogle ScholarPubMed
Kubicek, C. P., Zehentgruber, O., El-Kalak, H., and Röhr, M.: Regulation of citric acid production by oxygen: Effects of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 9, 101–16, 1980CrossRefGoogle Scholar
Kubicek-Pranz, E. M., Mozelt, M., Roehr, M., and Kubicek, C. P.: Changes in the concentration of fructose 2, 6-bisphosphate in Aspergillus niger during stimulation of acidogenesis by elevated sucrose concentration. Biochim. Biophys. Acta 1033, 250–5, 1990CrossRefGoogle ScholarPubMed
Legisa, M., and Mattey, M.: Glycerol synthesis by Aspergillus niger under citric acid accumulating conditions. Enzyme Microbiol. Technol. 8, 607–9, 1988CrossRefGoogle Scholar
Ma, H., Kubicek, C. P., and Röhr, M.: Malate dehydrogenase isoenzymes in Aspergillus niger. FEMS Microbiol. Lett. 12, 147–51, 1981CrossRefGoogle Scholar
Mattey, M.: Citrate regulation of citric acid production by Aspergillus niger. FEMS Microbiol. Lett. 2, 71–4, 1977CrossRefGoogle Scholar
Mattey, M.: The production of organic acids. Crit. Rev. Biotechnol. 12, 87–132, 1992CrossRefGoogle ScholarPubMed
Meixner-Monori, B., Kubicek, C. P., and Röhr, M.: Pyruvate kinase from Aspergillus niger: A regulatory enzyme in glycolysis?Can. J. Microbiol. 30, 16–22, 1983CrossRefGoogle Scholar
Meixner-Monori, B., Kubicek, C. P., Habison, A., Kubicek-Pranz, E. M., and Röhr, M.: Presence and regulation of the α-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger. J. Bacteriol. 161, 265–71, 1985Google ScholarPubMed
Meixner-Monori, B., Kubicek, C. P., Harrer, W., Schreferl, G., and Röhr, M.: NADP-specific isocitrate dehydrogenase from the citric acid-accumulating fungus Aspergillus niger. Biochem. J. 236, 549–57, 1986CrossRefGoogle ScholarPubMed
Meyrath, J.: Citric acid production. Proc. Biochem. 2, 25–7, 1967Google Scholar
Mischak, H., Kubicek, C. P., and Röhr, M.: Citrate inhibition of glucose uptake in Aspergillus niger. Biotechnol. Lett. 6, 425–30, 1984CrossRefGoogle Scholar
Netik, A., Torres, N. V., Riol, J. M., and Kubicek, C. P.: Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim. Biophys. Acta 1326, 287–94, 1997CrossRefGoogle ScholarPubMed
Newsholme, E. A., and C. Start: Regulation in Metabolism. John Wiley & Sons, London, 1973
Ni, T.-C., and Savageau, M. A.: Application of biochemical systems theory to metabolism in human red blood cells. Signal propagation and accuracy of representation. J. Biol. Chem. 271(14), 7927–41, 1996aCrossRefGoogle Scholar
Ni, T.-C., and Savageau, M. A.: Model assessment and refinement using strategies from biochemical systems theory: Application to metabolism in human red blood cells. J. Theor. Biol. 179, 329–68, 1996bCrossRefGoogle Scholar
Osmani, S. A., and Scrutton, M. C.: The subcellular localization of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. Eur. J. Biochem. 133, 551–60, 1983CrossRefGoogle Scholar
Panneman, H., Ruijter, G. J. G., Broeck, H. C., Driever, E. T., and Visser, J.: Cloning and biochemical characterization of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur. J. Biochem. 240, 518–25, 1996CrossRefGoogle Scholar
Panneman, H., Ruijter, G. J. G., Broeck, H. C., and Visser, J.: Cloning and biochemical characterization of Aspergillus niger hexokinase. The enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. Eur. J. Biochem. 258, 223–32, 1998CrossRefGoogle Scholar
Pedersen, H., Carlsen, M., and Nielsen, J.: Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant Aspergillus oryzae strain. Appl. Environ. Microbiol. 65(1), 11–19, 1999Google Scholar
Perkins, M., Haslam, J. M., and Linnane, A. W.: Biogenesis of mitochondria. The effects of physiological and genetic manipulation of Saccharomyces cerevisiae on the mitochondrial transport sysytem for tricarboxylate-cycle anions. Biochem. J. 134, 923–934, 1973CrossRefGoogle Scholar
Prömper, C., Schneider, R., and Weiss, H.: The role of the proton-pumping and alternative respiratory chain NADH: Ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger. Eur. J. Biochem. 216, 223–30, 1993CrossRefGoogle ScholarPubMed
Reich, J. G., and E. E. Sel'kov: Energy Metabolism of the Cell. Academic Press, London, 1981
Röhr, M.: A century of citric acid fermentation and research. Food Technol. Biotechnol. 36(3), 163–71, 1998Google Scholar
Röhr, M., and Kubicek, C. P.: Regulatory aspects of citric acid fermentation by Aspergillus niger. Proc. Biochem. 16, 34–7, 1981Google Scholar
Röhr, M., Kubicek, C. P., Zehentgruber, O., and Orthofer, R.: Accumulation and partial re-consumption of polyols during citric acid fermentation by Aspergillus niger. Appl. Microbiol. Biotechnol. 27, 235–9, 1987CrossRefGoogle Scholar
Sakai, K., Hasumi, K., and Endo, A.: Two glyceraldehyde-3-phosphate dehydrogenase isozymes from the koningic acid (heptelidic acid) producer Trichoderma koningii. Eur. J. Biochem. 193(1), 195–202, 1990CrossRefGoogle ScholarPubMed
Salvador, A.: Synergism analysis of biochemical systems. I. Conceptual framework. Math. Biosci. 163(2), 105–29, 2000aCrossRefGoogle Scholar
Salvador, A.: Synergism analysis of biochemical systems. II. Tensor formulation and treatment of stoichiometric constraints. Math. Biosci. 163(2), 131–58, 2000bCrossRefGoogle Scholar
Savageau, M. A.: Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–9, 1969CrossRefGoogle ScholarPubMed
Savageau, M. A.: Optimal design of feedback control by inhibition: Dynamic considerations. J. Mol. Evol. 5, 199–222, 1975CrossRefGoogle ScholarPubMed
Savageau, M. A.: Biochemical System Analysis: A study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA, 1976
Schmidt, M., Wallrath, J., Dörner, A., and Weiss, H.: Disturbed assembly of the respiratory chain NADH: Ubiquinone reductase (complex I) in citric-acid-accumulating Aspergillus niger strain B60. Appl. Microbiol. Biotechnol. 36, 667–72, 1992CrossRefGoogle Scholar
Schreferl-Kunar, G., Grotz, M., Röhr, M., and Kubicek, C. P.: Increased citric acid production by mutants of Aspergillus niger with increased glycolytic capacity. FEMS Microbiol. Lett. 59, 297–300, 1989CrossRefGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations. J. Biol. Chem. 267(32), 22912–18, 1992aGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. II. Evaluation of model consistency and robustness. J. Biol. Chem. 267(32), 22919–25, 1992bGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. III. Analysis of steady state and dynamic behavior. J. Biol. Chem. 267(32), 22926–33, 1992cGoogle Scholar
Sorribas, A., and Savageau, M. A.: Strategies for representing metabolic pathways within biochemical systems theory: Reversible pathways. Math. Biosci. 94, 239–69, 1989CrossRefGoogle ScholarPubMed
Steinbock, F. A.: Doctoral dissertation, Technical University of Vienna, Vienna, Austria, 1993
Steinbock, F. A., Held, I., Chojun, S., Harsen, H., Röhr, M., Kubicek-Prantz, E. M., and Kubicek, C. P.: Regulatory aspects of carbohydrate metabolism in relation to citric acid accumulation by Aspergillus niger. Acta Biotechnol. 116, 571–81, 1991CrossRefGoogle Scholar
Supply, P., Wach, A., and Goffeau, A.: Enzymatic properties of the PMA2 plasma membrane-bound H+-ATPase of Saccharomyces cerevisiae. J. Biol. Chem. 268(25), 19753–9, 1993Google ScholarPubMed
Torres, N. V.: Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger. I. Model definition and stability of the steady state. Biotechnol. Bioeng. 44, 104–11, 1994aCrossRefGoogle Scholar
Torres, N. V.: Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger. II. Sensitivity analysis. Biotechnol. Bioeng. 44, 112–18, 1994bCrossRefGoogle Scholar
Torres, N. V., Riol-Cimas, J. M., Wolschek, M., and Kubicek, C. P.: Glucose transport by Aspergillus niger: The low-affinity carrier is only formed during growth on high glucose concentrations. Appl. Microbiol. Biotechnol. 44, 790–4, 1996Google Scholar
Verhoff, F. H., and Spradlin, J. E.: Mass and energy balance analysis of metabolic pathways applied to citric acid production by Aspergillus niger. Biotechnol. Bioeng. 18(3), 425–32, 1976CrossRefGoogle ScholarPubMed
Voit, E. O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists (ⅻ + 533 pp.). Cambridge University Press, Cambridge, U.K., 2000
Voit, E. O., and Ferreira, A. E. N.: Buffering in models of integrated biochemical systems. J. Theor. Biol. 191, 429–38, 1998CrossRefGoogle Scholar
Wallrath, J., Schmidt, J., and Weiss, H.: Concomitant loss of respiratory chain NADH: ubiquinone reductase (complex I) and citric acid accumulation in Aspergillus niger. Appl. Microbiol. Biotechnol. 36, 76–81, 1991CrossRefGoogle Scholar
Wehmer, C.: Beiträge zur Kenntnis einheimischer Pilze. I. Zwei neue Schimmelpilze als Erreger einer Citronensäure-Gärung. Halm, Hannover/Leipzig, 1903
Wolschek, M. F., and C. P. Kubicek: Biochemistry of citric acid accumulation in Aspergillus niger. In: B. Kristiansen, M. Mattey, and J. Linden (Eds.), Citric Acid Biotechnology (pp. 11–32). Taylor and Francis, London, U.K., 1998
Woronick, C., and Johnson, M. J.: Carbon dioxide fixation by cell-free extracts of Aspergillus niger. J. Biol. Chem. 235, 9–15, 1960Google ScholarPubMed
Xu, D.-B., Madrid, C. P., Röhr, M., and Kubicek, C. P.: The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Appl. Microbiol. Biotechnol. 30, 553–8, 1989Google Scholar
Zahorsky, B.: U. S. Patent 1,065,358, 1913
Zehentgruber, O., Kubicek, C. P., and Röhr, M.: Alternative respiration of Aspergillus niger. FEMS Microbiol. Lett. 8, 71–4, 1980CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×