Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T06:50:36.144Z Has data issue: false hasContentIssue false

Chapter 57 - Congenital Viral, Bacterial, and Parasitic Infections

from In Utero Infections

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access

Summary

Adverse neurological effects of maternal infection, in particular syphilis, on the developing fetus has been recognized for centuries (1). In 1971, Nahmius and coworkers proposed the acronym TORCH, in recognition of the fact that Toxoplasma gondii, rubella, cytomegalovirus, and herpes simplex virus infections could produce a similar spectrum of abnormalities (2). The acronym was later expanded to STORCH to include syphilis, with the “O” including others. In this chapter, we will address the maternal infections that can be associated with congenital brain damage.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bury, JS. The influence of hereditary syphilis in the production of idiocy or dementia. Brain. 1883;6(1):4466.CrossRefGoogle Scholar
Nahmias, AJ, Walls, KW, Stewart, JA, Herrmann, KL, Flynt, WJ, Jr. The ToRCH complex-perinatal infections associated with toxoplasma and rubella, cytomegol-[sic] and herpes simplex viruses. Pediatr Res. 1971;5:405–6.CrossRefGoogle Scholar
Rawlinson, WD, Hall, B, Jones, CA, Jeffery, HE, Arbuckle, SM, Graf, N, et al. Viruses and other infections in stillbirth: what is the evidence and what should we be doing? Pathology. 2008;40(2):149–60.Google Scholar
Read, JS, Schleiss MR (eds) Congenital and Perinatal Infections: Oxford University Press; 2017.Google Scholar
Mets, MB, Chhabra, MS. Eye manifestations of intrauterine infections and their impact on childhood blindness. Surv Ophthalmol. 2008;53(2):95111.CrossRefGoogle ScholarPubMed
Shaw, CM, Alvord, EC, Jr. Subependymal germinolysis. Arch Neurol. 1974;31(6):374–81.CrossRefGoogle ScholarPubMed
Metcalf, CJE, Ferrari, M, Graham, AL, Grenfell, BT. Understanding herd immunity. Trends Immunol. 2015;36(12):753–5.Google Scholar
Schweighardt, B, Atwood, WJ. Virus receptors in the human central nervous system. J Neurovirol. 2001;7(3):187–95.Google ScholarPubMed
Devakumar, D, Bamford, A, Ferreira, MU, Broad, J, Rosch, RE, Groce, N, et al. Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. Lancet Infect Dis. 2018;18(1):e1e13.Google Scholar
Frenkel, LD, Gomez, F, Sabahi, F. The pathogenesis of microcephaly resulting from congenital infections: why is my baby’s head so small? Eur J Clin Microbiol Infect Dis. 2018;37(2):209–26.Google Scholar
Besnard, M, Eyrolle-Guignot, D, Guillemette-Artur, P, Lastere, S, Bost-Bezeaud, F, Marcelis, L, et al. Congenital cerebral malformations and dysfunction in fetuses and newborns following the 2013 to 2014 Zika virus epidemic in French Polynesia. Euro Surveill. 2016;21(13):30181.Google Scholar
Lowe, R, Barcellos, C, Brasil, P, Cruz, OG, Honorio, NA, Kuper, H, et al. The Zika virus epidemic in Brazil: from discovery to future implications. Int J Environ Res Public Health. 2018;15(1):E96.Google Scholar
Chakraborty, S, Nazmi, A, Dutta, K, Basu, A. Neurons under viral attack: victims or warriors? Neurochem Int. 2010;56(6–7):727–35.Google Scholar
van den Pol, AN. Viral infections in the developing and mature brain. Trends Neurosci. 2006;29(7):398406.CrossRefGoogle ScholarPubMed
Cordeiro, CN, Tsimis, M, Burd, I. Infections and brain development. Obstet Gynecol Surv. 2015;70(10):644–55.Google Scholar
Das, S, Basu, A. Viral infection and neural stem/progenitor cell’s fate: implications in brain development and neurological disorders. Neurochem Int. 2011;59(3):357–66.Google Scholar
Jiang, NM, Cowan, M, Moonah, SN, Petri, WA, Jr. The impact of systemic inflammation on neurodevelopment. Trends Mol Med. 2018;24(9):794804.Google Scholar
Hwang, JS, Friedlander, S, Rehan, VK, Zangwill, KM. Diagnosis of congenital/perinatal infections by neonatologists: a national survey. J Perinatol. 2019;39(5):690–6.Google Scholar
Neuberger, I, Garcia, J, Meyers, ML, Feygin, T, Bulas, DI, Mirsky, DM. Imaging of congenital central nervous system infections. Pediatr Radiol. 2018;48(4):513–23.Google Scholar
McDonough, A, Lee, RV, Weinstein, JR. Microglial interferon signaling and white matter. Neurochem Res. 2017;42(9):2625–38.CrossRefGoogle ScholarPubMed
Uyur Yalcin, E, Maras Genc, H, Kara, B. Clinical and neuroradiologic variability of Aicardi-Goutieres syndrome: Two siblings with RNASEH2 C mutation and a boy with TREX1 mutation. Turk J Pediatr. 2015;57(5):504–8.Google Scholar
Meuwissen, ME, Schot, R, Buta, S, Oudesluijs, G, Tinschert, S, Speer, SD, et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med. 2016;213(7):1163–74.Google Scholar
Aggarwal, S, Bahal, A, Dalal, A. Renal dysfunction in sibs with band like calcification with simplified gyration and polymicrogyria: Report of a new mutation and review of literature. Eur J Med Genet. 2016;59(1):510.CrossRefGoogle ScholarPubMed
Cohen, MC, Karaman, I, Squier, W, Farrel, T, Whitby, EH. Recurrent pseudo-TORCH appearances of the brain presenting as “Dandy-Walker” malformation. Pediatr Dev Pathol. 2012;15(1):45–9.CrossRefGoogle ScholarPubMed
O’Driscoll, MC, Daly, SB, Urquhart, JE, Black, GC, Pilz, DT, Brockmann, K, et al. Recessive mutations in the gene encoding the tight junction protein occludin cause band-like calcification with simplified gyration and polymicrogyria. Am J Hum Genet. 2010;87(3):354–64.Google ScholarPubMed
Briggs, TA, Wolf, NI, D’Arrigo, S, Ebinger, F, Harting, I, Dobyns, WB, et al. Band-like intracranial calcification with simplified gyration and polymicrogyria: a distinct “pseudo-TORCH” phenotype. Am J Med Genet A. 2008;146A(24):3173–80.Google Scholar
Stephenson, JB. Aicardi-Goutieres syndrome (AGS). Eur J Paediatr Neurol. 2008;12(5):355–8.Google Scholar
Crow, YJ, Black, DN, Ali, M, Bond, J, Jackson, AP, Lefson, M, et al. Cree encephalitis is allelic with Aicardi-Goutieres syndrome: implications for the pathogenesis of disorders of interferon alpha metabolism. J Med Genet. 2003;40(3):183–7.CrossRefGoogle ScholarPubMed
Lee, BE, Davies, HD. Aseptic meningitis. Curr Opin Infect Dis. 2007;20(3):272–7.Google Scholar
Kaplan, MH, Klein, SW, McPhee, J, Harper, RG. Group B coxsackievirus infections in infants younger than three months of age: a serious childhood illness. Rev Infect Dis. 1983;5(6):1019–32.Google Scholar
Ortner, B, Huang, CW, Schmid, D, Mutz, I, Wewalka, G, Allerberger, F, et al. Epidemiology of enterovirus types causing neurological disease in Austria 1999–2007: detection of clusters of echovirus 30 and enterovirus 71 and analysis of prevalent genotypes. J Med Virol. 2009;81(2):317–24.CrossRefGoogle ScholarPubMed
Freimuth, P, Philipson, L, Carson, SD. The coxsackievirus and adenovirus receptor. Curr Top Microbiol Immunol. 2008;323:6787.Google Scholar
Hauwel, M, Furon, E, Gasque, P. Molecular and cellular insights into the coxsackie-adenovirus receptor: role in cellular interactions in the stem cell niche. Brain Res Brain Res Rev. 2005;48(2):265–72.CrossRefGoogle ScholarPubMed
Honda, T, Saitoh, H, Masuko, M, Katagiri-Abe, T, Tominaga, K, Kozakai, I, et al. The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res Mol Brain Res. 2000;77(1):1928.CrossRefGoogle ScholarPubMed
Miller, JA, Ding, SL, Sunkin, SM, Smith, KA, Ng, L, Szafer, A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508(7495):199206.Google Scholar
Persson, A, Fan, X, Widegren, B, Englund, E. Cell type- and region-dependent coxsackie adenovirus receptor expression in the central nervous system. J Neurooncol. 2006;78(1):16.Google Scholar
Hunt, JC, Schneider, C, Menticoglou, S, Herath, J, Del Bigio, MR. Antenatal and postnatal diagnosis of coxsackie b4 infection: case series. AJP Rep. 2012;2(1):16.Google Scholar
Gauntt, CJ, Gudvangen, RJ, Brans, YW, Marlin, AE. Coxsackievirus group B antibodies in the ventricular fluid of infants with severe anatomic defects in the central nervous system. Pediatrics. 1985;76(1):64–8.Google Scholar
Brown, GC, Karunas, RS. Relationship of congenital anomalies and maternal infection with selected enteroviruses. Am J Epidemiol. 1972;95(3):207–17.Google Scholar
Ruller, CM, Tabor-Godwin, JM, Van Deren, DA, Jr., Robinson, SM, Maciejewski, S, Gluhm, S, et al. Neural stem cell depletion and CNS developmental defects after enteroviral infection. Am J Pathol. 2012;180(3):1107–20.Google Scholar
Tsueng, G, Tabor-Godwin, JM, Gopal, A, Ruller, CM, Deline, S, An, N, et al. Coxsackievirus preferentially replicates and induces cytopathic effects in undifferentiated neural progenitor cells. J Virol. 2011;85(12):5718–32.CrossRefGoogle ScholarPubMed
Batcup, G, Holt, P, Hambling, MH, Gerlis, LM, Glass, MR. Placental and fetal pathology in Coxsackie virus A9 infection: a case report. Histopathology. 1985;9(11):1227–35.Google Scholar
Erickson, LS, Hoyle, G, Abramson, J, Hester, LC, Coxsackie, Shetty A. B1 infection associated with ventriculitis. Pediatr Infect Dis J. 2003;22(8):750–1.CrossRefGoogle ScholarPubMed
Bissel, SJ, Winkler, CC, Deltondo, J, Wang, G, Williams, K, Wiley, CA. Coxsackievirus B4 myocarditis and meningoencephalitis in newborn twins. Neuropathology. 2014;34(5):429–37.Google Scholar
Konstantinidou, A, Anninos, H, Spanakis, N, Kotsiakis, X, Syridou, G, Tsakris, A, et al. Transplacental infection of Coxsackievirus B3 pathological findings in the fetus. J Med Virol. 2007;79(6):754–7.Google Scholar
Dommergues, M, Petitjean, J, Aubry, MC, Delezoide, AL, Narcy, F, Fallet-Bianco, C, et al. Fetal enteroviral infection with cerebral ventriculomegaly and cardiomyopathy. Fetal Diagn Ther. 1994;9(2):77–8.CrossRefGoogle ScholarPubMed
Chen, H, Zhang, Y, Yang, E, Liu, L, Che, Y, Wang, J, et al. The effect of enterovirus 71 immunization on neuropathogenesis and protein expression profiles in the thalamus of infected rhesus neonates. Virology. 2012;432(2):417–26.Google Scholar
Gao, L, Lin, P, Liu, S, Lei, B, Chen, Q, Yu, S, et al. Pathological examinations of an enterovirus 71 infection: an autopsy case. Int J Clin Exp Pathol. 2014;7(8):5236–41.Google Scholar
Muehlenbachs, A, Bhatnagar, J, Zaki, SR. Tissue tropism, pathology and pathogenesis of enterovirus infection. J Pathol. 2015;235(2):217–28.CrossRefGoogle ScholarPubMed
Ong, KC, Wong, KT. Understanding enterovirus 71 neuropathogenesis and its impact on other neurotropic enteroviruses. Brain Pathol. 2015;25(5):614–24.CrossRefGoogle ScholarPubMed
Yang, Y, Wang, H, Gong, E, Du, J, Zhao, X, McNutt, MA, et al. Neuropathology in 2 cases of fatal enterovirus type 71 infection from a recent epidemic in the People’s Republic of China: a histopathologic, immunohistochemical, and reverse transcription polymerase chain reaction study. Hum Pathol. 2009;40(9):1288–95.CrossRefGoogle ScholarPubMed
Vanarsdall, AL, Johnson, DC. Human cytomegalovirus entry into cells. Curr Opin Virol. 2012;2(1):3742.Google Scholar
Jackson, SE, Mason, GM, Wills, MR. Human cytomegalovirus immunity and immune evasion. Virus Res. 2011;157(2):151–60.Google Scholar
Leruez-Ville, M, Ville, Y. Fetal cytomegalovirus infection. Best Pract Res Clin Obstet Gynaecol. 2017;38:97107.Google Scholar
Wu, K, Oberstein, A, Wang, W, Shenk, T. Role of PDGF receptor-alpha during human cytomegalovirus entry into fibroblasts. Proc Natl Acad Sci U S A. 2018;115(42):E9889–E98.CrossRefGoogle ScholarPubMed
Berger, AA, Gil, Y, Panet, A, Weisblum, Y, Oiknine-Djian, E, Gropp, M, et al. Transition toward human cytomegalovirus susceptibility in early human embryonic stem cell-derived neural precursors. J Virol. 2015;89(21):11159–64.Google Scholar
Sinzger, C, Digel, M, Jahn, G. Cytomegalovirus cell tropism. Curr Top Microbiol Immunol. 2008;325:6383.Google Scholar
Kawasaki, H, Kosugi, I, Meguro, S, Iwashita, T. Pathogenesis of developmental anomalies of the central nervous system induced by congenital cytomegalovirus infection. Pathol Int. 2017;67(2):7282.Google Scholar
Luo, MH, Schwartz, PH, Fortunato, EA. Neonatal neural progenitor cells and their neuronal and glial cell derivatives are fully permissive for human cytomegalovirus infection. J Virol. 2008;82(20):999410007.Google Scholar
Teissier, N, Fallet-Bianco, C, Delezoide, AL, Laquerriere, A, Marcorelles, P, Khung-Savatovsky, S, et al. Cytomegalovirus-induced brain malformations in fetuses. J Neuropathol Exp Neurol. 2014;73(2):143–58.Google Scholar
Li, XJ, Liu, XJ, Yang, B, Fu, YR, Zhao, F, Shen, ZZ, et al. Human cytomegalovirus infection dysregulates the localization and stability of NICD1 and Jag1 in neural progenitor cells. J Virol. 2015;89(13):6792–804.Google Scholar
Haymaker, W, Girdany, BR, Stephens, J, Lillie, RD, Fetterman, GH. Cerebral involvement with advanced periventricular calcification in generalized cytomegalic inclusion disease in the newborn; a clinicopathological report of a case diagnosed during life. J Neuropathol Exp Neurol. 1954;13(4):562–86.Google Scholar
Cheeran, MC, Lokensgard, JR, Schleiss, MR. Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev. 2009;22(1):99126.Google Scholar
Fraser, SH, O’Keefe, RJ, Scurry, JP, Watkins, AM, Drew, JH, Chow, CW. Hydrocephalus ex vacuo and clasp thumb deformity due to congenital cytomegalovirus infection. J Paediatr Child Health. 1994;30(5):450–2.Google Scholar
White, AL, Hedlund, GL, Bale, JF, Jr. Congenital cytomegalovirus infection and brain clefting. Pediatr Neurol. 2014;50(3):218–23.Google Scholar
Ceballos, R, Ch’ien, LT, Whitley, RJ, Brans, YW. Cerebellar hypoplasia in an infant with congenital cytomegalovirus infection. Pediatrics. 1976;57(1):155–7.Google Scholar
Nakajima, K, Hayashi, M, Tanuma, N, Morio, T. An autopsy case of polymicrogyria and intracerebral calcification with death by intracerebral hemorrhage. Neuropathology. 2012;32(2):207–10.Google Scholar
Arun Babu, T, Soliman, Y, Mohammad, K. Unusual complication of fulminant congenital cytomegalovirus infection. J Neonatal Perinatal Med. 2018;11(2):203–8.Google Scholar
Ortiz, JU, Ostermayer, E, Fischer, T, Kuschel, B, Rudelius, M, Schneider, KT. Severe fetal cytomegalovirus infection associated with cerebellar hemorrhage. Ultrasound Obstet Gynecol. 2004;23(4):402–6.Google Scholar
Perlman, JM, Argyle, C. Lethal cytomegalovirus infection in preterm infants: clinical, radiological, and neuropathological findings. Ann Neurol. 1992;31(1):64–8.Google Scholar
Teissier, N, Delezoide, AL, Mas, AE, Khung-Savatovsky, S, Bessieres, B, Nardelli, J, et al. Inner ear lesions in congenital cytomegalovirus infection of human fetuses. Acta Neuropathol. 2011;122(6):763–74.Google Scholar
Iwasenko, JM, Howard, J, Arbuckle, S, Graf, N, Hall, B, Craig, ME, et al. Human cytomegalovirus infection is detected frequently in stillbirths and is associated with fetal thrombotic vasculopathy. J Infect Dis. 2011;203(11):1526–33.Google Scholar
Gabrielli, L, Bonasoni, MP, Lazzarotto, T, Lega, S, Santini, D, Foschini, MP, et al. Histological findings in foetuses congenitally infected by cytomegalovirus. J Clin Virol. 2009;46 Suppl 4:S1621.Google Scholar
Gabrielli, L, Bonasoni, MP, Santini, D, Piccirilli, G, Chiereghin, A, Petrisli, E, et al. Congenital cytomegalovirus infection: patterns of fetal brain damage. Clin Microbiol Infect. 2012;18(10):E419–27.Google Scholar
Yagmur, G, Ziyade, N, Elgormus, N, Das, T, Sahin, MF, Yildirim, M, et al. Postmortem diagnosis of cytomegalovirus and accompanying other infection agents by real-time PCR in cases of sudden unexpected death in infancy (SUDI). J Forensic Leg Med. 2016;38:1823.Google Scholar
Bale, JF, Jr., Blackman, JA, Sato, Y. Outcome in children with symptomatic congenital cytomegalovirus infection. J Child Neurol. 1990;5(2):131–6.CrossRefGoogle ScholarPubMed
Bhatta, AK, Keyal, U, Liu, Y, Gellen, E. Vertical transmission of herpes simplex virus: an update. J Dtsch Dermatol Ges. 2018;16(6):685–92.CrossRefGoogle ScholarPubMed
Brown, ZA, Selke, S, Zeh, J, Kopelman, J, Maslow, A, Ashley, RL, et al. The acquisition of herpes simplex virus during pregnancy. N Engl J Med. 1997;337(8):509–15.CrossRefGoogle ScholarPubMed
Avgil, M, Ornoy, A. Herpes simplex virus and Epstein-Barr virus infections in pregnancy: consequences of neonatal or intrauterine infection. Reprod Toxicol. 2006;21(4):436–45.Google Scholar
Karasneh, GA, Shukla, D. Herpes simplex virus infects most cell types in vitro: clues to its success. Virol J. 2011;8:481.Google Scholar
Kopp, SJ, Banisadr, G, Glajch, K, Maurer, UE, Grunewald, K, Miller, RJ, et al. Infection of neurons and encephalitis after intracranial inoculation of herpes simplex virus requires the entry receptor nectin-1. Proc Natl Acad Sci U S A. 2009;106(42):17916–20.Google Scholar
Connolly, SA, Jackson, JO, Jardetzky, TS, Longnecker, R. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol. 2011;9(5):369–81.Google Scholar
Edwards, RG, Longnecker, R. Herpesvirus entry mediator and ocular herpesvirus infection: more than meets the eye. J Virol. 2017;91(13):e00115–e17.Google Scholar
Guzman, G, Oh, S, Shukla, D, Engelhard, HH, Valyi-Nagy, T. Expression of entry receptor nectin-1 of herpes simplex virus 1 and/or herpes simplex virus 2 in normal and neoplastic human nervous system tissues. Acta Virol. 2006;50(1):5966.Google ScholarPubMed
Prandovszky, E, Horvath, S, Gellert, L, Kovacs, SK, Janka, Z, Toldi, J, et al. Nectin-1 (HveC) is expressed at high levels in neural subtypes that regulate radial migration of cortical and cerebellar neurons of the developing human and murine brain. J Neurovirol. 2008;14(2):164–72.Google Scholar
Lathe, R, Haas, JG. Distribution of cellular HSV-1 receptor expression in human brain. J Neurovirol. 2017;23(3):376–84.Google Scholar
Suenaga, T, Satoh, T, Somboonthum, P, Kawaguchi, Y, Mori, Y, Arase, H. Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proc Natl Acad Sci U S A. 2010;107(2):866–71.Google Scholar
Agelidis, AM, Shukla, D. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol. 2015;10(10):1145–54.Google Scholar
Salameh, S, Sheth, U, Shukla, D. Early events in herpes simplex virus lifecycle with implications for an infection of lifetime. Open Virol J. 2012;6:16.Google Scholar
Hutto, C, Arvin, A, Jacobs, R, Steele, R, Stagno, S, Lyrene, R, et al. Intrauterine herpes simplex virus infections. J Pediatr. 1987;110(1):97101.Google Scholar
Florman, AL, Gershon, AA, Blackett, PR, Nahmias, AJ. Intrauterine infection with herpes simplex virus. Resultant congenital malformations. JAMA. 1973;225(2):129–32.Google Scholar
Chalhub, EG, Baenziger, J, Feigen, RD, Middlekamp, JN, Shackelford, GD. Congenital herpes simplex type II infection with extensive hepatic calcification, bone lesions and cataracts: complete postmortem examination. Dev Med Child Neurol. 1977;19(4):527–34.Google Scholar
Reynolds, JD, Griebel, M, Mallory, S, Steele, R. Congenital herpes simplex retinitis. Am J Ophthalmol. 1986;102(1):33–6.Google Scholar
Su, C, Zhan, G, Zheng, C. Evasion of host antiviral innate immunity by HSV-1, an update. Virol J. 2016;13:38.Google Scholar
Jay, V, Becker, LE, Blaser, S, Hwang, P, Hoffman, HJ, Humphreys, R, et al. Pathology of chronic herpes infection associated with seizure disorder: a report of two cases with tissue detection of herpes simplex virus 1 by the polymerase chain reaction. Pediatr Pathol Lab Med. 1995;15(1):131–46.Google Scholar
Mansour, AM, Nichols, MM. Congenital diffuse necrotizing herpetic retinitis. Graefes Arch Clin Exp Ophthalmol. 1993;231(2):95–8.Google Scholar
Lee, A, Bar-Zeev, N, Walker, SP, Permezel, M. In utero herpes simplex encephalitis. Obstet Gynecol. 2003;102(5 Pt 2):1197–9.Google Scholar
Suh, YL, Kim, H, Chi, JG, Byun, HR, Lee, K. Disseminated neonatal herpes simplex virus infection with necrotizing encephalitis–an autopsy case. J Korean Med Sci. 1987;2(2):123–7.Google Scholar
Capretti, MG, Marsico, C, Lazzarotto, T, Gabrielli, L, Bagni, A, De Angelis, M, et al. Herpes simplex virus 1 infection: misleading findings in an infant with disseminated disease. New Microbiol. 2013;36(3):307–13.Google Scholar
Schutz, PW, Fauth, CT, Al-Rawahi, GN, Pugash, D, White, VA, Stockler, S, et al. Granulomatous herpes simplex encephalitis in an infant with multicystic encephalopathy: a distinct clinicopathologic entity? Pediatr Neurol. 2014;50(4):392–6.Google Scholar
Miyahara, H, Miyakawa, K, Nishida, H, Yano, S, Sonoda, T, Suenobu, SI, et al. Unique cell tropism of HHV-6B in an infantile autopsy case of primary HHV-6B encephalitis. Neuropathology. 2018;38:400–6.Google Scholar
Lynch, NG, Johnson, AK. Congenital HIV: prevention of maternal to child transmission. Adv Neonatal Care. 2018;18(5):330–40.Google Scholar
Branson, BM, Handsfield, HH, Lampe, MA, Janssen, RS, Taylor, AW, Lyss, SB, et al. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR Recomm Rep. 2006;55(RR-14):117.Google ScholarPubMed
Mitchell, CD. HIV-1 encephalopathy among perinatally infected children: Neuropathogenesis and response to highly active antiretroviral therapy. Ment Retard Dev Disabil Res Rev. 2006;12(3):216–22.Google Scholar
Chen, NC, Partridge, AT, Sell, C, Torres, C, Martin-Garcia, J. Fate of microglia during HIV-1 infection: From activation to senescence? Glia. 2017;65(3):431–46.Google Scholar
Cosenza, MA, Zhao, ML, Si, Q, Lee, SC. Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol. 2002;12(4):442–55.Google Scholar
Keohane, C, Gray, F. Central nervous system pathology in children with AIDS. A review. Ir J Med Sci. 1991;160(9):277–81.Google Scholar
Johann-Liang, R, Lin, K, Cervia, J, Stavola, J, Noel, G. Neuroimaging findings in children perinatally infected with the human immunodeficiency virus. Pediatr Infect Dis J. 1998;17(8):753–4.Google Scholar
Dickson, DW, Belman, AL, Park, YD, Wiley, C, Horoupian, DS, Llena, J, et al. Central nervous system pathology in pediatric AIDS: an autopsy study. APMIS Suppl. 1989;8:4057.Google Scholar
Morgello, S. HIV neuropathology. Handb Clin Neurol. 2018;152:319.Google Scholar
Krist, AH, Crawford-Faucher, A. Management of newborns exposed to maternal HIV infection. Am Fam Physician. 2002;65(10):2049–56.Google Scholar
Msellati, P, Lepage, P, Hitimana, DG, Van Goethem, C, Van de Perre, P, Dabis, F. Neurodevelopmental testing of children born to human immunodeficiency virus type 1 seropositive and seronegative mothers: a prospective cohort study in Kigali, Rwanda. Pediatrics. 1993;92(6):843–8.Google Scholar
Musetti, L, Albizzati, A, Grioni, A, Rossetti, M, Saccani, M, Musetti, C. Autistic disorder associated with congenital HIV infection. Eur Child Adolesc Psychiatry. 1993;2(4):221–5.Google Scholar
Tardieu, M, Tejiokem, M, Nguefack, S. Virus-induced lesions and the fetal brain: examples of the transmission of HIV-1 and CMV from mother to offspring. Handb Clin Neurol. 2013;112:1103–8.Google Scholar
Kozlowski, PB, Brudkowska, J, Kraszpulski, M, Sersen, EA, Wrzolek, MA, Anzil, AP, et al. Microencephaly in children congenitally infected with human immunodeficiency virus–a gross-anatomical morphometric study. Acta Neuropathol. 1997;93(2):136–45.Google Scholar
Rossman, JS, Lamb, RA. Influenza virus assembly and budding. Virology. 2011;411(2):229–36.Google Scholar
Byrd-Leotis, L, Cummings, RD, Steinhauer, DA. The interplay between the host receptor and influenza virus hemagglutinin and neuraminidase. Int J Mol Sci. 2017;18(7):E1541.Google Scholar
Kim, M, Yu, JE, Lee, JH, Chang, BJ, Song, CS, Lee, B, et al. Comparative analyses of influenza virus receptor distribution in the human and mouse brains. J Chem Neuroanat. 2013;52:4957.Google Scholar
Demicheli, V, Jefferson, T, Ferroni, E, Rivetti, A, Di Pietrantonj, C. Vaccines for preventing influenza in healthy adults. Cochrane Database Syst Rev. 2018;2:CD001269.Google Scholar
Phadke, VK, Omer, SB. Maternal vaccination for the prevention of influenza: current status and hopes for the future. Expert Rev Vaccines. 2016;15(10):1255–80.Google Scholar
Zhang, C, Wang, X, Liu, D, Zhang, L, Sun, X. A systematic review and meta-analysis of fetal outcomes following the administration of influenza A/H1N1 vaccination during pregnancy. Int J Gynaecol Obstet. 2018;141(2):141–50.Google Scholar
van Riel, D, Mittrucker, HW, Engels, G, Klingel, K, Markert, UR, Gabriel, G. Influenza pathogenicity during pregnancy in women and animal models. Semin Immunopathol. 2016;38(6):719–26.CrossRefGoogle ScholarPubMed
Lussier, G, Boudreault, A, Pavilanis, V, DiFranco, E. Lesions of the central nervous system induced in nonhuman primates by live influenza viruses. Can J Comp Med. 1974;38(4):398405.Google Scholar
Zinserling, AV, Aksenov, OA, Melnikova, VF, Zinserling, VA. Extrapulmonary lesions in influenza. Tohoku J Exp Med. 1983;140(3):259–72.Google Scholar
Luteijn, JM, Brown, MJ, Dolk, H. Influenza and congenital anomalies: a systematic review and meta-analysis. Hum Reprod. 2014;29(4):809–23.Google Scholar
Laurence, KM, Carter, CO, David, PA. Major central nervous system malformations in South Wales. II. Pregnancy factors, seasonal variation, and social class effects. Br J Prev Soc Med. 1968;22(4):212–22.Google Scholar
Krous, HF, Altshuler, G, London, WT, Palmer, AE, Fucillo, DA, Sever, JL. Congenital hydrocephalus produced by attenuated influenza A virus vaccine in Rhesus monkeys. Am J Pathol. 1978;92(1):317–20.Google Scholar
London, WT, Fuccillo, DA, Sever, JL, Kent, SG. Influenza virus as a teratogen in rhesus monkeys. Nature. 1975;255(5508):483–4.Google Scholar
Peng, BH, Yun, N, Chumakova, O, Zacks, M, Campbell, G, Smith, J, et al. Neuropathology of H5N1 virus infection in ferrets. Vet Microbiol. 2012;156(3–4):294304.CrossRefGoogle ScholarPubMed
Henle, G, Henle, W. Studies on the toxicity of influenza viruses: I. The effect of intracerebral injection of influenza viruses. J Exp Med. 1946;84(6):623–37.Google Scholar
Mims, CA. An analysis of the toxicity for mice of influenza virus. I. Intracerebral toxicity. Br J Exp Pathol. 1960;41:586–92.Google Scholar
Johnson, RT, Johnson, KP. Hydrocephalus as a sequela of experimental myxovirus infections. Exp Molec Pathol. 1969;10(1):6880.Google Scholar
Johnson, KP, Johnson, RT. Granular ependymitis. Occurrence in myxovirus infected rodents and prevalence in man. Am J Pathol. 1972;67(3):511–26.Google ScholarPubMed
Conover, PT, Roessmann, U. Malformational complex in an infant with intrauterine influenza viral infection. Arch Pathol Lab Med. 1990;114(5):535–8.Google Scholar
Mak, GCK, Kwan, MY, Mok, CKP, Lo, JYC, Peiris, M, Leung, CW. Influenza A(H5N1) virus infection in a child with encephalitis complicated by obstructive hydrocephalus. Clin Infect Dis. 2018;66(1):136–9.Google Scholar
Yamada, M, Bingham, J, Payne, J, Rookes, J, Lowther, S, Haining, J, et al. Multiple routes of invasion of wild-type Clade 1 highly pathogenic avian influenza H5N1 virus into the central nervous system (CNS) after intranasal exposure in ferrets. Acta Neuropathol. 2012;124(4):505–16.Google Scholar
Milhorat, TH, Kotzen, RM, Anzil, AP. Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg. 1994;80(4):716–22.CrossRefGoogle ScholarPubMed
Cao, W, Henry, MD, Borrow, P, Yamada, H, Elder, JH, Ravkov, EV, et al. Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science. 1998;282(5396):2079–81.Google Scholar
Rojek, JM, Perez, M, Kunz, S. Cellular entry of lymphocytic choriomeningitis virus. J Virol. 2008;82(3):1505–17.Google Scholar
Waite, A, Brown, SC, Blake, DJ. The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci. 2012;35(8):487–96.Google Scholar
Sullivan, BM, Welch, MJ, Lemke, G, Oldstone, MB. Is the TAM receptor Axl a receptor for lymphocytic choriomeningitis virus? J Virol. 2013;87(7):4071–4.Google Scholar
Bonthius, DJ. Lymphocytic choriomeningitis virus: an underrecognized cause of neurologic disease in the fetus, child, and adult. Semin Pediatr Neurol. 2012;19(3):8995.Google Scholar
Barton, LL, Mets, MB. Congenital lymphocytic choriomeningitis virus infection: decade of rediscovery. Clin Infect Dis. 2001;33(3):370–4.Google Scholar
Anderson, JL, Levy, PT, Leonard, KB, Smyser, CD, Tychsen, L, Cole, FS. Congenital lymphocytic choriomeningitis virus: when to consider the diagnosis. J Child Neurol. 2014;29(6):837–42.Google Scholar
Bonthius, DJ, Wright, R, Tseng, B, Barton, L, Marco, E, Karacay, B, et al. Congenital lymphocytic choriomeningitis virus infection: spectrum of disease. Ann Neurol. 2007;62(4):347–55.Google Scholar
Lipkin, WI, Battenberg, EL, Bloom, FE, Oldstone, MB. Viral infection of neurons can depress neurotransmitter mRNA levels without histologic injury. Brain Res. 1988;451(1–2):333–9.Google Scholar
Bonthius, DJ, Nichols, B, Harb, H, Mahoney, J, Karacay, B. Lymphocytic choriomeningitis virus infection of the developing brain: critical role of host age. Ann Neurol. 2007;62(4):356–74.Google Scholar
Enders, G, Varho-Gobel, M, Lohler, J, Terletskaia-Ladwig, E, Eggers, M. Congenital lymphocytic choriomeningitis virus infection: an underdiagnosed disease. Pediatr Infect Dis J. 1999;18(7):652–5.CrossRefGoogle ScholarPubMed
Sheinbergas, MM. Hydrocephalus due to prenatal infection with the lymphocytic choriomeningitis virus. Infection. 1976;4(4):185–91.Google Scholar
Sheinbergas, MM, Ptashekas, RS, Pikelite, RL, Iu P, Tuliavichene, Sverdlov, Iu M. [Clinical and pathomorphologic findings in hydrocephalus caused by prenatal infection with lymphocytic choriomeningitis virus] (in Russian). Zh Nevropatol Psikhiatr Im S S Korsakova. 1977;77(7):1004–7.Google Scholar
Isumi, H, Nunoue, T, Nishida, A, Takashima, S. Fetal brain infection with human parvovirus B19. Pediatr Neurol. 1999;21(3):661–3.Google Scholar
von Kietzell, K, Pozzuto, T, Heilbronn, R, Grossl, T, Fechner, H, Weger, S. Antibody-mediated enhancement of parvovirus B19 uptake into endothelial cells mediated by a receptor for complement factor C1q. J Virol. 2014;88(14):8102–15.Google Scholar
Lassen, J, Bager, P, Wohlfahrt, J, Bottiger, B, Parvovirus, Melbye M. B19 infection in pregnancy and subsequent morbidity and mortality in offspring. Int J Epidemiol. 2013;42(4):1070–6.Google Scholar
Crane, J, Mundle, W, Boucoiran, I, Maternal Fetal, Medicine C. Parvovirus B19 infection in pregnancy. J Obstet Gynaecol Can. 2014;36(12):1107–16.Google Scholar
Bascietto, F, Liberati, M, Murgano, D, Buca, D, Iacovelli, A, Flacco, ME, et al. Outcome of fetuses with congenital parvovirus B19 infection: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;52(5):569–76.Google Scholar
Ornoy, A, Parvovirus, Ergaz Z. B19 infection during pregnancy and risks to the fetus. Birth Defects Res. 2017;109(5):311–23.Google Scholar
Sanapo, L, Wien, M, Whitehead, MT, Blask, A, Gallagher, M, DeBiasi, RL, et al. Fetal anemia, cerebellar hemorrhage and hypoplasia associated with congenital parvovirus infection. J Matern Fetal Neonatal Med. 2017;30(16):1887–90.Google Scholar
Glenn, OA, Bianco, K, Barkovich, AJ, Callen, PW, Parer, JT. Fetal cerebellar hemorrhage in parvovirus-associated non-immune hydrops fetalis. J Matern Fetal Neonatal Med. 2007;20(10):769–72.Google Scholar
Katz, VL, McCoy, MC, Kuller, JA, Hansen, WF. An association between fetal parvovirus B19 infection and fetal anomalies: a report of two cases. Am J Perinatol. 1996;13(1):43–5.Google Scholar
Courtier, J, Schauer, GM, Parer, JT, Regenstein, AC, Callen, PW, Glenn, OA. Polymicrogyria in a fetus with human parvovirus B19 infection: a case with radiologic-pathologic correlation. Ultrasound Obstet Gynecol. 2012;40(5):604–6.Google Scholar
Pistorius, LR, Smal, J, de Haan, TR, Page-Christiaens, GC, Verboon-Maciolek, M, Oepkes, D, et al. Disturbance of cerebral neuronal migration following congenital parvovirus B19 infection. Fetal Diagn Ther. 2008;24(4):491–4.Google Scholar
Schulert, GS, Walsh, WF, Weitkamp, JH. Polymicrogyria and congenital parvovirus B19 infection. AJP Rep. 2011;1(2):105–10.Google Scholar
De Haan, TR, Van Wezel-Meijler, G, Beersma, MF, Von Lindern, JS, Van Duinen, SG, Walther, FJ. Fetal stroke and congenital parvovirus B19 infection complicated by activated protein C resistance. Acta Paediatr. 2006;95(7):863–7.Google Scholar
Salimans, MM, van de Rijke, FM, Raap, AK, van Elsacker-Niele, AM. Detection of parvovirus B19 DNA in fetal tissues by in situ hybridisation and polymerase chain reaction. J Clin Pathol. 1989;42(5):525–30.Google Scholar
Barah, F, Vallely, PJ, Chiswick, ML, Cleator, GM, Kerr, JR. Association of human parvovirus B19 infection with acute meningoencephalitis. Lancet. 2001;358(9283):729–30.Google Scholar
Ganaie, SS, Qiu, J. Recent advances in replication and infection of human parvovirus B19. Front Cell Infect Microbiol. 2018;8:166.Google Scholar
Shen, L, Chen, CY, Huang, D, Wang, R, Zhang, M, Qian, L, et al. Pathogenic events in a nonhuman primate model of oral poliovirus infection leading to paralytic poliomyelitis. J Virol. 2017;91(14):e02310–16.Google Scholar
Mendelsohn, CL, Wimmer, E, Racaniello, VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56(5):855–65.Google Scholar
Leon-Monzon, ME, Illa, I, Dalakas, MC. Expression of poliovirus receptor in human spinal cord and muscle. Ann N Y Acad Sci. 1995;753:4857.Google Scholar
Gromeier, M, Solecki, D, Patel, DD, Wimmer, E. Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: implications for the pathogenesis of poliomyelitis. Virology. 2000;273(2):248–57.Google Scholar
Rindge, ME. Poliomyelitis in pregnancy; a report of 79 cases in Connecticut. N Engl J Med. 1957;256(7):281–5.Google Scholar
Siegel, M, Greenberg, M. Poliomyelitis in pregnancy: effect on fetus and newborn infant. J Pediatr. 1956;49(3):280–8.Google Scholar
Bates, T. Poliomyelitis in pregnancy, fetus, and newborn. AMA Am J Dis Child. 1955;90(2):189–95.Google Scholar
Carter, HM. Congenital poliomyelitis; report of a case. Obstet Gynecol. 1956;8(3):373–4.Google Scholar
Schaeffer, M, Fox, MJ, Pi, CP. Intrauterine poliomyelitis infection: report of a case. J Am Med Assoc. 1954;155(3):248–50.Google Scholar
Elliott, GB, McAllister, JE. Fetal poliomyelitis. Am J Obstet Gynecol. 1956;72(4):896902.Google Scholar
Wyatt, HV. Poliomyelitis in the fetus and the newborn. A comment on the new understanding of the pathogenesis. Clin Pediatr (Phila). 1979;18(1):33–8.Google Scholar
Otsuki, N, Sakata, M, Saito, K, Okamoto, K, Mori, Y, Hanada, K, et al. Both sphingomyelin and cholesterol in the host cell membrane are essential for rubella virus entry. J Virol. 2018;92(1):e01130–17.Google Scholar
Trinh, QD, Pham, NTK, Takada, K, Komine-Aizawa, S, Hayakawa, S. Myelin oligodendrocyte glycoprotein-independent rubella infection of keratinocytes and resistance of first-trimester trophoblast cells to rubella virus in vitro. Viruses. 2018;10(1):E23.Google Scholar
Cong, H, Jiang, Y, Tien, P. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus. J Virol. 2011;85(21):11038–47.Google Scholar
Conde, C, Martinez, M, Ballabriga, A. Some chemical aspects of human brain development. I. Neutral glycosphingolipids, sulfatides, and sphingomyelin. Pediatr Res. 1974;8(2):8992.Google Scholar
Brody, BA, Kinney, HC, Kloman, AS, Gilles, FH. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol. 1987;46:283301.Google Scholar
Monif, GR, Sever, JL, Schiff, GM, Traub, RG. Isolation of rubella virus from products of conception. Am J Obstet Gynecol. 1965;91:1143–6.Google Scholar
Desmond, MM, Wilson, GS, Melnick, JL, Singer, DB, Zion, TE, Rudolph, AJ, et al. Congenital rubella encephalitis. Course and early sequelae. J Pediatr. 1967;71(3):311–31.Google Scholar
Peters, ER, Davis, RL. Congenital rubella syndrome. Cerebral mineralizations and subperiosteal new bone formation as expressions of this disorder. Clin Pediatr (Phila). 1966;5(12):743–6.Google Scholar
Rorke, LB, Spiro, AJ. Cerebral lesions associated with congenital rubella syndrome. J Neuropathol Exp Neurol. 1967;26(1):115–7.Google Scholar
Rorke, LB, Spiro, AJ. Cerebral lesions in congenital rubella syndrome. J Pediatr. 1967;70(2):243–55.Google Scholar
Rorke, LB. Nervous system lesions in the congenital rubella syndrome. Arch Otolaryngol. 1973;98(4):249–51.Google Scholar
Stadlan, EM, Sung, JH. Congenital rubella encephalopathy. J Neuropathol Exp Neurol. 1967;26(1):115.Google Scholar
Esterly, JR, Oppenheimer, EH. Vascular lesions in infants with congenital rubella. Circulation. 1967;36(4):544–54.Google Scholar
Menser, MA, Reye, RD. The pathology of congenital rubella. Pathology. 1974;6(3):215–22.Google Scholar
Singer, DB, Rudolph, AJ, Rosenberg, HS, Rawls, WE, Boniuk, M. Pathology of the congenital rubella syndrome. J Pediatr. 1967;71(5):665–75.Google Scholar
Kemper, TL, Lecours, AR, Gates, MJ, Yakovlev, PI. Retardation of the myelo- and cytoarchitectonic maturation of the brain in the congenital rubella syndrome. Res Publ Assoc Res Nerv Ment Dis. 1973;51:2362.Google Scholar
Cluver, C, Meyer, R, Odendaal, H, Geerts, L. Congenital rubella with agenesis of the inferior cerebellar vermis and total anomalous pulmonary venous drainage. Ultrasound Obstet Gynecol. 2013;42(2):235–7.Google Scholar
Sarwar, M, Azar-Kia, B, Schechter, MM, Valsamis, M, Batnitzky, S. Aqueductal occlusion in the congenital rubella syndrome. Neurology. 1974;24(2):198201.Google Scholar
Townsend, JJ, Baringer, JR, Wolinsky, JS, Malamud, N, Mednick, JP, Panitch, HS, et al. Progressive rubella panencephalitis. Late onset after congenital rubella. N Engl J Med. 1975;292(19):990–3.Google Scholar
Townsend, JJ, Stroop, WG, Baringer, JR, Wolinsky, JS, McKerrow, JH, Berg, BO. Neuropathology of progressive rubella panencephalitis after childhood rubella. Neurology. 1982;32(2):185–90.Google Scholar
Webster, WS. Teratogen update: congenital rubella. Teratology. 1998;58(1):1323.Google Scholar
Rorke, LB, Fabiyi, A, Elizan, TS, Sever, JL. Experimental cerebrovascular lesions in congenital and neonatal rubella-virus infections of ferrets. Lancet. 1968;2(7560):153–4.Google Scholar
Perelygina, L, Zheng, Q, Metcalfe, M, Icenogle, J. Persistent infection of human fetal endothelial cells with rubella virus. PLoS One. 2013;8(8):e73014.Google Scholar
Lazar, M, Perelygina, L, Martines, R, Greer, P, Paddock, CD, Peltecu, G, et al. Immunolocalization and distribution of rubella antigen in fatal congenital rubella syndrome. EBioMedicine. 2016;3:8692.Google Scholar
Li, Q, Ali, MA, Cohen, JI. Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread. Cell. 2006;127(2):305–16.Google Scholar
Jacquet, A, Haumont, M, Chellun, D, Massaer, M, Tufaro, F, Bollen, A, et al. The varicella zoster virus glycoprotein B (gB) plays a role in virus binding to cell surface heparan sulfate proteoglycans. Virus Res. 1998;53(2):197207.Google Scholar
Zhu, Z, Gershon, MD, Ambron, R, Gabel, C, Gershon, AA. Infection of cells by varicella zoster virus: inhibition of viral entry by mannose 6-phosphate and heparin. Proc Natl Acad Sci U S A. 1995;92(8):3546–50.Google Scholar
Suenaga, T, Matsumoto, M, Arisawa, F, Kohyama, M, Hirayasu, K, Mori, Y, et al. Sialic acids on varicella-zoster virus glycoprotein B are required for cell-cell fusion. J Biol Chem. 2015;290(32):19833–43.Google Scholar
Heldwein, EE, Krummenacher, C. Entry of herpesviruses into mammalian cells. Cell Mol Life Sci. 2008;65(11):1653–68.Google Scholar
Oliver, SL, Yang, E, Arvin, AM. Varicella-zoster virus glycoproteins: entry, replication, and pathogenesis. Curr Clin Microbiol Rep. 2016;3(4):204–15.Google Scholar
Markus, A, Grigoryan, S, Sloutskin, A, Yee, MB, Zhu, H, Yang, IH, et al. Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol. 2011;85(13):6220–33.Google Scholar
Enders, G, Miller, E, Cradock-Watson, J, Bolley, I, Ridehalgh, M. Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet. 1994;343(8912):1548–51.Google Scholar
Harding, B, Baumer, JA. Congenital varicella-zoster. A serologically proven case with necrotizing encephalitis and malformation. Acta Neuropathol. 1988;76(3):311–5.Google Scholar
Bruder, E, Ersch, J, Hebisch, G, Ehrbar, T, Klimkait, T, Stallmach, T. Fetal varicella syndrome: disruption of neural development and persistent inflammation of non-neural tissues. Virchows Arch. 2000;437(4):440–4.Google Scholar
Cooper, C, Wojtulewicz, J, Ratnamohan, VM, Arbuckle, S. Congenital varicella syndrome diagnosed by polymerase chain reaction–scarring of the spinal cord, not the skin. J Paediatr Child Health. 2000;36(2):186–8.Google Scholar
Essex-Cater, A, Heggarty, H. Fatal congenital varicella syndrome. J Infect. 1983;7(1):77–8.Google Scholar
Magliocco, AM, Demetrick, DJ, Sarnat, HB, Hwang, WS. Varicella embryopathy. Arch Pathol Lab Med. 1992;116(2):181–6.Google Scholar
Scheffer, IE, Baraitser, M, Brett, EM. Severe microcephaly associated with congenital varicella infection. Dev Med Child Neurol. 1991;33(10):916–20.Google Scholar
Higa, K, Dan, K, Manabe, H. Varicella-zoster virus infections during pregnancy: hypothesis concerning the mechanisms of congenital malformations. Obstet Gynecol. 1987;69(2):214–22.Google ScholarPubMed
Nikkels, AF, Delbecque, K, Pierard, GE, Wienkotter, B, Schalasta, G, Enders, M. Distribution of varicella-zoster virus DNA and gene products in tissues of a first-trimester varicella-infected fetus. J Infect Dis. 2005;191(4):540–5.Google Scholar
Jones, D, Neff, CP, Palmer, BE, Stenmark, K, Nagel, MA. Varicella zoster virus-infected cerebrovascular cells produce a proinflammatory environment. Neurol Neuroimmunol Neuroinflamm. 2017;4(5):e382.Google Scholar
Gilden, D, Mahalingam, R, Nagel, MA, Pugazhenthi, S, Cohrs, RJ. Review: The neurobiology of varicella zoster virus infection. Neuropathol Appl Neurobiol. 2011;37(5):441–63.Google Scholar
Kleinschmidt-DeMasters, BK, Amlie-Lefond, C, Gilden, DH. The patterns of varicella zoster virus encephalitis. Hum Pathol. 1996;27(9):927–38.Google Scholar
Kleinschmidt-DeMasters, BK, Gilden, DH. Varicella-zoster virus infections of the nervous system: clinical and pathologic correlates. Arch Pathol Lab Med. 2001;125(6):770–80.Google Scholar
Javed, F, Manzoor, KN, Ali, M, Haq, IU, Khan, AA, Zaib, A, et al. Zika virus: what we need to know? J Basic Microbiol. 2018;58(1):316.Google Scholar
Dick, GW. Zika virus. II. Pathogenicity and physical properties. Trans R Soc Trop Med Hyg. 1952;46(5):521–34.Google Scholar
Araujo, AQ, Silva, MT, Araujo, AP. Zika virus-associated neurological disorders: a review. Brain. 2016;139(Pt 8):2122–30.Google Scholar
Philip, C, Novick, CG, Novick, LF. Local transmission of Zika virus in Miami-Dade County: The Florida Department of Health rises to the challenge. J Public Health Manag Pract. 2019;25(3):277–87.Google Scholar
Mier-y-Teran-Romero, L, Delorey, MJ, Sejvar, JJ, Johansson, MA. Guillain-Barre syndrome risk among individuals infected with Zika virus: a multi-country assessment. BMC Med. 2018;16(1):67.Google Scholar
Rasmussen, SA, Jamieson, DJ, Honein, MA, Petersen, LR. Zika virus and birth defects–reviewing the evidence for causality. N Engl J Med. 2016;374(20):1981–897.Google Scholar
Rodo, C, Suy, A, Sulleiro, E, Soriano-Arandes, A, Maiz, N, Garcia-Ruiz, I, et al. Pregnancy outcomes after maternal Zika virus infection in a non-endemic region: prospective cohort study. Clin Microbiol Infect. 2019;25(5):633 e5–e9.Google Scholar
Brasil, P, Pereira, JP, Jr., Moreira, ME, Ribeiro Nogueira, RM, Damasceno, L, Wakimoto, M, et al. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016;375(24):2321–34.Google Scholar
Honein, MA, Dawson, AL, Petersen, EE, Jones, AM, Lee, EH, Yazdy, MM, et al. Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA. 2017;317(1):5968.Google Scholar
Lima, GP, Rozenbaum, D, Pimentel, C, Frota, ACC, Vivacqua, D, Machado, ES, et al. Factors associated with the development of Congenital Zika Syndrome: a case-control study. BMC Infect Dis. 2019;19(1):277.Google Scholar
Aragao, MFVV, van der Linden, V, Petribu, NC, Valenca, MM, Parizel, PM, de Mello, RJV. Congenital Zika syndrome: the main cause of death and correspondence between brain CT and postmortem histological section findings from the same individuals. Top Magn Reson Imaging. 2019;28(1):2933.Google Scholar
Cugola, FR, Fernandes, IR, Russo, FB, Freitas, BC, Dias, JL, Guimaraes, KP, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 2016;534(7606):267–71.Google Scholar
Gurung, S, Reuter, N, Preno, A, Dubaut, J, Nadeau, H, Hyatt, K, et al. Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. PLoS Pathog. 2019;15(1):e1007507.Google Scholar
Hirsch, AJ, Roberts, VHJ, Grigsby, PL, Haese, N, Schabel, MC, Wang, X, et al. Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology. Nat Commun. 2018;9(1):263.Google Scholar
Adams Waldorf, KM, Stencel-Baerenwald, JE, Kapur, RP, Studholme, C, Boldenow, E, Vornhagen, J, et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat Med. 2016;22(11):1256–9.Google Scholar
Adams Waldorf, KM, Nelson, BR, Stencel-Baerenwald, JE, Studholme, C, Kapur, RP, Armistead, B, et al. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med. 2018;24(3):368–74.Google Scholar
Bayless, NL, Greenberg, RS, Swigut, T, Wysocka, J, Blish, CA. Zika virus infection induces cranial neural crest cells to produce cytokines at levels detrimental for neurogenesis. Cell Host Microbe. 2016;20(4):423–8.Google Scholar
Lin, MY, Wang, YL, Wu, WL, Wolseley, V, Tsai, MT, Radic, V, et al. Zika virus infects intermediate progenitor cells and post-mitotic committed neurons in human fetal brain tissues. Sci Rep. 2017;7(1):14883.Google Scholar
Meertens, L, Labeau, A, Dejarnac, O, Cipriani, S, Sinigaglia, L, Bonnet-Madin, L, et al. Axl mediates Zika virus entry in human glial cells and modulates innate immune responses. Cell Rep. 2017;18(2):324–33.Google Scholar
Nowakowski, TJ, Pollen, AA, Di Lullo, E, Sandoval-Espinosa, C, Bershteyn, M, Kriegstein, AR. Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell. 2016;18(5):591–6.Google Scholar
Wells, MF, Salick, MR, Wiskow, O, Ho, DJ, Worringer, KA, Ihry, RJ, et al. Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection. Cell Stem Cell. 2016;19(6):703–8.Google Scholar
Agrelli, A, de Moura, RR, Crovella, S, Brandao, LAC. ZIKA virus entry mechanisms in human cells. Infect Genet Evol. 2019;69:22–9.Google Scholar
Rinkenberger, N, Schoggins, JW. Comparative analysis of viral entry for Asian and African lineages of Zika virus. Virology. 2019;533:59–67.Google Scholar
Gao, H, Lin, Y, He, J, Zhou, S, Liang, M, Huang, C, et al. Role of heparan sulfate in the Zika virus entry, replication, and cell death. Virology. 2019;529:91100.Google Scholar
Tan, CW, Huan Hor, CH, Kwek, SS, Tee, HK, Sam, IC, Goh, ELK, et al. Cell surface alpha2,3-linked sialic acid facilitates Zika virus internalization. Emerg Microbes Infect. 2019;8(1):426–37.Google Scholar
Ferreira, RO, Garcez, PP. Dissecting the toxic effects of Zika virus proteins on neural progenitor cells. Neuron. 2019;101(6):989–91.Google Scholar
Azevedo, RSS, Araujo, MT, Oliveira, CS, Filho, AJM, Nunes, BTD, Henriques, DF, et al. Zika Virus epidemic in Brazil. II. Post-mortem analyses of neonates with microcephaly, stillbirths, and miscarriage. J Clin Med. 2018;7(12):E496.Google Scholar
Beaufrere, A, Bessieres, B, Bonniere, M, Driessen, M, Alfano, C, Couderc, T, et al. A clinical and histopathological study of malformations observed in fetuses infected by the Zika virus. Brain Pathol. 2019;29(1):114–25.Google Scholar
de Noronha, L, Zanluca, C, Azevedo, ML, Luz, KG, Santos, CN. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz. 2016;111(5):287–93.Google Scholar
Martines, RB, Bhatnagar, J, de Oliveira Ramos, AM, Davi, HP, Iglezias, SD, Kanamura, CT, et al. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet. 2016;388(10047):898904.Google Scholar
Chimelli, L, Melo, AS, Avvad-Portari, E, Wiley, CA, Camacho, AH, Lopes, VS, et al. The spectrum of neuropathological changes associated with congenital Zika virus infection. Acta Neuropathol. 2017;133(6):983–99.Google Scholar
Chimelli, L, Moura Pone, S, Avvad-Portari, E, Farias Meira Vasconcelos, Z, Araujo Zin, A, Prado Cunha, D, et al. Persistence of Zika virus after birth: clinical, virological, neuroimaging, and neuropathological documentation in a 5-month infant with congenital Zika syndrome. J Neuropathol Exp Neurol. 2018;77(3):193–8.Google Scholar
Peeling, RW, Mabey, D, Kamb, ML, Chen, XS, Radolf, JD, Benzaken, AS. Syphilis. Nat Rev Dis Primers. 2017;3:17073.Google Scholar
Hollier, LM, Harstad, TW, Sanchez, PJ, Twickler, DM, Wendel, GD, Jr. Fetal syphilis: clinical and laboratory characteristics. Obstet Gynecol. 2001;97(6):947–53.Google Scholar
Quist, EE, Repesh, LA, Zeleznikar, R, Fitzgerald, TJ. Interaction of Treponema pallidum with isolated rabbit capillary tissues. Br J Vener Dis. 1983;59(1):1120.Google Scholar
Houston, S, Taylor, JS, Denchev, Y, Hof, R, Zuerner, RL, Cameron, CE. Conservation of the host-interacting proteins Tp0750 and pallilysin among treponemes and restriction of proteolytic capacity to Treponema pallidum. Infect Immun. 2015;83(11):4204–16.Google Scholar
Parker, ML, Houston, S, Petrosova, H, Lithgow, KV, Hof, R, Wetherell, C, et al. The structure of Treponema pallidum Tp0751 (pallilysin) reveals a non-canonical lipocalin fold that mediates adhesion to extracellular matrix components and interactions with host cells. PLoS Pathog. 2016;12(9):e1005919.Google Scholar
Wicher, K, Abbruscato, F, Wicher, V, Baughn, R, Noordhoek, GT. Target organs of infection in guinea pigs with acquired congenital syphilis. Infect Immun. 1996;64(8):3174–9.Google Scholar
Froberg, MK, Fitzgerald, TJ, Hamilton, TR, Hamilton, B, Zarabi, M. Pathology of congenital syphilis in rabbits. Infect Immun. 1993;61(11):4743–9.Google Scholar
Hollier, LM, Cox, SM. Syphilis. Semin Perinatol. 1998;22(4):323–31.Google Scholar
Kittipornpechdee, N, Hanamorn-roongruang, S, Lekmak, D, Treetipsatit, J. Fetal and placental pathology in congenital syphilis: a comprehensive study in perinatal autopsy. Fetal Pediatr Pathol. 2018;37(4):231–42.Google Scholar
Benzick, AE, Wirthwein, DP, Weinberg, A, Wendel, GD, Jr., Alsaadi, R, Leos, NK, et al. Pituitary gland gumma in congenital syphilis after failed maternal treatment: a case report. Pediatrics. 1999;104(1):e4.Google Scholar
Guarner, J, Greer, PW, Bartlett, J, Ferebee, T, Fears, M, Pope, V, et al. Congenital syphilis in a newborn: an immunopathologic study. Mod Pathol. 1999;12(1):82–7.Google Scholar
Filippi, L, Serafini, L, Dani, C, Bertini, G, Pezzati, M, Tronchin, M, et al. Congenital syphilis: unique clinical presentation in three preterm newborns. J Perinat Med. 2004;32(1):90–4.Google Scholar
Hardy, JB, Hardy, PH, Oppenheimer, EH, Ryan, SJ, Jr., Sheff, RN. Failure of penicillin in a newborn with congenital syphilis. JAMA. 1970;212(8):1345–9.Google Scholar
Leonard, JM. Central nervous system tuberculosis. Microbiol Spectr. 2017;5(2).Google Scholar
Peng, W, Yang, J, Liu, E. Analysis of 170 cases of congenital TB reported in the literature between 1946 and 2009. Pediatr Pulmonol. 2011;46(12):1215–24.Google Scholar
Kang, GH, Chi, JG. Congenital tuberculosis–report of an autopsy case. J Korean Med Sci. 1990;5(1):5964.Google Scholar
Harris, EA, McCullough, GC, Stone, JJ, Brock, WM. Congenital tuberculosis; a review of the disease with report of a case. J Pediatr. 1948;32(3):311–6.Google Scholar
Hughesdon, MR. Congenital tuberculosis. Arch Dis Child. 1946;21(107):121–38.Google Scholar
Gupta, K, Radotra, BD, Suri, D, Sharma, K, Saxena, AK, Singhi, P. Mycotic aneurysm and subarachnoid hemorrhage following tubercular meningitis in an infant with congenital tuberculosis and cytomegalovirus disease. J Child Neurol. 2012;27(10):1320–5.Google Scholar
Cifuentes, Y, Murcia, MI, Piar, J, Pardo, P. Cerebral microcalcifications in a newborn with congenital tuberculosis. Biomedica. 2016;36(1):22–8.Google Scholar
Li, CK, Chan, YF, Har, CMY. Congenital tuberculosis. Aust Paediatr J. 1989;25:366–7.Google Scholar
Khorsand Zak, H, Mafinezhad, S, Haghbin, A. Congenital tuberculosis: a newborn case report with rare manifestation. Iran Red Crescent Med J. 2016;18(10):e23572.Google Scholar
Bianchi-Jassir, F, Seale, AC, Kohli-Lynch, M, Lawn, JE, Baker, CJ, Bartlett, L, et al. Preterm birth associated with group B streptococcus maternal colonization worldwide: systematic review and meta-analyses. Clin Infect Dis. 2017;65(suppl_2):S133–S42.CrossRefGoogle ScholarPubMed
Randis, TM, Gelber, SE, Hooven, TA, Abellar, RG, Akabas, LH, Lewis, EL, et al. Group B Streptococcus beta-hemolysin/cytolysin breaches maternal-fetal barriers to cause preterm birth and intrauterine fetal demise in vivo. J Infect Dis. 2014;210(2):265–73.Google Scholar
Tazi, A, Bellais, S, Tardieux, I, Dramsi, S, Trieu-Cuot, P, Poyart, C. Group B Streptococcus surface proteins as major determinants for meningeal tropism. Curr Opin Microbiol. 2012;15(1):44–9.Google Scholar
Wadhwa Desai, R, Smith, MA. Pregnancy-related listeriosis. Birth Defects Res. 2017;109(5):324–35.Google Scholar
Adams Waldorf, KM, McAdams, RM. Influence of infection during pregnancy on fetal development. Reproduction. 2013;146(5):R151–R62.Google Scholar
Ledger, WJ. Perinatal infections and fetal/neonatal brain injury. Curr Opin Obstet Gynecol. 2008;20(2):120–4.Google Scholar
Carlier, Y, Truyens, C, Deloron, P, Peyron, F. Congenital parasitic infections: a review. Acta Trop. 2012;121(2):5570.Google Scholar
Bhopale, GM. Pathogenesis of toxoplasmosis. Comp Immunol Microbiol Infect Dis. 2003;26(4):213–22.Google Scholar
Khan, K, Khan, W. Congenital toxoplasmosis: An overview of the neurological and ocular manifestations. Parasitol Int. 2018;67(6):715–21.Google Scholar
Desmonts, G, Couvreur, J. Congenital toxoplasmosis. A prospective study of 378 pregnancies. N Engl J Med. 1974;290(20):1110–6.Google Scholar
Cortina-Borja, M, Tan, HK, Wallon, M, Paul, M, Prusa, A, Buffolano, W, et al. Prenatal treatment for serious neurological sequelae of congenital toxoplasmosis: an observational prospective cohort study. PLoS Med. 2010;7(10):e1000351.Google Scholar
Kochanowsky, JA, Koshy, AA. Toxoplasma gondii. Curr Biol. 2018;28(14):R770–R1.Google Scholar
Blader, IJ, Coleman, BI, Chen, CT, Gubbels, MJ. Lytic cycle of Toxoplasma gondii: 15 years later. Annu Rev Microbiol. 2015;69:463–85.Google Scholar
Mendez, OA, Koshy, AA. Toxoplasma gondii: Entry, association, and physiological influence on the central nervous system. PLoS Pathog. 2017;13(7):e1006351.Google Scholar
Konradt, C, Ueno, N, Christian, DA, Delong, JH, Pritchard, GH, Herz, J, et al. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nat Microbiol. 2016;1:16001.Google Scholar
Lachenmaier, SM, Deli, MA, Meissner, M, Liesenfeld, O. Intracellular transport of Toxoplasma gondii through the blood-brain barrier. J Neuroimmunol. 2011;232(1–2):119–30.Google Scholar
Carruthers, VB, Suzuki, Y. Effects of Toxoplasma gondii infection on the brain. Schizophr Bull. 2007;33(3):745–51.Google Scholar
Sugi, T, Tu, V, Ma, Y, Tomita, T, Weiss, LM. Toxoplasma gondii requires glycogen phosphorylase for balancing amylopectin storage and for efficient production of brain cysts. MBio. 2017;8(4).Google Scholar
Frenkel, JK. Pathology and pathogenesis of congenital toxoplasmosis. Bull N Y Acad Med. 1974;50(2):182–91.Google Scholar
Fenzi, F, Simonati, A, Nardelli, E, Novelli, P, Galiazzo Rizzuto, S, Rizzuto, N. Congenital toxoplasmosis: histological and ultrastructural study. Ital J Neurol Sci. 1982;3(1):4957.Google Scholar
Ferguson, DJ, Bowker, C, Jeffery, KJ, Chamberlain, P, Squier, W. Congenital toxoplasmosis: continued parasite proliferation in the fetal brain despite maternal immunological control in other tissues. Clin Infect Dis. 2013;56(2):204–8.Google Scholar
Laure-Kamionowska, M, Dambska, M. Damage of maturing brain in the course of toxoplasmic encephalitis. Neuropatol Pol. 1992;30(3–4):307–14.Google Scholar
Levin, PM, Moore, H. Fetal toxoplasmic encephalitis—A type of congenital cerebral disease. J Pediatr. 1942;21(5):673–9.Google Scholar
Lowichik, A, Siegel, JD. Parasitic infections of the central nervous system in children. Part I: Congenital infections and meningoencephalitis. J Child Neurol. 1995;10(1):417.Google Scholar
Malinger, G, Werner, H, Rodriguez Leonel, JC, Rebolledo, M, Duque, M, Mizyrycki, S, et al. Prenatal brain imaging in congenital toxoplasmosis. Prenat Diagn. 2011;31(9):881–6.Google Scholar
Olariu, TR, Remington, JS, McLeod, R, Alam, A, Montoya, JG. Severe congenital toxoplasmosis in the United States: clinical and serologic findings in untreated infants. Pediatr Infect Dis J. 2011;30(12):1056–61.Google Scholar
Roberts, F, Mets, MB, Ferguson, DJ, O’Grady, R, O’Grady, C, Thulliez, P, et al. Histopathological features of ocular toxoplasmosis in the fetus and infant. Arch Ophthalmol. 2001;119(1):51–8.Google Scholar
de Leon, GA. Observations on cerebral and cerebellar microgyria. Acta Neuropathol. 1972;20(4):278–87.Google Scholar
Torrico, F, Alonso-Vega, C, Suarez, E, Rodriguez, P, Torrico, MC, Dramaix, M, et al. Maternal Trypanosoma cruzi infection, pregnancy outcome, morbidity, and mortality of congenitally infected and non-infected newborns in Bolivia. Am J Trop Med Hyg. 2004;70(2):201–9.Google Scholar
Bittencourt, AL. Congenital Chagas disease. Am J Dis Child. 1976;130(1):97103.Google Scholar
Okumura, M, Aparecida dos Santos, V, Camargo, ME, Schultz, R, Zugaib, M. Prenatal diagnosis of congenital Chagas’ disease (American trypanosomiasis). Prenat Diagn. 2004;24(3):179–81.Google Scholar
Pehrson, PO, Wahlgren, M, Bengtsson, E. Intracranial calcifications probably due to congenital Chagas’ disease. Am J Trop Med Hyg. 1982;31(3 Pt 1):449–51.Google Scholar
Berger, BA, Bartlett, AH, Saravia, NG, Galindo Sevilla, N. Pathophysiology of leishmania infection during pregnancy. Trends Parasitol. 2017;33(12):935–46.Google Scholar
Grinnage-Pulley, T, Scott, B, Petersen, CA. A mother’s gift: congenital transmission of Trypanosoma and Leishmania species. PLoS Pathog. 2016;12(1):e1005302.Google Scholar
Encha-Razavi, F, Larroche, JC, Roume, J, Mulliez, N, Lescs, MC. Etude neuropathologique de 134 foetus dans un contexte d’infection maternelle par le VIH. Arch Anat Cytol Pathol. 1997;45(2–3):118–20.Google Scholar
Nickolls, AR, Bonnemann, CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech. 2018;11(12).Google Scholar
Harker, KS, Ueno, N, Lodoen, MB. Toxoplasma gondii dissemination: a parasite’s journey through the infected host. Parasite Immunol. 2015;37(3):141–9.Google Scholar
Courret, N, Darche, S, Sonigo, P, Milon, G, Buzoni-Gatel, D, Tardieux, I. CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood. 2006;107(1):309–16.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×