Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-28T12:17:47.650Z Has data issue: false hasContentIssue false

8 - Methods to decrease peak power in MC systems

Published online by Cambridge University Press:  03 December 2009

Simon Litsyn
Affiliation:
Tel-Aviv University
Get access

Summary

In this chapter, I consider methods of decreasing peak power in MC signals. The simplest method is to clip the MC signal deliberately before amplification. This method is very simple to implement and provides essential PMEPR reduction. However, it suffers some performance degradation, as estimated in Section 8.1. In selective mapping (SLM), discussed in Section 8.2, one favorable signal is selected from a set of different signals that all represent the same information. One possibility for SLM is to choose the best signal from those obtained by inverting any of the coordinates of the coefficient vector. The method of deciding which of the coordinates should be inverted is described in Section 8.3. Further, in Section 8.4 a modification of SLM is analyzed. There the favorable vector is chosen from a coset of a code of given strength. Trellis shaping, where the relevant modification is chosen based on a search on a trellis, is described in Section 8.5. In Section 8.6, the method of tone injection is discussed. Here, instead of using a constellation point its appropriately shifted version can be used. In active constellation extension (ACE), described in Section 8.7, some of the outer constellation points can be extended, yielding PMEPR reduction. In Section 8.8, a method of finding a constellation in the frequency domain is described, such that the resulting region in the time domain has a low PMEPR. In partial transmit sequences (PTS), the transmitted signal is made to have a low PMEPR by partitioning the information-bearing vector to sub-blocks followed by multiplying by a rotating factor the coefficients belonging to the same sub-block.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×