Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-jbkpb Total loading time: 0 Render date: 2024-10-13T04:45:12.623Z Has data issue: false hasContentIssue false

Chapter 64 - Birth Trauma

from Trauma

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access

Summary

Normal vaginal birth is associated with considerable distortion of the fetal head (1–3). As the head passes through the pelvis, it is subjected to pressures roughly double those in the amniotic cavity (4, 5). Magnetic resonance imaging of term fetuses during labor shows that the frontal and parietal bones shift considerably and the brain itself changes shape, usually becoming taller in the vertex-to-skull base plane (6, 7). Overlap of calvarial bones occurs at the sagittal suture and to a lesser extent the lambdoid suture (8). The occipitofrontal circumference rebounds quickly within 2–3 days and is fully restored 1–2 weeks after delivery (9, 10).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashton-Miller, JA, Delancey, JO. On the biomechanics of vaginal birth and common sequelae. Annu Rev Biomed Eng. 2009;11:163–76.CrossRefGoogle ScholarPubMed
Moloy, HC. Studies on head molding during labor. Am J Obstetr Gynecol. 1942;44(5):762–82.CrossRefGoogle Scholar
Sorbe, B, Dahlgren, S. Some important factors in the molding of the fetal head during vaginal delivery–a photographic study. Int J Gynaecol Obstet. 1983;21(3):205–12.Google Scholar
Rempen, A, Kraus, M. Pressures on the fetal head during normal labor. J Perinat Med. 1991;19(3):199206.CrossRefGoogle ScholarPubMed
Svenningsen, L, Lindemann, R, Eidal, K. Measurements of fetal head compression pressure during bearing down and their relationship to the condition of the newborn. Acta Obstet Gynecol Scand. 1988;67(2):129–33.Google Scholar
Ami, O, Maran, JC, Gabor, P, Whitacre, EB, Musset, D, Dubray, C, et al. Three-dimensional magnetic resonance imaging of fetal head molding and brain shape changes during the second stage of labor. PLoS One. 2019;14(5):e0215721.Google Scholar
Bamberg, C, Deprest, J, Sindhwani, N, Teichgraberg, U, Guttler, F, Dudenhausen, JW, et al. Evaluating fetal head dimension changes during labor using open magnetic resonance imaging. J Perinat Med. 2017;45(3):305–8.CrossRefGoogle ScholarPubMed
Buchmann, EJ, Libhaber, E. Sagittal suture overlap in cephalopelvic disproportion: blinded and non-participant assessment. Acta Obstet Gynecol Scand. 2008;87(7):731–7.Google Scholar
De Souza, SW, Ross, J, Milner, RDG. Alterations in head shape of newborn infants after caesarean section or vaginal delivery. Arch Dis Child. 1976;51(8):624–7.CrossRefGoogle Scholar
Kriewall, TJ, Stys, SJ, McPherson, GK. Neonatal head shape after delivery: an index of molding. J Perinat Med. 1977;5(6):260–7.CrossRefGoogle ScholarPubMed
Hobson, S, Cassell, K, Windrim, R, No, Cargill Y.. 381-assisted vaginal birth. J Obstet Gynaecol Can. 2019;41(6):870–82.Google Scholar
Doumouchtsis, SK, Arulkumaran, S. Head trauma after instrumental births. Clin Perinatol. 2008;35(1):6983.Google Scholar
Wen, SW, Liu, S, Kramer, MS, Marcoux, S, Ohlsson, A, Sauve, R, et al. Comparison of maternal and infant outcomes between vacuum extraction and forceps deliveries. Am J Epidemiol. 2001;153(2):103–7.Google Scholar
McQuivey, RW. Vacuum-assisted delivery: a review. J Matern Fetal Neonatal Med. 2004;16(3):171–80.Google Scholar
Ehrenfest, H. The causation of intracranial hemorrhages in the new-born. Am J Dis Child. 1923;26(6):503–14.Google Scholar
Vlasyuk, VV. Birth Trauma and Perinatal Brain Damage. Cham, Switzerland: Springer; 2019. p. 283.CrossRefGoogle Scholar
Lipschuetz, M, Cohen, SM, Ein-Mor, E, Sapir, H, Hochner-Celnikier, D, Porat, S, et al. A large head circumference is more strongly associated with unplanned cesarean or instrumental delivery and neonatal complications than high birthweight. Am J Obstet Gynecol. 2015;213(6):833 e112.CrossRefGoogle ScholarPubMed
Lipschuetz, M, Cohen, SM, Israel, A, Baron, J, Porat, S, Valsky, DV, et al. Sonographic large fetal head circumference and risk of cesarean delivery. Am J Obstet Gynecol. 2018;218(3):339 e17.CrossRefGoogle ScholarPubMed
Hughes, CA, Harley, EH, Milmoe, G, Bala, R, Martorella, A. Birth trauma in the head and neck. Arch Otolaryngol Head Neck Surg. 1999;125(2):193–9.Google Scholar
O’Mahony, F, Settatree, R, Platt, C, Johanson, R. Review of singleton fetal and neonatal deaths associated with cranial trauma and cephalic delivery during a national intrapartum-related confidential enquiry. BJOG. 2005;112(5):619–26.Google ScholarPubMed
Pollanen, MS. Subdural hemorrhage in infancy: keep an open mind. Forensic Sci Med Pathol. 2011;7(3):298300.Google Scholar
Patonay, BC, Oliver, WR. Can birth trauma be confused for abuse? J Forensic Sci. 2010;55(4):1123–5.Google Scholar
Lear-Kaul, KC. Manifestations of birth trauma at the forensic pediatric autopsy. Acad Forensic Pathol. 2012;2(4):309–17.CrossRefGoogle Scholar
Tolhurst, DE, Carstens, MH, Greco, RJ, Hurwitz, DJ. The surgical anatomy of the scalp. Plast Reconstr Surg. 1991;87(4):603–12.Google Scholar
Tremolada, C, Candiani, P, Signorini, M, Vigano, M, Donati, L. The surgical anatomy of the subcutaneous fascial system of the scalp. Ann Plast Surg. 1994;32(1):814.CrossRefGoogle ScholarPubMed
Sundaresan, M, Wright, M, Price, AB. Anatomy and development of the fontanelle. Arch Dis Child. 1990;65(4 Spec No):386–7.CrossRefGoogle ScholarPubMed
D’Antoni, AV, Donaldson, OI, Schmidt, C, Macchi, V, De Caro, R, Oskouian, RJ, et al. A comprehensive review of the anterior fontanelle: embryology, anatomy, and clinical considerations. Childs Nerv Syst. 2017;33(6):909–14.Google Scholar
Manzanares, MC, Goret-Nicaise, M, Dhem, A. Metopic sutural closure in the human skull. J Anat. 1988;161:203–15.Google Scholar
Silau, AM, Fischer Hansen, B, Kjaer, I. Normal prenatal development of the human parietal bone and interparietal suture. J Craniofac Genet Dev Biol. 1995;15(2):81–6.Google ScholarPubMed
Di Ieva, A, Bruner, E, Davidson, J, Pisano, P, Haider, T, Stone, SS, et al. Cranial sutures: a multidisciplinary review. Childs Nerv Syst. 2013;29(6):893905.Google Scholar
Dasgupta, K, Jeong, J. Developmental biology of the meninges. Genesis. 2019;57(5):e23288.CrossRefGoogle ScholarPubMed
Alexander, JM, Leveno, KJ, Hauth, J, Landon, MB, Thom, E, Spong, CY, et al. Fetal injury associated with cesarean delivery. Obstet Gynecol. 2006;108(4):885–90.CrossRefGoogle ScholarPubMed
Amar, AP, Aryan, HE, Meltzer, HS, Levy, ML. Neonatal subgaleal hematoma causing brain compression: report of two cases and review of the literature. Neurosurgery. 2003;52(6):1470–4.CrossRefGoogle ScholarPubMed
Pachman, DJ. Massive hemorrhage in the scalp of the newborn infant: hemorrhagic caput succedaneum. Pediatrics. 1962;29:907–10.CrossRefGoogle ScholarPubMed
Wigglesworth, JS, Husemeyer, RP. Intracranial birth trauma in vaginal breech delivery: the continued importance of injury to the occipital bone. Br J Obstet Gynaecol. 1977;84(9):684–91.Google Scholar
Heise, RH, Srivatsa, PJ, Karsell, PR. Spontaneous intrauterine linear skull fracture: a rare complication of spontaneous vaginal delivery. Obstet Gynecol. 1996;87(5 Pt 2):851–4.Google Scholar
Cho, SM, Kim, HG, Yoon, SH, Chang, KH, Park, MS, Park, YH, et al. Reappraisal of neonatal greenstick skull fractures caused by birth injuries: comparison of 3-dimensional reconstructed computed tomography and simple skull radiographs. World Neurosurg. 2018;109:e305–e12.CrossRefGoogle ScholarPubMed
Dupuis, O, Silveira, R, Dupont, C, Mottolese, C, Kahn, P, Dittmar, A, et al. Comparison of “instrument-associated” and “spontaneous” obstetric depressed skull fractures in a cohort of 68 neonates. Am J Obstet Gynecol. 2005;192(1):165–70.CrossRefGoogle Scholar
Josephsen, JB, Kemp, J, Elbabaa, SK, Al-Hosni, M. Life-threatening neonatal epidural hematoma caused by precipitous vaginal delivery. Am J Case Rep. 2015;16:50–2.Google Scholar
Kroon, E, Bok, LA, Halbertsma, F. Spontaneous perinatal epidural haemorrhage in a newborn. BMJ Case Rep. 2012;pii:bcr0920114735.Google Scholar
Heyman, R, Heckly, A, Magagi, J, Pladys, P, Hamlat, A. Intracranial epidural hematoma in newborn infants: clinical study of 15 cases. Neurosurgery. 2005;57(5):924–9.CrossRefGoogle ScholarPubMed
Takagi, T, Nagai, R, Wakabayashi, S, Mizawa, I, Hayashi, K. Extradural hemorrhage in the newborn as a result of birth trauma. Childs Brain. 1978;4(5):306–18.Google Scholar
Mack, J, Squier, W, Eastman, JT. Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Pediatr Radiol. 2009;39(3):200–10.Google Scholar
Squier, W, Lindberg, E, Mack, J, Darby, S. Demonstration of fluid channels in human dura and their relationship to age and intradural bleeding. Childs Nerv Syst. 2009;25(8):925–31.Google Scholar
O’Rahilly, R, Muller, F. The meninges in human development. J Neuropathol Exp Neurol. 1986;45(5):588608.Google Scholar
Clarke, AG. The anatomy of the meninges. Postgrad Med J. 1944;20(220):74–8.Google Scholar
Sakka, L. Anatomy of the cranial and spinal meninges. In: Cinalli, G, Özek, MM, Sainte-Rose, C, editors. Pediatric Hydrocephalus, 2nd edition. New York: Springer; 2019. pp. 197237.Google Scholar
Rascol, MM, Izard, JY. The subdural neurothelium of the cranial meninges in man. Anat Rec. 1976;186(3):429–36.CrossRefGoogle ScholarPubMed
Haines, DE. On the question of a subdural space. Anat Rec. 1991;230(1):321.Google Scholar
Haines, DE, Harkey, HL, al-Mefty, O. The “subdural” space: a new look at an outdated concept. Neurosurgery. 1993;32(1):111–20.CrossRefGoogle Scholar
Cheshire, EC, Malcomson, RDG, Sun, P, Mirkes, EM, Amoroso, JM, Rutty, GN. A systematic autopsy survey of human infant bridging veins. Int J Legal Med. 2018;132(2):449–61.CrossRefGoogle ScholarPubMed
Kibayashi, K, Shojo, H, Sumida, T. Dural hemorrhage of the tentorium on postmortem cranial computed tomographic scans in children. Forensic Sci Int. 2005;154(2–3):206–9.Google Scholar
Geddes, JF, Tasker, RC, Hackshaw, AK, Nickols, CD, Adams, GG, Whitwell, HL, et al. Dural haemorrhage in non-traumatic infant deaths: does it explain the bleeding in “shaken baby syndrome”? Neuropathol Appl Neurobiol. 2003;29(1):1422.Google Scholar
Byard, RW, Blumbergs, P, Rutty, G, Sperhake, J, Banner, J, Krous, HF. Lack of evidence for a causal relationship between hypoxic-ischemic encephalopathy and subdural hemorrhage in fetal life, infancy, and early childhood. Pediatr Dev Pathol. 2007;10(5):348–50.Google Scholar
Punt, J, Bonshek, RE, Jaspan, T, McConachie, NS, Punt, N, Ratcliffe, JM. The “unified hypothesis” of Geddes et al. is not supported by the data. Pediatr Rehabil. 2004;7(3):173–84.Google ScholarPubMed
Cheshire, EC, Biggs, MJP, Hollingbury, FE, Fitzpatrick-Swallow, VL, Prickett, TRA, Malcomson, RDG. Frequency of macroscopic intradural hemorrhage with and without subdural hemorrhage in early childhood autopsies. Forensic Sci Med Pathol. 2019;15(2):184–90.CrossRefGoogle ScholarPubMed
Cohen, MC, Scheimberg, I. Histology of the dural membrane supports the theoretical considerations of its role in the pathophysiology of subdural collections in nontraumatic circumstances. Pediatr Radiol. 2009;39(8):880–1.Google Scholar
Cohen, MC, Peres, LC, Al-Adnani, M, Zapata-Vazquez, R. Increased number of fetal nucleated red blood cells in the placentas of term or near-term stillborn and neonates correlates with the presence of diffuse intradural hemorrhage in the perinatal period. Pediatr Dev Pathol. 2014;17(1):19.Google Scholar
Cohen, MC, Scheimberg, I. Evidence of occurrence of intradural and subdural hemorrhage in the perinatal and neonatal period in the context of hypoxic Ischemic encephalopathy: an observational study from two referral institutions in the United Kingdom. Pediatr Dev Pathol. 2009;12(3):169–76.CrossRefGoogle ScholarPubMed
Cohen, MC, Sprigg, A, Whitby, EH. Subdural hemorrhage, intradural hemorrhage and hypoxia in the pediatric and perinatal post mortem: are they related? An observational study combining the use of post mortem pathology and magnetic resonance imaging. Forensic Sci Int. 2010;200(1–3):100–7.Google Scholar
Scheimberg, I, Cohen, MC, Zapata Vazquez, RE, Dilly, S, Adnani, MA, Turner, K, et al. Nontraumatic intradural and subdural hemorrhage and hypoxic-ischemic encephalopathy in fetuses, infants, and children up to three years of age: analysis of two audits of 636 cases from two referral centers in the United Kingdom. Pediatr Dev Pathol. 2013;16(3):149–59.CrossRefGoogle ScholarPubMed
Sirgiovanni, I, Avignone, S, Groppo, M, Bassi, L, Passera, S, Schiavolin, P, et al. Intracranial haemorrhage: an incidental finding at magnetic resonance imaging in a cohort of late preterm and term infants. Pediatr Radiol. 2014;44(3):289–96.CrossRefGoogle Scholar
Holden, KR, Titus, MO, Van Tassel, P. Cranial magnetic resonance imaging examination of normal term neonates: a pilot study. J Child Neurol. 1999;14(11):708–10.Google Scholar
Kelly, P, Hayman, R, Shekerdemian, LS, Reed, P, Hope, A, Gunn, J, et al. Subdural hemorrhage and hypoxia in infants with congenital heart disease. Pediatrics. 2014;134(3):773–81.Google Scholar
Looney, CB, Smith, JK, Merck, LH, Wolfe, HM, Chescheir, NC, Hamer, RM, et al. Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology. 2007;242(2):535–41.Google Scholar
Ludwig, B, Becker, K, Rutter, G, Bohl, J, Postmortem, Brand M. CT and autopsy in perinatal intracranial hemorrhage. AJNR Am J Neuroradiol. 1983;4(1):2736.Google Scholar
Rooks, VJ, Eaton, JP, Ruess, L, Petermann, GW, Keck-Wherley, J, Pedersen, RC. Prevalence and evolution of intracranial hemorrhage in asymptomatic term infants. AJNR Am J Neuroradiol. 2008;29(6):1082–9.CrossRefGoogle ScholarPubMed
Tavani, F, Zimmerman, RA, Clancy, RR, Licht, DJ, Mahle, WT. Incidental intracranial hemorrhage after uncomplicated birth: MRI before and after neonatal heart surgery. Neuroradiology. 2003;45(4):253–8.Google Scholar
Leviton, A, Gilles, FH, Dooling, EC. The epidemiology of subarachnoid hemorrhages. In: Gilles, FH, Leviton, A, Dooling, EC, editors. The Developing Human Brain Growth and Epidemiologic Neuropathology. Boston: John Wright Inc.; 1983. pp. 217–26.Google Scholar
Del Bigio, MR, Phillips, SM. Retroocular and subdural hemorrhage or hemosiderin deposits in pediatric autopsies. J Neuropathol Exp Neurol. 2017;76(4):313–22.Google Scholar
Wigglesworth, JS, Pape, KE. Pathophysiology of intracranial haemorrhage in the newborn. J Perinat Med. 1980;8(3):119–33.Google Scholar
Towbin, A. Central nervous system damage in the human fetus and newborn infant. Am J Dis Child. 1970;119:529–42.Google Scholar
Brouwer, AJ, Groenendaal, F, Koopman, C, Nievelstein, RJ, Han, SK, de Vries, LS. Intracranial hemorrhage in full-term newborns: a hospital-based cohort study. Neuroradiology. 2010;52(6):567–76.CrossRefGoogle ScholarPubMed
Gradnitzer, E, Urlesberger, B, Maurer, U, Riccabona, M, Muller, W. Hirnblutung beim reifen Neugeborenen–eine Analyse von 10 Jahren (1989–1999). Wien Med Wochenschr. 2002;152(1–2):913.CrossRefGoogle ScholarPubMed
Jhawar, BS, Ranger, A, Steven, D, Del Maestro, RF. Risk factors for intracranial hemorrhage among full-term infants: a case-control study. Neurosurgery. 2003;52(3):581–90.Google Scholar
Huang, AH, Robertson, RL. Spontaneous superficial parenchymal and leptomeningeal hemorrhage in term neonates. AJNR Am J Neuroradiol. 2004;25(3):469–75.Google Scholar
Ou-Yang, MC, Huang, CB, Huang, HC, Chung, MY, Chen, CC, Chen, FS, et al. Clinical manifestations of symptomatic intracranial hemorrhage in term neonates: 18 years of experience in a medical center. Pediatr Neonatol. 2010;51(4):208–13.CrossRefGoogle ScholarPubMed
Roessmann, U, Miller, RT. Thrombosis of the middle cerebral artery associated with birth trauma. Neurology. 1980;30(8):889–92.CrossRefGoogle ScholarPubMed
Baumert, M, Brozek, G, Paprotny, M, Walencka, Z, Sodowska, H, Cnota, W, et al. Epidemiology of peri/intraventricular haemorrhage in newborns at term. J Physiol Pharmacol. 2008;59 Suppl 4:6775.Google ScholarPubMed
Terplan, KL. Histopathologic brain changes in 1152 cases of the perinatal and early infancy period. Biol Neonat. 1967;11:348–66.Google Scholar
Pettersson, K, Ajne, J, Yousaf, K, Sturm, D, Westgren, M, Ajne, G. Traction force during vacuum extraction: a prospective observational study. BJOG. 2015;122(13):1809–16.CrossRefGoogle ScholarPubMed
Vialle, R, Pietin-Vialle, C, Vinchon, M, Dauger, S, Ilharreborde, B, Glorion, C. Birth-related spinal cord injuries: a multicentric review of nine cases. Childs Nerv Syst. 2008;24(1):7985.CrossRefGoogle ScholarPubMed
Bresnan, MJ, Abroms, IF. Neonatal spinal cord transection secondary to intrauterine hyperextension of the neck in breech presentation. J Pediatr. 1974;84(5):734–7.Google Scholar
MacKinnon, JA, Perlman, M, Kirpalani, H, Rehan, V, Sauve, R, Kovacs, L. Spinal cord injury at birth: diagnostic and prognostic data in twenty-two patients. J Pediatr. 1993;122(3):431–7.Google Scholar
Pollard, JJ, Nebesar, RA. Spinal-cord injury at birth. Jama. 1964;188:1078–9.Google Scholar
Menticoglou, SM, Perlman, M, Manning, FA. High cervical spinal cord injury in neonates delivered with forceps: report of 15 cases. Obstet Gynecol. 1995;86(4 Pt 1):589–94.CrossRefGoogle ScholarPubMed
Babyn, PS, Chuang, SH, Daneman, A, Davidson, GS. Sonographic evaluation of spinal cord birth trauma with pathologic correlation. AJR Am J Roentgenol. 1988;151(4):763–6.Google Scholar
Piatt, JH, Jr. Progressive syringomyelia controlled by treatment of associated hydrocephalus in an infant with birth injury. Case report. J Neurosurg. 2005;103(2 Suppl):198202.Google Scholar
Yamano, T, Fujiwara, S, Matsukawa, S, Aotani, H, Maruo, Y, Shimada, M. Cervical cord birth injury and subsequent development of syringomyelia: a case report. Neuropediatrics. 1992;23(6):327–8.Google Scholar
Del Bigio, MR, Deck, JH, MacDonald, JK. Syrinx extending from conus medullaris to basal ganglia: a clinical, radiological, and pathological correlation. Can J Neurol Sci. 1993;20(3):240–6.Google Scholar
Morota, N, Sakamoto, K, Kobayashi, N. Traumatic cervical syringomyelia related to birth injury. Childs Nerv Syst. 1992;8(4):234–6.CrossRefGoogle ScholarPubMed
Maekawa, K, Masaki, T, Kokubun, Y. Fetal spinal-cord injury secondary to hyperextension of the neck: no effect of caesarean section. Dev Med Child Neurol. 1976;18(2):229–32.Google Scholar
Young, RS, Towfighi, J, Marks, KH. Focal necrosis of the spinal cord in utero. Arch Neurol. 1983;40(10):654–5.Google Scholar
Sladky, JT, Rorke, LB. Perinatal hypoxic/ischemic spinal cord injury. Pediatr Pathol. 1986;6(1):87101.Google Scholar
Caird, MS, Reddy, S, Ganley, TJ, Drummond, DS. Cervical spine fracture-dislocation birth injury: prevention, recognition, and implications for the orthopaedic surgeon. J Pediatr Orthop. 2005;25(4):484–6.Google Scholar
Tekes, A, Pinto, PS, Huisman, TA. Birth-related injury to the head and cervical spine in neonates. Magn Reson Imaging Clin N Am. 2011;19(4):777–90.CrossRefGoogle Scholar
Hiss, J, Kahana, T, Burshtein, I. Accidental fetal decapitation: a case of medical and ethical mishap. Am J Forensic Med Pathol. 2011;32(3):245–7.Google Scholar
Richman, F. Retinal haemorrhages in the newborn. Proc R Soc Med. 1937;30(3):277–80.Google ScholarPubMed
Hughes, LA, May, K, Talbot, JF, Parsons, MA. Incidence, distribution, and duration of birth-related retinal hemorrhages: a prospective study. J AAPOS. 2006;10(2):102–6.Google Scholar
Jayanthi, K, Aurora, AL. Retinal haemorrhages in the newborn (an autopsy study). Indian J Ophthalmol. 1978;26(1):1216.Google ScholarPubMed
Laghmari, M, Skiker, H, Handor, H, Mansouri, B, Ouazzani Chahdi, K, Lachkar, R, et al. Hemorragies retiniennes liees a l’accouchement chez le nouveau-ne : frequence et relation avec les facteurs maternels, neonataux et obstetricaux. Etude prospective de 2031 cas. J Fr Ophtalmol. 2014;37(4):313–19.Google Scholar
Sezen, F. Retinal haemorrhages in newborn infants. Br J Ophthalmol. 1971;55(4):248–53.Google Scholar
Ehlers, N, Jensen, IK, Hansen, KB. Retinal haemorrhages in the newborn: comparison of delivery by forceps and by vacuum extractor. Acta Ophthalmol. 1974;52(1):7382.Google Scholar
Svenningsen, L, Eidal, K. Retinal hemorrhages and traction forces in vacuum extraction. Early Hum Dev. 1988;16(2–3):263–9.Google Scholar
Lalka, A, Gralla, J, Sibbel, SE. Brachial plexus birth injury: epidemiology and birth weight impact on risk factors. J Pediatr Orthop. 2020 40(6):e460–e465.Google Scholar
Clark, LP, Taylor, AS, Prout, TP. A study on brachial nerve birth palsy. Am J Med Sci. 1905;130(4):670707.Google Scholar
Taylor, PE. Traumatic intradural avulsion of the nerve roots of the brachial plexus. Brain. 1962;85:579602.Google Scholar
Sever, JW. Obstetric paralysis – its cause and treatment. Can Med Assoc J. 1920;10(2):141–61.Google Scholar
Alvord, EC, Jr., Austin, EJ, Larson, CP. Neuropathologic observations in congenital phrenic nerve palsy. J Child Neurol. 1990;5(3):205–9.Google Scholar
Buterbaugh, KL, Shah, AS. The natural history and management of brachial plexus birth palsy. Curr Rev Musculoskelet Med. 2016;9(4):418–26.Google Scholar
Schaakxs, D, Bahm, J, Sellhaus, B, Weis, J. Clinical and neuropathological study about the neurotization of the suprascapular nerve in obstetric brachial plexus lesions. J Brachial Plex Peripher Nerve Inj. 2009;4:15.Google Scholar
Malessy, MJ, Pondaag, W. Nerve surgery for neonatal brachial plexus palsy. J Pediatr Rehabil Med. 2011;4(2):141–8.Google Scholar
Nicholson, L. Caput succedaneum and cephalohematoma: the Cs that leave bumps on the head. Neonatal Netw. 2007;26(5):277–81.Google Scholar
Wisser, M, Rothschild, MA, Schmolling, JC, Banaschak, S. Caput succedaneum and facial petechiae–birth-associated injuries in healthy newborns under forensic aspects. Int J Legal Med. 2012;126(3):385–90.Google Scholar
Levin, G, Elchalal, U, Yagel, S, Eventov-Friedman, S, Ezra, Y, Sompolinsky, Y, et al. Risk factors associated with subgaleal hemorrhage in neonates exposed to vacuum extraction. Acta Obstet Gynecol Scand. 2019. 98(11):1464–1472.Google Scholar
Swanson, AE, Veldman, A, Wallace, EM, Malhotra, A. Subgaleal hemorrhage: risk factors and outcomes. Acta Obstet Gynecol Scand. 2012;91(2):260–3.Google Scholar
Wang, S, Drake, J, Kulkarni, AV. Management and outcome of spontaneous subaponeurotic fluid collections in infants: the Hospital for Sick Children experience and review of the literature. J Neurosurg Pediatr. 2016;18(4):442–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×