Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T19:06:26.478Z Has data issue: false hasContentIssue false

Section 4 - Disruptions / Hypoxic-Ischemic Injury

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Lockshin, RA, Williams, CM. Programmed cell death–I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965;11:123–33.Google ScholarPubMed
Kerr, JF, Wyllie, AH, Currie, AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.CrossRefGoogle ScholarPubMed
Schweichel, JU, Merker, HJ. The morphology of various types of cell death in prenatal tissues. Teratology. 1973;7(3):253–66.CrossRefGoogle ScholarPubMed
Tsujimoto, Y. Multiple ways to die: non-apoptotic forms of cell death. Acta Oncol. 2012;51(3):293300.Google Scholar
Denaxa, M, Neves, G, Rabinowitz, A, Kemlo, S, Liodis, P, Burrone, J, et al. Modulation of apoptosis controls inhibitory interneuron number in the cortex. Cell Rep. 2018;22(7):1710–21.CrossRefGoogle ScholarPubMed
Orrenius, S, McConkey, DJ, Jones, DP, Nicotera, P. Ca2+-activated mechanisms in toxicity and programmed cell death. ISI Atlas Sci: Pharmacol. 1988;2(4):319–24.Google Scholar
Burke, RE, Kholodilov, NG. Programmed cell death: does it play a role in Parkinson’s disease? Ann Neurol. 1998;44(3 Suppl 1):S126–33.CrossRefGoogle ScholarPubMed
Zhang, L, Kokkonen, G, Roth, GS. Identification of neuronal programmed cell death in situ in the striatum of normal adult rat brain and its relationship to neuronal death during aging. Brain Res. 1995;677(1):177–9.CrossRefGoogle ScholarPubMed
Bursch, W, Kleine, L, Tenniswood, M. The biochemistry of cell death by apoptosis. Biochem Cell Biol. 1990;68(9):1071–4.Google Scholar
Goya, RG. Role of programmed cell death in the aging process: an unexplored possibility. Gerontology. 1986;32(1):3742.Google Scholar
Krantic, S, Mechawar, N, Reix, S, Quirion, R. Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci. 2005;28(12):670–6.Google Scholar
Galluzzi, L, Vitale, I, Aaronson, SA, Abrams, JM, Adam, D, Agostinis, P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486541.Google Scholar
Napoletano, F, Baron, O, Vandenabeele, P, Mollereau, B, Fanto, M. Intersections between regulated cell death and autophagy. Trends Cell Biol. 2019;29(4):323–38.Google Scholar
Virchow, R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. 1st ed. Berlin: August Hirschwald; 1858.Google Scholar
King, LS. Studies on eastern equine encephalomyelitis. I. Histopathology of the nervous system in the guinea pig. J Exp Med. 1938;68(5):677–92.Google Scholar
Weller, SD, Norman, RM. Epilepsy due to birth injury in one of identical twins. Arch Dis Child. 1955;30(153):453–6.Google Scholar
Meriwether, LS, Hager, H, Scholz, W. Kernicterus; hypoxemia, significant pathogenic factor. AMA Arch Neurol Psychiatry. 1955;73(3):293301.CrossRefGoogle ScholarPubMed
Levine, S. Anoxic-ischemic encephalopathy in rats. Am J Pathol. 1960;36:117.Google ScholarPubMed
Claireaux, A. Haemolytic disease of the newborn: Part I. A clinical-pathological study of 157 cases. Arch Dis Child. 1950;25(121):6180.CrossRefGoogle Scholar
Lossi, L, Castagna, C, Merighi, A. Neuronal cell death: an overview of its different forms in central and peripheral neurons. Methods Mol Biol. 2015;1254:118.Google Scholar
Fricker, M, Tolkovsky, AM, Borutaite, V, Coleman, M, Brown, GC. Neuronal cell death. Physiol Rev. 2018;98(2):813–80.CrossRefGoogle ScholarPubMed
Unal-Cevik, I, Kilinc, M, Can, A, Gursoy-Ozdemir, Y, Dalkara, T. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke. 2004;35(9):2189–94.Google Scholar
Elmore, SA, Dixon, D, Hailey, JR, Harada, T, Herbert, RA, Maronpot, RR, et al. Recommendations from the INHAND Apoptosis/Necrosis Working Group. Toxicol Pathol. 2016;44(2):173–88.CrossRefGoogle ScholarPubMed
Kroemer, G, Galluzzi, L, Vandenabeele, P, Abrams, J, Alnemri, ES, Baehrecke, EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):311.CrossRefGoogle Scholar
Galluzzi, L, Bravo-San Pedro, JM, Vitale, I, Aaronson, SA, Abrams, JM, Adam, D, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22(1):5873.Google Scholar
Galluzzi, L, Vitale, I, Abrams, JM, Alnemri, ES, Baehrecke, EH, Blagosklonny, MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19(1):107–20.CrossRefGoogle ScholarPubMed
Martin, LJ, Chang, Q. DNA damage response and repair, DNA methylation, and cell death in human neurons and experimental animal neurons are different. J Neuropathol Exp Neurol. 2018;77(7):636–55.CrossRefGoogle ScholarPubMed
Tagaya, M, Liu, KF, Copeland, B, Seiffert, D, Engler, R, Garcia, JH, et al. DNA scission after focal brain ischemia. Temporal differences in two species. Stroke. 1997;28(6):1245–54.CrossRefGoogle ScholarPubMed
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495516.CrossRefGoogle ScholarPubMed
Mnatsakanyan, N, Beutner, G, Porter, GA, Alavian, KN, Jonas, EA. Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr. 2017;49(1):1325.Google Scholar
Lossi, L, Castagna, C, Merighi, A. Caspase-3 mediated cell death in the normal development of the mammalian cerebellum. Int J Mol Sci. 2018;19(12):ii:E3999.Google Scholar
Srinivasan, A, Roth, KA, Sayers, RO, Shindler, KS, Wong, AM, Fritz, LC, et al. In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ. 1998;5(12):1004–16.Google Scholar
Love, S, Barber, R, Srinivasan, A, Wilcock, GK. Activation of caspase-3 in permanent and transient brain ischaemia in man. Neuroreport. 2000;11(11):2495–9.Google Scholar
Stadelman, C, Mews, I, Srinivasan, A, Deckwerth, TL, Lassmann, H, Bruck, W. Expression of cell death-associated proteins in neuronal apoptosis associated with pontosubicular neuron necrosis. Brain Pathol. 2001;11(3):273–81.Google Scholar
Machaalani, R, Radford, JL, Waters, KA. Tissue fixation effects on immunohistochemical staining of caspase-3 in brain tissue. Appl Immunohistochem Mol Morphol. 2007;15(4):463–70.Google Scholar
Rossiter, JP, Anderson, LL, Yang, F, Cole, GM. Caspase-3 activation and caspase-like proteolytic activity in human perinatal hypoxic-ischemic brain injury. Acta Neuropathol. 2002;103(1):6673.CrossRefGoogle ScholarPubMed
Schafer, MK, Pfeiffer, A, Jaeckel, M, Pouya, A, Dolga, AM, Methner, A. Regulators of mitochondrial Ca(2+) homeostasis in cerebral ischemia. Cell Tissue Res. 2014;357(2):395405.CrossRefGoogle ScholarPubMed
Nagley, P, Higgins, GC, Atkin, JD, Beart, PM. Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta. 2010;1802(1):167–85.Google Scholar
Samejima, K, Earnshaw, WC. Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol. 2005;6(9):677–88.Google Scholar
Larsen, BD, Sorensen, CS. The caspase-activated DNase: apoptosis and beyond. FEBS J. 2017;284(8):1160–70.Google Scholar
Ruchaud, S, Korfali, N, Villa, P, Kottke, TJ, Dingwall, C, Kaufmann, SH, et al. Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J. 2002;21(8):1967–77.Google Scholar
Miller, JA, Ding, SL, Sunkin, SM, Smith, KA, Ng, L, Szafer, A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508(7495):199206.Google Scholar
Hyman, BT, Yuan, J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci. 2012;13(6):395406.CrossRefGoogle ScholarPubMed
Hooker, DJ, Mobarok, M, Anderson, JL, Rajasuriar, R, Gray, LR, Ellett, AM, et al. A new way of measuring apoptosis by absolute quantitation of inter-nucleosomally fragmented genomic DNA. Nucleic Acids Res. 2012;40(15):e113.Google Scholar
Lesauskaite, V, Epistolato, MC, Ivanoviene, L, Tanganelli, P. Apoptosis of cardiomyocytes in explanted and transplanted hearts. Comparison of results from in situ TUNEL, ISEL, and ISOL reactions. Am J Clin Pathol. 2004;121(1):108–16.Google Scholar
Charriaut-Marlangue, C, Ben-Ari, Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport. 1995;7(1):61–4.Google Scholar
Burke, C, Gobe, G. Pontosubicular apoptosis (“necrosis”) in human neonates with intrauterine growth retardation and placental infarction. Virchows Arch. 2005;446(6):640–5.Google Scholar
Zille, M, Farr, TD, Przesdzing, I, Muller, J, Sommer, C, Dirnagl, U, et al. Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab. 2012;32(2):213–31.Google Scholar
Didenko, VV, Ngo, H, Minchew, CL, Boudreaux, DJ, Widmayer, MA, Baskin, DS. Visualization of irreparable ischemic damage in brain by selective labeling of double strand blunt-ended DNA breaks. Mol Med. 2002;8(12):818–23.Google Scholar
Hornsby, PJ, Didenko, VV. In situ ligation: a decade and a half of experience. Methods Mol Biol. 2011;682:4963.Google Scholar
Nakajima, YI, Kuranaga, E. Caspase-dependent non-apoptotic processes in development. Cell Death Differ. 2017;24(8):1422–30.CrossRefGoogle ScholarPubMed
Kumar, A, Rothman, JH. Cell death: hook, line and linker. Curr Biol. 2007;17(8):R286-9.CrossRefGoogle ScholarPubMed
Kutscher, LM, Shaham, S. Non-apoptotic cell death in animal development. Cell Death Differ. 2017;24(8):1326–36.Google Scholar
Gudipaty, SA, Conner, CM, Rosenblatt, J, Montell, DJ. Unconventional ways to live and die: cell death and survival in development, homeostasis, and disease. Annu Rev Cell Dev Biol. 2018;34:311–32.Google Scholar
Loh, KY, Wang, Z, Liao, P. Oncotic cell death in stroke. Rev Physiol Biochem Pharmacol. 2019;176:3764.CrossRefGoogle ScholarPubMed
Yagami, T, Yamamoto, Y, Koma, H. Pathophysiological roles of intracellular proteases in neuronal development and neurological diseases. Mol Neurobiol. 2019;56(5):3090–112.Google Scholar
Czogalla, A, Sikorski, AF. Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. Cell Mol Life Sci. 2005;62(17):1913–24.CrossRefGoogle Scholar
Vanderklish, PW, Bahr, BA. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol. 2000;81(5):323–39.Google Scholar
McCracken, E, Hunter, AJ, Patel, S, Graham, DI, Dewar, D. Calpain activation and cytoskeletal protein breakdown in the corpus callosum of head-injured patients. J Neurotrauma. 1999;16(9):749–61.Google Scholar
Fujikawa, DG. The role of excitotoxic programmed necrosis in acute brain injury. Comput Struct Biotechnol J. 2015;13:212–21.Google Scholar
Varela-Ramirez, A, Abendroth, J, Mejia, AA, Phan, IQ, Lorimer, DD, Edwards, TE, et al. Structure of acid deoxyribonuclease. Nucleic Acids Res. 2017;45(10):6217–27.CrossRefGoogle ScholarPubMed
Minchew, CL, Didenko, VV. Dual detection of nucleolytic and proteolytic markers of lysosomal cell death: DNase ii-type breaks and cathepsin d. Methods Mol Biol. 2017;1554:229–36.CrossRefGoogle ScholarPubMed
Uhlen, M, Fagerberg, L, Hallstrom, BM, Lindskog, C, Oksvold, P, Mardinoglu, A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.Google Scholar
Grassi Zucconi, G, Cosi, C, Palmieri, M, Furia, A, Bassetti, MA, Carsana, A. A pancreatic-like ribonuclease is synthesized in rat brain. Brain Res Mol Brain Res. 1992;14(1–2):16.Google Scholar
Morita, T, Sanda, A, Takizawa, Y, Ohgi, K, Irie, M. Distribution of a kidney acid-ribonuclease-like enzyme and the other ribonucleases in bovine organs and body fluids. Agric Biol Chem. 1987;51(10):2751–61.Google Scholar
Albrecht, J, Yanagihara, T. Effect of anoxia and ischemia on ribonuclease activity in brain. J Neurochem. 1979;32(3):1131–3.Google Scholar
Thornton, C, Hagberg, H. Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin Chim Acta. 2015;451(PartA):35–8.CrossRefGoogle ScholarPubMed
Grootjans, S, Vanden Berghe, T, Vandenabeele, P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 2017;24(7):1184–95.Google Scholar
Hribljan, V, Lisjak, D, Petrovic, DJ, Mitrecic, D. Necroptosis is one of the modalities of cell death accompanying ischemic brain stroke: from pathogenesis to therapeutic possibilities. Croat Med J. 2019;60(2):121–6.Google Scholar
Liu, T, Bao, YH, Wang, Y, Jiang, JY. The role of necroptosis in neurosurgical diseases. Braz J Med Biol Res. 2015;48(4):292–8.CrossRefGoogle ScholarPubMed
Dunai, Z, Bauer, PI, Mihalik, R. Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res. 2011;17(4):791800.Google Scholar
Jouan-Lanhouet, S, Riquet, F, Duprez, L, Vanden Berghe, T, Takahashi, N, Vandenabeele, P. Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol. 2014;35:213.CrossRefGoogle ScholarPubMed
Degterev, A, Zhou, W, Maki, JL, Yuan, J. Assays for necroptosis and activity of RIP kinases. Methods Enzymol. 2014;545:133.Google Scholar
Ofengeim, D, Ito, Y, Najafov, A, Zhang, Y, Shan, B, DeWitt, JP, et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 2015;10(11):1836–49.CrossRefGoogle ScholarPubMed
Fan, H, Tang, HB, Kang, J, Shan, L, Song, H, Zhu, K, et al. Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury. Neuroscience. 2015;311:362–73.Google Scholar
Wang, Y, An, R, Umanah, GK, Park, H, Nambiar, K, Eacker, SM, et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science. 2016;354(6308):pii:aad6872.CrossRefGoogle ScholarPubMed
Sairanen, T, Szepesi, R, Karjalainen-Lindsberg, ML, Saksi, J, Paetau, A, Lindsberg, PJ. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol. 2009;118(4):541–52.CrossRefGoogle ScholarPubMed
Stockwell, BR, Friedmann Angeli, JP, Bayir, H, Bush, AI, Conrad, M, Dixon, SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.Google Scholar
Li, Q, Weiland, A, Chen, X, Lan, X, Han, X, Durham, F, et al. Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis. Front Neurol. 2018;9:581.CrossRefGoogle ScholarPubMed
Wenzel, SE, Tyurina, YY, Zhao, J, St Croix, CM, Dar, HH, Mao, G, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell. 2017;171(3):628–41.CrossRefGoogle ScholarPubMed
Cui, D, Sun, D, Wang, X, Yi, L, Kulikowicz, E, Reyes, M, et al. Impaired autophagosome clearance contributes to neuronal death in a piglet model of neonatal hypoxic-ischemic encephalopathy. Cell Death Dis. 2017;8(7):e2919.Google Scholar
Galluzzi, L, Pedro, JM, Blomgren, K, Kroemer, G. Autophagy in acute brain injury. Nat Rev Neurosci. 2016;17(8):467–84.Google Scholar
Descloux, C, Ginet, V, Clarke, PG, Puyal, J, Truttmann, AC. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death. Int J Dev Neurosci. 2015;45:7585.CrossRefGoogle ScholarPubMed
Button, RW, Luo, S, Rubinsztein, DC. Autophagic activity in neuronal cell death. Neurosci Bull. 2015;31(4):382–94.Google Scholar
Uchiyama, Y, Koike, M, Shibata, M, Sasaki, M. Autophagic neuron death. Methods Enzymol. 2009;453:3351.Google Scholar
Tang, D, Kang, R, Berghe, TV, Vandenabeele, P, Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347–64.Google Scholar
Weilinger, NL, Maslieieva, V, Bialecki, J, Sridharan, SS, Tang, PL, Thompson, RJ. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol Sin. 2013;34(1):3948.Google Scholar
Serwach, K, Gruszczynska-Biegala, J. STIM proteins and glutamate receptors in neurons: role in neuronal physiology and neurodegenerative diseases. Int J Mol Sci. 2019;20(9):E2289.Google Scholar
Back, SA, Rosenberg, PA. Pathophysiology of glia in perinatal white matter injury. Glia. 2014;62(11):1790–815.CrossRefGoogle ScholarPubMed
Back, SA. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol. 2017;134(3):331–49.CrossRefGoogle ScholarPubMed
Fujikawa, DG. Activation of caspase-independent programmed pathways in seizure-induced neuronal necrosis. In: Fujikawa, DG, editor. Acute Neuronal Injury. New York: Springer; 2018. pp. 191211.CrossRefGoogle Scholar
Olney, JW, Rhee, V, Ho, OL. Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res. 1974;77(3):507–12.Google Scholar
Olney, JW. Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol. 1971;30(1):7590.Google Scholar
Bano, D, Ankarcrona, M. Beyond the critical point: An overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci Lett. 2018;663:7985.Google Scholar
Curcio, M, Salazar, IL, Mele, M, Canzoniero, LM, Duarte, CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol. 2016;143:135.Google Scholar
Bonfoco, E, Krainc, D, Ankarcrona, M, Nicotera, P, Lipton, SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995;92(16):7162–6.Google Scholar
Petito, CK, Pulsinelli, WA. Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. J Neuropathol Exp Neurol. 1984;43(2):141–53.Google Scholar
Garcia, JH, Liu, KF, Ho, KL. Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke. 1995;26:636–43.CrossRefGoogle ScholarPubMed
Pulsinelli, WA, Brierley, JB, Plum, F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11(5):491–8.CrossRefGoogle Scholar
Schmued, LC, Stowers, CC, Scallet, AC, Xu, L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res. 2005;1035(1):2431.CrossRefGoogle ScholarPubMed
Xu, X, Lai, Y, Hua, ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. 2019;39(1):BSR20180992.Google Scholar
Shen, Y, Wang, Z, Li, F, Sun, L. Morphological characteristics of eosinophilic neuronal death after transient unilateral forebrain ischemia in Mongolian gerbils. Neuropathology. 2016;36(3):227–36.Google Scholar
Nitatori, T, Sato, N, Waguri, S, Karasawa, Y, Araki, H, Shibanai, K, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci. 1995;15(2):1001–11.CrossRefGoogle ScholarPubMed
Bartus, RT, Dean, RL, Mennerick, S, Eveleth, D, Lynch, G. Temporal ordering of pathogenic events following transient global ischemia. Brain Res. 1998;790(1–2):113.Google Scholar
Sun, L, Kuroiwa, T, Ishibashi, S, Katsumata, N, Endo, S, Mizusawa, H. Transition of areas of eosinophilic neurons and reactive astrocytes to delayed cortical infarcts after transient unilateral forebrain ischemia in Mongolian gerbils. Acta Neuropathol. 2006;111(1):21–8.Google Scholar
Garcia, JH, Liu, KF, Ye, ZR, Gutierrez, JA. Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke. 1997;28(11):2303–9.Google Scholar
Colbourne, F, Li, H, Buchan, AM, Clemens, JA. Continuing postischemic neuronal death in CA1: influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats. Stroke. 1999;30(3):662–8.CrossRefGoogle ScholarPubMed
Friede, RL. Developmental Neuropathology. 2nd edition. Berlin: Springer Verlag; 1989.Google Scholar
Marin-Padilla, M. Developmental neuropathology and impact of perinatal brain damage. III: Gray matter lesions of the neocortex. J Neuropathol Exp Neurol. 1999;58(5):407–29.CrossRefGoogle ScholarPubMed
Mito, T, Becker, LE, Takashima, S. Neuropathology of central respiratory dysfunction in infancy. Pediatr Neurosurg. 1991;17(2):80–7.Google Scholar
DiMario, FJ, Jr., Clancy, R. Symmetrical thalamic degeneration with calcifications of infancy. Am J Dis Child. 1989;143(9):1056–60.Google Scholar
Rosales, RK, Riggs, HE. Symmetrical thalamic degeneration in infants. J Neuropathol Exp Neurol. 1962;21:372–6.Google Scholar
Parisi, JE, Collins, GH, Kim, RC, Crosley, CJ. Prenatal symmetrical thalamic degeneration with flexion spasticity at birth. Ann Neurol. 1983;13(1):94–7.Google Scholar
Leestma, JE, Martin, E. An electron probe and histochemical study of the “ferruginated” neuron. Arch Pathol. 1968;86(6):597605.Google Scholar
Gayoso, MJ, Al-Majdalawi, A, Garrosa, M, Calvo, B, Diaz-Flores, L. Selective calcification of rat brain lesions caused by systemic administration of kainic acid. Histol Histopathol. 2003;18(3):855–69.Google Scholar
Oehmichen, M. Vitality and time course of wounds. Forensic Sci Int. 2004;144(2–3):221–31.Google Scholar
Portera-Cailliau, C, Price, DL, Martin, LJ. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol. 1997;378(1):7087.Google Scholar
Thornton, C, Leaw, B, Mallard, C, Nair, S, Jinnai, M, Hagberg, H. Cell death in the developing brain after hypoxia-ischemia. Front Cell Neurosci. 2017;11:248.Google Scholar
Kuan, CY, Roth, KA, Flavell, RA, Rakic, P. Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 2000;23(7):291–7.Google Scholar
Krajewska, M, Mai, JK, Zapata, JM, Ashwell, KW, Schendel, SL, Reed, JC, et al. Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ. 2002;9(2):145–57.Google Scholar
Ludwig-Galezowska, AH, Flanagan, L, Rehm, M. Apoptosis repressor with caspase recruitment domain, a multifunctional modulator of cell death. J Cell Mol Med. 2011;15(5):1044–53.Google Scholar
Yuan, J, Amin, P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci. 2019;20(1):1933.Google Scholar
Hill, CS, Coleman, MP, Menon, DK. Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci. 2016;39(5):311–24.Google Scholar
Cornejo, VH, Luarte, A, Couve, A. Global and local mechanisms sustain axonal proteostasis of transmembrane proteins. Traffic. 2017;18(5):255–66.Google Scholar
Iwata, A, Stys, PK, Wolf, JA, Chen, XH, Taylor, AG, Meaney, DF, et al. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci. 2004;24(19):4605–13.Google Scholar
Simon, DJ, Weimer, RM, McLaughlin, T, Kallop, D, Stanger, K, Yang, J, et al. A caspase cascade regulating developmental axon degeneration. J Neurosci. 2012;32(49):17540–53.CrossRefGoogle ScholarPubMed
Arrazola, MS, Saquel, C, Catalan, RJ, Barrientos, SA, Hernandez, DE, Martinez, NW, et al. Axonal degeneration is mediated by necroptosis activation. J Neurosci. 2019;39(20):3832–44.Google Scholar
Arrazola, MS, Court, FA. Compartmentalized necroptosis activation in excitotoxicity-induced axonal degeneration: a novel mechanism implicated in neurodegenerative disease pathology. Neural Regen Res. 2019;14(8):1385–6.Google Scholar
Hernandez, DE, Salvadores, NA, Moya-Alvarado, G, Catalan, RJ, Bronfman, FC, Court, FA. Axonal degeneration induced by glutamate excitotoxicity is mediated by necroptosis. J Cell Sci. 2018;131(22):jcs214684.Google Scholar
Ding, C, Hammarlund, M. Mechanisms of injury-induced axon degeneration. Curr Opin Neurobiol. 2019;57:171–8.CrossRefGoogle ScholarPubMed
Sherriff, FE, Bridges, LR, Gentleman, SM, Sivaloganathan, S, Wilson, S. Markers of axonal injury in post mortem human brain. Acta Neuropathol. 1994;88(5):433–9.Google Scholar
Baiden Amissah, K, Joashi, U, Blumberg, R, Mehmet, H, Edwards, AD, Cox, PM. Expression of amyloid precursor protein (beta-APP) in the neonatal brain following hypoxic ischaemic injury. Neuropathol Appl Neurobiol. 1998;24(5):346–52.Google Scholar
Bell, JE, Becher, JC, Wyatt, B, Keeling, JW, McIntosh, N. Brain damage and axonal injury in a Scottish cohort of neonatal deaths. Brain. 2005;128(Pt. 5):1070–81.CrossRefGoogle Scholar
Johnson, VE, Stewart, W, Weber, MT, Cullen, DK, Siman, R, Smith, DH. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol. 2016;131(1):115–35.Google Scholar
Liu, CH, Rasband, MN. Axonal spectrins: nanoscale organization, functional domains and spectrinopathies. Front Cell Neurosci. 2019;13:234.CrossRefGoogle ScholarPubMed
Siman, R, Baudry, M, Lynch, G. Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc Natl Acad Sci U S A. 1984;81(11):3572–6.CrossRefGoogle ScholarPubMed
Sokolowski, JD, Gamage, KK, Heffron, DS, Leblanc, AC, Deppmann, CD, Mandell, JW. Caspase-mediated cleavage of actin and tubulin is a common feature and sensitive marker of axonal degeneration in neural development and injury. Acta Neuropathol Commun. 2014;2:16.CrossRefGoogle ScholarPubMed
Maor-Nof, M, Yaron, A. Neurite pruning and neuronal cell death: spatial regulation of shared destruction programs. Curr Opin Neurobiol. 2013;23(6):990–6.Google Scholar

References

Sofroniew, MV, Vinters, HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):735.CrossRefGoogle ScholarPubMed
Verkhratsky, A, Steardo, L, Parpura, V, Montana, V. Translational potential of astrocytes in brain disorders. Prog Neurobiol. 2016;144:188–205.Google Scholar
Bayraktar, OA, Fuentealba, LC, Alvarez-Buylla, A, Rowitch, DH. Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol. 2015;7(1):a020362.Google Scholar
Namihira, M, Nakashima, K. Mechanisms of astrocytogenesis in the mammalian brain. Curr Opin Neurobiol. 2013;23(6):921–7.Google Scholar
Thrane, AS, Rangroo Thrane, V, Nedergaard, M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci. 2014;37(11):620–8.Google Scholar
Bazargani, N, Attwell, D. Astrocyte calcium signaling: the third wave. Nat Neurosci. 2016;19(2):182–9.Google Scholar
Matyash, V, Kettenmann, H. Heterogeneity in astrocyte morphology and physiology. Brain Res Rev. 2010;63(1–2):210.Google Scholar
Sun, W, Cornwell, A, Li, J, Peng, S, Osorio, MJ, Su Wanga, NA, et al. SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J Neurosci. 2017;37(17):4493–507.Google Scholar
Lafrenaye, AD, Simard, JM. Bursting at the seams: molecular mechanisms mediating astrocyte swelling. Int J Mol Sci. 2019;20(2):pii:E330.Google Scholar
Del Bigio, MR, Deck, JHN, Davidson, GS. Glial swelling with eosinophilia in human post-mortem brains: a change indicative of plasma extravasation. Acta Neuropathol. 2000;100:688–94.Google Scholar
Pekny, M, Nilsson, M. Astrocyte activation and reactive gliosis. Glia. 2005;50(4):427–34.Google Scholar
Pekny, M, Pekna, M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94(4):1077–98.Google Scholar
Rosenstein, JM, Krum, JM, Ruhrberg, C. VEGF in the nervous system. Organogenesis. 2010;6(2):107–14.Google Scholar
Liberto, CM, Albrecht, PJ, Herx, LM, Yong, VW, Levison, SW. Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem. 2004;89(5):1092–100.Google Scholar
Liddelow, SA, Barres, BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46(6):957–67.Google Scholar
Ge, WP, Jia, JM. Local production of astrocytes in the cerebral cortex. Neuroscience. 2016;323:39.Google Scholar
Kanski, R, van Strien, ME, van Tijn, P, Hol, EM. A star is born: new insights into the mechanism of astrogenesis. Cell Mol Life Sci. 2014;71(3):433–47.Google Scholar
Manlow, A, Munoz, DG. A non-toxic method for the demonstration of gliosis. J Neuropathol Exp Neurol. 1992;51:298302.CrossRefGoogle ScholarPubMed
Fernandez-Klett, F, Priller, J. The fibrotic scar in neurological disorders. Brain Pathol. 2014;24(4):404–13.Google Scholar
Nave, KA. Myelination and the trophic support of long axons. Nat Rev Neurosci. 2010;11(4):275–83.Google Scholar
van Tilborg, E, CGM, de Theije, van Hal, M, Wagenaar, N, de Vries, LS, Benders, MJ, et al. Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia. 2018;66(2):221–38.Google Scholar
Chang, A, Nishiyama, A, Peterson, J, Prineas, J, Trapp, BD. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci. 2000;20(17):6404–12.Google Scholar
Levine, JM, Reynolds, R, Fawcett, JW. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 2001;24(1):3947.Google Scholar
Foerster, S, Hill, MFE, Franklin, RJM. Diversity in the oligodendrocyte lineage: Plasticity or heterogeneity? Glia. 2019;67(10):1797–1805.Google Scholar
Elbaz, B, Popko, B. Molecular control of oligodendrocyte development. Trends Neurosci. 2019;42(4):263–77.Google Scholar
Takase, H, Washida, K, Hayakawa, K, Arai, K, Wang, X, Lo, EH, et al. Oligodendrogenesis after traumatic brain injury. Behav Brain Res. 2018;340:205–11.Google Scholar
Flygt, J, Gumucio, A, Ingelsson, M, Skoglund, K, Holm, J, Alafuzoff, I, et al. Human traumatic brain injury results in oligodendrocyte death and increases the number of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol. 2016;75(6):503–15.Google Scholar
Bruni, JE. Ependymal development, proliferation, and functions: a review. Microsc Res Tech. 1998;41(1):213.Google Scholar
Sarnat, HB. Role of the human fetal ependyma. Pediatr Neurol. 1992;8:163–78.Google Scholar
Del Bigio, MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain. 2011;134(Pt 5):1344–61.Google Scholar
Shah, PT, Stratton, JA, Stykel, MG, Abbasi, S, Sharma, S, Mayr, KA, et al. Single-cell transcriptomics and fate mapping of ependymal cells reveals an absence of neural stem cell function. Cell. 2018;173(4):1045–57.e9.Google Scholar
Coletti, AM, Singh, D, Kumar, S, Shafin, TN, Briody, PJ, Babbitt, BF, et al. Characterization of the ventricular-subventricular stem cell niche during human brain development. Development. 2018;145(20):pii:dev170100.Google Scholar
Sarnat, HB. Histochemistry and immunocytochemistry of the developing ependyma and choroid plexus. Microsc Res Tech. 1998;41(1):1428.Google Scholar
Kawanishi, R, Mizutani, T, Yamada, H, Minami, M, Kakimi, S, Yamada, T, et al. Ubiquitin-positive inclusions in ependymal cells. Acta Neuropathol. 2003;106(2):129–36.Google Scholar
Abdi, K, Lai, CH, Paez-Gonzalez, P, Lay, M, Pyun, J, Kuo, CT. Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus. Nat Commun. 2018;9(1):1655.Google Scholar
Del Bigio, MR. Ependymal cells: biology and pathology. Acta Neuropathol. 2010;119(1):5573.Google Scholar
Sarnat, HB. Ependymal reactions to injury. A review. J Neuropathol Exp Neurol. 1995;54(1):115.Google Scholar
Bruni, JE, Del Bigio, MR, Clattenburg, RE. Ependyma: normal and pathological. A review of the literature. Brain Res. 1985;356(1):119.Google Scholar
Munoz, RI, Kahne, T, Herrera, H, Rodriguez, S, Guerra, MM, Vio, K, et al. The subcommissural organ and the Reissner fiber: old friends revisited. Cell Tissue Res. 2019;375(2):507–29.Google Scholar
Wohlsein, P, Deschl, U, Baumgartner, W. Nonlesions, unusual cell types, and postmortem artifacts in the central nervous system of domestic animals. Vet Pathol. 2013;50(1):122–43.Google Scholar
Keene, MF, Hewer, EE. The subcommissural organ and the mesocoelic recess in the human brain, together with a note on reissner’s fibre. J Anat. 1935;69(4):501–7.Google Scholar
Galarza, M. Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev. 2002;25(4):205–15.Google Scholar
Cantaut-Belarif, Y, Sternberg, JR, Thouvenin, O, Wyart, C, Bardet, PL. The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis. Curr Biol. 2018;28(15):2479–86 e4.Google Scholar
Grondona, JM, Hoyo-Becerra, C, Visser, R, Fernandez-Llebrez, P, Lopez-Avalos, MD. The subcommissural organ and the development of the posterior commissure. Int Rev Cell Mol Biol. 2012;296:63137.CrossRefGoogle ScholarPubMed
Milhorat, TH, Kotzen, RM, Anzil, AP. Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg. 1994;80(4):716–22.Google Scholar

References

Kuper, CF, van Bilsen, J, Cnossen, H, Houben, G, Garthoff, J, Wolterbeek, A. Development of immune organs and functioning in humans and test animals: Implications for immune intervention studies. Reprod Toxicol. 2016;64:180–90.Google Scholar
Yockey, LJ, Iwasaki, A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity. 2018;49(3):397412.Google Scholar
Simon, AK, Hollander, GA, McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282(1821):20143085.Google Scholar
Thapa, P, Farber, DL. The role of the thymus in the immune response. Thorac Surg Clin. 2019;29(2):123–31.Google Scholar
Kinder, JM, Stelzer, IA, Arck, PC, Way, SS. Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol. 2017;17(8):483–94.Google Scholar
Rijnink, EC, Penning, ME, Wolterbeek, R, Wilhelmus, S, Zandbergen, M, van Duinen, SG, et al. Tissue microchimerism is increased during pregnancy: a human autopsy study. Mol Hum Reprod. 2015;21(11):857–64.Google Scholar
Visser, GHA, Di Renzo, GC, Spitalnik, SL, Motherhood, FCS, Newborn, H. The continuing burden of Rh disease 50 years after the introduction of anti-Rh(D) immunoglobin prophylaxis: call to action. Am J Obstet Gynecol. 2019;Epub:pii: S0002-9378(19)30677–5.Google Scholar
Maddux, AB, Douglas, IS. Is the developmentally immature immune response in paediatric sepsis a recapitulation of immune tolerance? Immunology. 2015;145(1):110.Google Scholar
Graeber, MB, Streit, WJ. Microglia: biology and pathology. Acta Neuropathol. 2010;119:89105.Google Scholar
Menassa, DA, Gomez-Nicola, D. Microglial dynamics during human brain development. Front Immunol. 2018;9:1014.CrossRefGoogle ScholarPubMed
Askew, K, Gomez-Nicola, D. A story of birth and death: Insights into the formation and dynamics of the microglial population. Brain Behav Immun. 2018;69:917.Google Scholar
Smolders, SM, Kessels, S, Vangansewinkel, T, Rigo, JM, Legendre, P, Brone, B. Microglia: brain cells on the move. Prog Neurobiol. 2019;178:101612.CrossRefGoogle ScholarPubMed
Askew, K, Li, K, Olmos-Alonso, A, Garcia-Moreno, F, Liang, Y, Richardson, P, et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 2017;18(2):391405.Google Scholar
Dennis, CV, Suh, LS, Rodriguez, ML, Kril, JJ, Sutherland, GT. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42(7):621–38.CrossRefGoogle ScholarPubMed
Reu, P, Khosravi, A, Bernard, S, Mold, JE, Salehpour, M, Alkass, K, et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 2017;20(4):779–84.Google Scholar
Billiards, SS, Haynes, RL, Folkerth, RD, Trachtenberg, FL, Liu, LG, Volpe, JJ, et al. Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol. 2006;497(2):199208.Google Scholar
Joost, E, Jordao, MJC, Mages, B, Prinz, M, Bechmann, I, Krueger, M. Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue. Brain Struct Funct. 2019;224(3):1301–14.Google Scholar
Blakemore, WF. The ultrastructure of normal and reactive microglia. Acta Neuropathol Suppl. 1975;Suppl 6:273–8.Google Scholar
Zhao, X, Eyo, UB, Murugan, M, Wu, LJ. Microglial interactions with the neurovascular system in physiology and pathology. Dev Neurobiol. 2018;78(6):604–17.Google Scholar
Arnold, T, Betsholtz, C. The importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell. 2013;5(1):12.Google Scholar
Konishi, H, Kiyama, H, Ueno, M. Dual functions of microglia in the formation and refinement of neural circuits during development. Int J Dev Neurosci. 2019 77:18–25.CrossRefGoogle Scholar
Thion, MS, Ginhoux, F, Garel, S. Microglia and early brain development: An intimate journey. Science. 2018;362(6411):185–9.Google Scholar
Pierre, WC, Smith, PLP, Londono, I, Chemtob, S, Mallard, C, Lodygensky, GA. Neonatal microglia: The cornerstone of brain fate. Brain Behav Immun. 2017;59:333–45.Google Scholar
Kierdorf, K, Prinz, M. Microglia in steady state. J Clin Invest. 2017;127(9):3201–9.Google Scholar
Mosser, CA, Baptista, S, Arnoux, I, Audinat, E. Microglia in CNS development: shaping the brain for the future. Prog Neurobiol. 2017;149–150:120.Google Scholar
Eyo, UB, Wu, LJ. Microglia: lifelong patrolling immune cells of the brain. Prog Neurobiol. 2019;179:101614.Google Scholar
Goldmann, T, Wieghofer, P, Jordao, MJ, Prutek, F, Hagemeyer, N, Frenzel, K, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol. 2016;17(7):797805.Google Scholar
Lopez-Atalaya, JP, Askew, KE, Sierra, A, Gomez-Nicola, D. Development and maintenance of the brain’s immune toolkit: Microglia and non-parenchymal brain macrophages. Dev Neurobiol. 2018;78(6):561–79.Google Scholar
Bechmann, I, Kwidzinski, E, Kovac, AD, Simburger, E, Horvath, T, Gimsa, U, et al. Turnover of rat brain perivascular cells. Exp Neurol. 2001;168(2):242–9.Google Scholar
Owens, T, Bechmann, I, Engelhardt, B. Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008;67(12):1113–21.Google Scholar
Krueger, M, Bechmann, I. CNS pericytes: concepts, misconceptions, and a way out. Glia. 2010;58(1):110.CrossRefGoogle Scholar
Muramatsu, R, Yamashita, T. Pericyte function in the physiological central nervous system. Neurosci Res. 2014;81–82:3841.Google Scholar
Berthiaume, AA, Hartmann, DA, Majesky, MW, Bhat, NR, Shih, AY. Pericyte structural remodeling in cerebrovascular health and homeostasis. Front Aging Neurosci. 2018;10:210.Google Scholar
Giannoni, P, Badaut, J, Dargazanli, C, De Maudave, AF, Klement, W, Costalat, V, et al. The pericyte-glia interface at the blood-brain barrier. Clin Sci (Lond). 2018;132(3):361–74.Google Scholar
Lambracht-Hall, M, Dimitriadou, V, Theoharides, TC. Migration of mast cells in the developing rat brain. Brain Res Dev Brain Res. 1990;56(2):151–9.Google Scholar
Dropp, JJ. Mast cells in the human brain. Acta Anat (Basel). 1979;105(4):505–13.Google Scholar
Forsythe, P. Mast cells in neuroimmune interactions. Trends Neurosci. 2019;42(1):4355.Google Scholar
Hendriksen, E, van Bergeijk, D, Oosting, RS, Redegeld, FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev. 2017;79:119–33.Google Scholar
Silver, R, Silverman, AJ, Vitkovic, L, Lederhendler, II. Mast cells in the brain: evidence and functional significance. Trends Neurosci. 1996;19(1):2531.Google Scholar
Strecker, JK, Schmidt, A, Schabitz, WR, Minnerup, J. Neutrophil granulocytes in cerebral ischemia – Evolution from killers to key players. Neurochem Int. 2017;107:117–26.Google Scholar
Hickey, WF. Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol. 1991;1:97105.Google Scholar
Hickey, WF. Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol. 1999;11(2):125–37.Google Scholar
Williams, KC, Hickey, WF. Traffic of hematogenous cells through the central nervous system. Curr Top Microbiol Immunol. 1995;202:221–45.Google Scholar
Liu, F, McCullough, LD. Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin. 2013;34(9):1121–30.Google Scholar
Izquierdo, P, Attwell, D, Madry, C. Ion channels and receptors as determinants of microglial function. Trends Neurosci. 2019;42(4):278–92.Google Scholar
Alderliesten, T, Nikkels, PG, Benders, MJ, de Vries, LS, Groenendaal, F. Antemortem cranial MRI compared with postmortem histopathologic examination of the brain in term infants with neonatal encephalopathy following perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed. 2013;98(4):F304–F9.Google Scholar
Boche, D, Perry, VH, Nicoll, JA. Activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39:318.Google Scholar
Smith, AM, Dragunow, M. The human side of microglia. Trends Neurosci. 2014;37(3):125–35.Google Scholar
Walker, DG, Lue, LF. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimer’s Res Ther. 2015;7(1):56.Google Scholar
Schetters, STT, Gomez-Nicola, D, Garcia-Vallejo, JJ, Van Kooyk, Y. Neuroinflammation: microglia and T cells get ready to tango. Front Immunol. 2017;8:1905.Google Scholar
Torres-Platas, SG, Comeau, S, Rachalski, A, Bo, GD, Cruceanu, C, Turecki, G, et al. Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation. 2014;11:12.Google Scholar
Brooks, SA. Lectin histochemistry: historical perspectives, state of the art, and the future. Methods Mol Biol. 2017;1560:93107.Google Scholar
Del Bigio, MR, Becker, LE. Microglial aggregation in the dentate gyrus: a marker of mild hypoxic-ischaemic brain insult in human infants. Neuropathol Appl Neurobiol. 1994;20:144–51.Google Scholar
Fujimoto, E, Miki, A, Mizoguti, H. Histochemical study of the differentiation of microglial cells in the developing human cerebral hemispheres. J Anat. 1989;166:253–64.Google Scholar
Zrzavy, T, Hoftberger, R, Berger, T, Rauschka, H, Butovsky, O, Weiner, H, et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol Appl Neurobiol. 2019;45(3):278–90.Google Scholar
Sarkar, T, Patro, N, Patro, IK. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res Bull. 2019;147:5868.Google Scholar
Hantsoo, L, Kornfield, S, Anguera, MC, Epperson, CN. Inflammation: A Proposed Intermediary Between Maternal Stress and Offspring Neuropsychiatric Risk. Biol Psychiatry. 2019;85(2):97106.Google Scholar
Jiang, NM, Cowan, M, Moonah, SN, Petri, WA, Jr. The impact of systemic inflammation on neurodevelopment. Trends Mol Med. 2018;24(9):794804.Google Scholar
Hung, TH, Chen, VC, Yang, YH, Tsai, CS, Lu, ML, McIntyre, RS, et al. Association between enterovirus infection and speech and language impairments: a nationwide population-based study. Res Dev Disabil. 2018;77:7686.Google Scholar
Instanes, JT, Halmoy, A, Engeland, A, Haavik, J, Furu, K, Klungsoyr, K. Attention-deficit / hyperactivity disorder in offspring of mothers with inflammatory and immune system diseases. Biol Psychiatry. 2017;81(5):452–9.Google Scholar
Strunk, T, Inder, T, Wang, X, Burgner, D, Mallard, C, Levy, O. Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infect Dis. 2014;14(8):751–62.Google Scholar
Mallard, C, Tremblay, ME, Vexler, ZS. Microglia and neonatal brain injury. Neuroscience. 2019;405:6876.Google Scholar
Ikegami, A, Haruwaka, K, Wake, H. Microglia: lifelong modulator of neural circuits. Neuropathology. 2019;39(3):173–80.Google Scholar
Wohleb, ES. Neuron-microglia interactions in mental health disorders: “for better, and for worse.Front Immunol. 2016;7:544.Google Scholar
Galloway, DA, Phillips, AEM, Owen, DRJ, Moore, CS. Phagocytosis in the brain: homeostasis and disease. Front Immunol. 2019;10:790.Google Scholar
Giraud, A, Guiraut, C, Chevin, M, Chabrier, S, Sebire, G. Role of perinatal inflammation in neonatal arterial ischemic stroke. Front Neurol. 2017;8:612.Google Scholar
Parrella, E, Porrini, V, Benarese, M, Pizzi, M. The role of mast cells in stroke. Cells. 2019;8(5):E437.Google Scholar
Bhalala, US, Koehler, RC, Kannan, S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr. 2014;2:144.Google Scholar
McDonough, A, Lee, RV, Weinstein, JR. Microglial interferon signaling and white matter. Neurochem Res. 2017;42(9):2625–38.Google Scholar
Aggarwal, S, Bahal, A, Dalal, A. Renal dysfunction in sibs with band like calcification with simplified gyration and polymicrogyria: report of a new mutation and review of literature. Eur J Med Genet. 2016;59(1):510.Google Scholar
Biber, K, Owens, T, Boddeke, E. What is microglia neurotoxicity (Not)? Glia. 2014;62(6):841–54.Google Scholar
Hendrickx, DAE, van Eden, CG, Schuurman, KG, Hamann, J, Huitinga, I. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol. 2017;309:1222.Google Scholar
Ito, D, Imai, Y, Ohsawa, K, Nakajima, K, Fukuuchi, Y, Kohsaka, S. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res. 1998;57(1):19.Google Scholar
Monier, A, Evrard, P, Gressens, P, Verney, C. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol. 2006;499(4):565–82.Google Scholar
Monier, A, Adle-Biassette, H, Delezoide, AL, Evrard, P, Gressens, P, Verney, C. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol. 2007;66(5):372–82.Google Scholar
Micklem, K, Rigney, E, Cordell, J, Simmons, D, Stross, P, Turley, H, et al. A human macrophage-associated antigen (CD68) detected by six different monoclonal antibodies. Br J Haematol. 1989;73(1):611.Google Scholar
Gehrmann, J, Banati, RB, Kreutzberg, GW. Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol. 1993;48(2):189–98.Google Scholar
Mildner, A, Huang, H, Radke, J, Stenzel, W, Priller, J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65(2):375–87.Google Scholar
Bennett, ML, Bennett, FC, Liddelow, SA, Ajami, B, Zamanian, JL, Fernhoff, NB, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A. 2016;113(12):E1738–E46.CrossRefGoogle ScholarPubMed
Satoh, JI, Kino, Y, Asahina, N, Takitani, M, Miyoshi, J, Ishida, T, et al. TMEM119 marks a subset of microglia in the human brain. Neuropathology. 2015;36(1):3949.Google Scholar
Zrzavy, T, Machado-Santos, J, Christine, S, Baumgartner, C, Weiner, HL, Butovsky, O, et al. Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol. 2018;28(6):791805.Google Scholar
Haage, V, Semtner, M, Vidal, RO, Hernandez, DP, Pong, WW, Chen, Z, et al. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol Commun. 2019;7(1):20.Google Scholar

References

Courville, CB. Antenatal and paranatal circulatory disorders as a cause of cerebral damage in early life. J Neuropathol Exp Neurol. 1959;18(1):115–40.Google Scholar
Courville, CB. Paranatal anoxia and its residual encephalic lesions. Can Anaesth Soc J. 1961;8:313.Google Scholar
Marin-Padilla, M. Developmental neuropathology and impact of perinatal brain damage. II: white matter lesions of the neocortex. J Neuropathol Exp Neurol. 1997;56(3):219–35.Google Scholar
Marin-Padilla, M. Developmental neuropathology and impact of perinatal brain damage. III: Gray matter lesions of the neocortex. J Neuropathol Exp Neurol. 1999;58(5):407–29.Google Scholar
Millar, LJ, Shi, L, Hoerder-Suabedissen, A, Molnar, Z. Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front Cell Neurosci. 2017;11:78.Google Scholar
Little, WJ. On the influence of parturition, difficult labours, premature birth, and asphyxia neonatorum on the mental and physical condition of the child, especially in relation to deformities. Trans Obstet Soc Lond. 1862;3:293344.Google Scholar
Courville, CB. Palsy, Cerebral. A Brief Introduction to Its History, Etiology, and Pathology, with Some Notes on the Resultant Clinical Syndromes and Their Treatment. Los Angeles: San Lucas Press; 1954. p. 80.Google Scholar
Towbin, A. Pathology of cerebral palsy. II. Cerebral palsy due to encephaloclastic processes. AMA Arch Pathol. 1955;59:529–52.Google Scholar
Crome, L. Some morbid-anatomical aspects of mental deficiency. J Ment Sci. 1954;100(421):894912.Google Scholar
Crome, LL. Cortical lesions in cerebral palsy. Dev Med Chil Neurol. 1959;1(6):22–8.Google Scholar
Crome, L. The brain and mental retardation. Br Med J. 1960;1(5177):897904.Google Scholar
Southard, EE. General aspects of the brain anatomy of the feeble-minded. Mem Am Acad Arts Sci. 1918;14(2):2558.Google Scholar
Schreiber, F. Apnea of the newborn and associated cerebral injury. A clinical and statistical study. JAMA. 1938;111(14):1263–9.Google Scholar
Brandenburg, JE, Fogarty, MJ, Sieck, GC. A critical evaluation of current concepts in cerebral palsy. Physiology (Bethesda). 2019;34(3):216–29.Google Scholar
Leviton, A. Why the term neonatal encephalopathy should be preferred over neonatal hypoxic-ischemic encephalopathy. Am J Obstet Gynecol. 2013;208(3):176–80.Google Scholar
Volpe, JJ. Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Ann Neurol. 2012;72(2):156–66.Google Scholar
Becher, JC, Bell, JE, Keeling, JW, Liston, WA, McIntosh, N, Wyatt, B. The Scottish Perinatal Neuropathology Study–clinicopathological correlation in stillbirths. BJOG. 2006;113(3):310–7.Google Scholar
Zhang, X, Kramer, MS. Temporal trends in stillbirth in the United States, 1992–2004: a population-based cohort study. BJOG. 2014;121(10):1229–36.Google Scholar
Platts, J, Mitchell, EA, Stacey, T, Martin, BL, Roberts, D, McCowan, L, et al. The Midland and North of England Stillbirth Study (MiNESS). BMC Pregnancy Childbirth. 2014;14:171.Google Scholar
Salihu, HM. Epidemiology of stillbirth and fetal central nervous system injury. Semin Perinatol. 2008;32(4):232–8.Google Scholar
McCormick, MC, Litt, JS, Smith, VC, Zupancic, JA. Prematurity: an overview and public health implications. Annu Rev Public Health. 2011;32:367–79.Google Scholar
Volpe, JJ. The encephalopathy of prematurity – brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol. 2009;16(4):167–78.Google Scholar
Lee, AC, Kozuki, N, Blencowe, H, Vos, T, Bahalim, A, Darmstadt, GL, et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res. 2013;74 Suppl 1:5072.Google Scholar
American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy. Executive summary: Neonatal Encephalopathy and Neurologic Outcome, 2nd edition. Obstet Gynecol. 2014;123(4):896901.Google Scholar
Smith, J, Wells, L, Dodd, K. The continuing fall in incidence of hypoxic-ischaemic encephalopathy in term infants. BJOG. 2000;107(4):461–6.Google Scholar
Kurinczuk, JJ, White-Koning, M, Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6):329–38.Google Scholar
Martinez-Biarge, M, Diez-Sebastian, J, Wusthoff, CJ, Mercuri, E, Cowan, FM. Antepartum and intrapartum factors preceding neonatal hypoxic-ischemic encephalopathy. Pediatrics. 2013;132(4):e952–e9.Google Scholar
McIntyre, S, Blair, E, Badawi, N, Keogh, J, Nelson, KB. Antecedents of cerebral palsy and perinatal death in term and late preterm singletons. Obstet Gynecol. 2013;122(4):869–77.Google Scholar
Rutherford, M, Malamateniou, C, McGuinness, A, Allsop, J, Biarge, MM, Counsell, S. Magnetic resonance imaging in hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6):351–60.Google Scholar
Nikas, I, Dermentzoglou, V, Theofanopoulou, M, Theodoropoulos, V. Parasagittal lesions and ulegyria in hypoxic-ischemic encephalopathy: neuroimaging findings and review of the pathogenesis. J Child Neurol. 2008;23(1):51–8.Google Scholar
Thayyil, S, Chandrasekaran, M, Taylor, A, Bainbridge, A, Cady, EB, Chong, WK, et al. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics. 2010;125(2):e382–e95.Google Scholar
Montaldo, P, Chaban, B, Lally, PJ, Sebire, NJ, Taylor, AM, Thayyil, S. Quantification of ante-mortem hypoxic ischemic brain injury by post-mortem cerebral magnetic resonance imaging in neonatal encephalopathy. Eur J Paediatr Neurol. 2015;19(6):665–71.Google Scholar
Squier, W, Cowan, FM. The value of autopsy in determining the cause of failure to respond to resuscitation at birth. Semin Neonatol. 2004;9(4):331–45.Google Scholar
Elder, DE, Zuccollo, JM. Autopsy after death due to extreme prematurity. Arch Dis Child Fetal Neonatal Ed. 2005;90(3):F270–F2.Google Scholar
Jacques, SM, Kupsky, WJ, Qureshi, F. Antenatal brain injury in third trimester neonates with severe congenital anomalies: an autopsy study. J Matern Fetal Neonatal Med. 2015;28(12):1414–20.Google Scholar
Swinton, CH, Weiner, J, Okah, FA. The neonatal autopsy: can it be revived? Am J Perinatol. 2013;30(9):739–44.Google Scholar
Brown, AW. Structural abnormalities in neurons. J Clin Pathol Suppl. 1977;11:155–69.Google Scholar
Brody, BA, Kinney, HC, Kloman, AS, Gilles, FH. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol. 1987;46:283301.Google Scholar
Yakovlev, PI, Lecours, AR. The myelogenetic cycles of regional maturation of the brain. In: Minkowski, A, editor. Regional Development of the Brain in Early Life. Oxford: Blackwell Scientific Publications; 1967. pp. 370.Google Scholar
Kramer, W. Multilocular encephalomalacia. J Neurol Neurosurg Psychiatry. 1956;19(3):209–16.Google Scholar
Ahdab-Barmada, M, Moossy, J, Painter, M. Pontosubicular necrosis and hyperoxemia. Pediatrics. 1980;66(6):840–7.Google Scholar
Friede, RL. Ponto-subicular lesions in perinatal anoxia. Arch Pathol. 1972;94(4):343–54.Google Scholar
Sohma, O, Mito, T, Mizuguchi, M, Takashima, S. The prenatal age critical for the development of the pontosubicular necrosis. Acta Neuropathol. 1995;90(1):710.Google Scholar
Bruck, Y, Bruck, W, Kretzschmar, HA, Lassmann, H. Evidence for neuronal apoptosis in pontosubicular neuron necrosis. Neuropathol Appl Neurobiol. 1996;22(1):23–9.Google Scholar
Burke, C, Gobe, G. Pontosubicular apoptosis (“necrosis”) in human neonates with intrauterine growth retardation and placental infarction. Virchows Arch. 2005;446(6):640–5.Google Scholar
Hernandez-Jimenez, M, Sacristan, S, Morales, C, Garcia-Villanueva, M, Garcia-Fernandez, E, Alcazar, A, et al. Apoptosis-related proteins are potential markers of neonatal hypoxic-ischemic encephalopathy (HIE) injury. Neurosci Lett. 2014;558:143–8.Google Scholar
Del Bigio, MR, Becker, LE. Microglial aggregation in the dentate gyrus: a marker of mild hypoxic-ischaemic brain insult in human infants. Neuropathol Appl Neurobiol. 1994;20:144–51.Google Scholar
Squier, W, Salisbury, H, Sisodiya, S. Stroke in the developing brain and intractable epilepsy: effect of timing on hippocampal sclerosis. Dev Med Child Neurol. 2003;45(9):580–5.Google Scholar
Heschl, R. Gehirndefect und Hydrocephalus. Vierteljahrsschr prakt Heilk (Prager). 1859;61(1):5974.Google Scholar
de la Croix, NJ. Ein Fall von ausgebreiteter Porencephalie an der medialen Fläche der rechten Grosshirnhemisphäre. Virchows Archiv. 1884;97(2):307–29.Google Scholar
Lyon, G, Robain, O. Etude comparative des encephalopathies circulatories prenatales et para-natales (hydranencephalies, porencephalies et encephalomalacies kystiques de la substance blanche). Acta Neuropathol. 1967;9(1):7998.Google Scholar
Gilles, FH. Classification of cerebral palsy: neuropathologist’s perspective. Dev Med Child Neurol. 2007;49 Suppl 2:1921.Google Scholar
Norman, RM, Urich, H, Woods, GE. The relationship between prenatal porencephaly and the encephalomalacias of early life. J Ment Sci. 1958;104(436):758–71.Google Scholar
Yakovlev, PI, Wadsworth, RC. Schizencephalies. A study of the congenital clefts in the cerebral mantle. I. Clefts with fused lips. J Neuropathol Exp Neurol. 1946;5:116–30.Google Scholar
Yakovlev, PI, Wadsworth, RC. Schizencephalies. A study of the congenital clefts in the cerebral mantle. II. Clefts with hydrocephalus and lips separated. J Neuropathol Exp Neurol. 1946;5(3):169206.Google Scholar
Curry, CJ, Lammer, EJ, Nelson, V, Shaw, GM. Schizencephaly: heterogeneous etiologies in a population of 4 million California births. Am J Med Genet A. 2005;137(2):181–9.Google Scholar
Fernandez-Bouzas, A, Harmony, T, Santiago-Rodriguez, E, Ricardo-Garcell, J, Fernandez, T, Avila-Acosta, D. Schizencephaly with occlusion or absence of middle cerebral artery. Neuroradiology. 2006;48(3):171–5.Google Scholar
Merello, E, Swanson, E, De Marco, P, Akhter, M, Striano, P, Rossi, A, et al. No major role for the EMX2 gene in schizencephaly. Am J Med Genet A. 2008;146A(9):1142–50.Google Scholar
Yoneda, Y, Haginoya, K, Kato, M, Osaka, H, Yokochi, K, Arai, H, et al. Phenotypic spectrum of COL4A1 mutations: porencephaly to schizencephaly. Ann Neurol. 2013;73(1):4857.Google Scholar
Norman, RM. Atrophic sclerosis of the cerebral cortex associated with birth injury. Arch Dis Child. 1944;19(99):111–21.Google Scholar
Bresler, J. Klinische und pathologisch-anatomische Beiträge zur Mikrogyrie. Arch Psychiatr Nervenkr. 1899;31(3):566–73.Google Scholar
Morys, J, Narkiewicz, O, Wisniewski, HM. Neuronal loss in the human claustrum following ulegyria. Brain Res. 1993;616(1–2):176–80.Google Scholar
Norman, MG. On the morphogenesis of ulegyria. Acta Neuropathol. 1981;53(4):331–2.Google Scholar
Atapattu, N, Ainsworth, J, Willshaw, H, Parulekar, M, MacPherson, L, Miller, C, et al. Septo-optic dysplasia: antenatal risk factors and clinical features in a regional study. Horm Res Paediatr. 2012;78(2):81–7.Google Scholar
Maeda, T, Akaishi, M, Shimizu, M, Sekiguchi, K, Anan, A, Takano, T, et al. The subclassification of schizencephaly and its clinical characterization. Brain Dev. 2009;31(9):694701.Google Scholar
Bonasoni, MP, Reyes, J, Cromwell, S, Halliday, W, Taylor, GP, Chiasson, DA. Sudden death in the septo-optic dysplasia spectrum. Acad Forensic Pathol. 2014;4(3):400–8.Google Scholar
Bhatnagar, S, Kuber, R, Shah, D, Kulkarni, V. Unilateral closed lip schizencephaly with septo-optic dysplasia. Ann Med Health Sci Res. 2014;4(2):283–5.Google Scholar
Labate, A, Gambardella, A, Quattrone, A. Septo-optic dysplasia plus bilateral perisylvian polymicrogyria: a case report. Neurol Sci. 2013;34(8):1479–80.Google Scholar
Lubinsky, MS. Hypothesis: septo-optic dysplasia is a vascular disruption sequence. Am J Med Genet. 1997;69(3):235–6.Google Scholar
Borchert, M. Reappraisal of the optic nerve hypoplasia syndrome. J Neuroophthalmol. 2012;32(1):5867.Google Scholar
Clinch, TA. A case of imperfect porencephaly. J Mental Sci. 1899;45(189):246–57.Google Scholar
Andriezen, WL. The pathogenesis of epileptic idiocy and epileptic imbecility. Brit Med J. 1897;1:1081–3.Google Scholar
Mickle, WJ. Atypical and unusual brain-forms, especially in relation to mental status: a study on brain-surface morphology. J Mental Sci. 1896;42(178):541–83.Google Scholar
Binswanger, O. Ueber eine Missbildung des Gehirns. Virchows Archiv. 1882;87(3):427–76.Google Scholar
Jacob, H. Die feinere Oberflächengestaltung der Hirnwindungen, die Hirnwarzenbildung und die Mikropolygyrie. Z gesamte Neurol Psychiatrie. 1940;170(1):6484.Google Scholar
Warner, FJ. The histogenic principle of microgyria and related cerebral malformations. J Nerv Ment Dis. 1953;118(1):118.Google Scholar
Heffner, RR. Syndrome of absent abdominal muscles: two cases with microcephaly, polymicrogyria, and cerebellar malformations. J Neurol Neurosurg Psychiatry. 1970;33(6):844–50.Google Scholar
Pitner, SE, Edwards, JE, McCormick, WF. Observations on the pathology of the Moebius syndrome. J Neurol Neurosurg Psychiatry. 1965;28:362–74.Google Scholar
Squier, W, Jansen, A. Polymicrogyria: pathology, fetal origins and mechanisms. Acta Neuropathol Commun. 2014;2:80.Google Scholar
Jansen, AC, Robitaille, Y, Honavar, M, Mullatti, N, Leventer, RJ, Andermann, E, et al. The histopathology of polymicrogyria: a series of 71 brain autopsy studies. Dev Med Child Neurol. 2016;58(1):3948.Google Scholar
Friede, RL, Mikolasek, J. Postencephalitic porencephaly, hydranencephaly or polymicrogyria. A review. Acta Neuropathol. 1978;43(1–2):161–8.Google Scholar
Judkins, AR, Martinez, D, Ferreira, P, Dobyns, WB, Golden, JA. Polymicrogyria includes fusion of the molecular layer and decreased neuronal populations but normal cortical laminar organization. J Neuropathol Exp Neurol. 2011;70(6):438–43.Google Scholar
Ferrer, I, Catala, I. Unlayered polymicrogyria: structural and developmental aspects. Anat Embryol. 1991;184:517–28.Google Scholar
Diamandis, P, Chitayat, D, Toi, A, Blaser, S, Shannon, P. The pathology of incipient polymicrogyria. Brain Dev. 2017;39(1):2339.Google Scholar
Stutterd, CA, Leventer, RJ. Polymicrogyria: a common and heterogeneous malformation of cortical development. Am J Med Genet C Semin Med Genet. 2014;166C(2):227–39.Google Scholar
Aggarwal, S, Bahal, A, Dalal, A. Renal dysfunction in sibs with band like calcification with simplified gyration and polymicrogyria: report of a new mutation and review of literature. Eur J Med Genet. 2016;59(1):510.Google Scholar
Pagnamenta, AT, Howard, MF, Wisniewski, E, Popitsch, N, Knight, SJ, Keays, DA, et al. Germline recessive mutations in PI4 KA are associated with perisylvian polymicrogyria, cerebellar hypoplasia and arthrogryposis. Hum Mol Genet. 2015;24(13):3732–41.Google Scholar
Poirier, K, Saillour, Y, Fourniol, F, Francis, F, Souville, I, Valence, S, et al. Expanding the spectrum of TUBA1A-related cortical dysgenesis to polymicrogyria. Eur J Hum Genet. 2013;21(4):381–5.Google Scholar
Fry, AE, Fawcett, KA, Zelnik, N, Yuan, H, Thompson, BAN, Shemer-Meiri, L, et al. De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain. 2018;141(3):698712.Google Scholar
Chabrier, S, Husson, B, Dinomais, M, Landrieu, P, Nguyen The Tich S. New insights (and new interrogations) in perinatal arterial ischemic stroke. Thromb Res. 2011;127(1):1322.Google Scholar
Martinez-Biarge, M, Cheong, JL, Diez-Sebastian, J, Mercuri, E, Dubowitz, LM, Cowan, FM. Risk factors for neonatal arterial ischemic stroke: the importance of the intrapartum period. J Pediatr. 2016;173:62–8.Google Scholar
van der Aa, NE, Benders, MJ, Groenendaal, F, de Vries, LS. Neonatal stroke: a review of the current evidence on epidemiology, pathogenesis, diagnostics and therapeutic options. Acta Paediatr. 2014;103(4):356–64.Google Scholar
Fernandez-Lopez, D, Natarajan, N, Ashwal, S, Vexler, ZS. Mechanisms of perinatal arterial ischemic stroke. J Cereb Blood Flow Metab. 2014;34(6):921–32.Google Scholar
Lehman, LL, Rivkin, MJ. Perinatal arterial ischemic stroke: presentation, risk factors, evaluation, and outcome. Pediatr Neurol. 2014;51(6):760–8.Google Scholar
Barmada, MA, Moossy, J, Shuman, RM. Cerebral infarcts with arterial occlusion in neonates. Ann Neurol. 1979;6(6):495502.Google Scholar
Benders, MJ, Groenendaal, F, De Vries, LS. Preterm arterial ischemic stroke. Semin Fetal Neonatal Med. 2009;14(5):272–7.Google Scholar
deVeber, G, Andrew, M, Adams, C, Bjornson, B, Booth, F, Buckley, DJ, et al. Cerebral sinovenous thrombosis in children. N Engl J Med. 2001;345(6):417–23.Google Scholar
Tan, M, Deveber, G, Shroff, M, Moharir, M, Pontigon, AM, Widjaja, E, et al. Sagittal sinus compression is associated with neonatal cerebral sinovenous thrombosis. Pediatrics. 2011;128(2):e429-35.Google Scholar
Kirton, A, Shroff, M, Pontigon, AM, deVeber, G. Risk factors and presentations of periventricular venous infarction vs arterial presumed perinatal ischemic stroke. Arch Neurol. 2010;67(7):842–8.Google Scholar
Grunt, S, Wingeier, K, Wehrli, E, Boltshauser, E, Capone, A, Fluss, J, et al. Cerebral sinus venous thrombosis in Swiss children. Dev Med Child Neurol. 2010;52(12):1145–50.Google Scholar
Lahutte, M, Bordarier, C, Hornoy, P, Fallet-Bianco, C, Adamsbaum, C. L’infarctus veineux hémorragique du nouveau-né. J Radiol. 2010;91(7–8):787–96.Google Scholar
Davies, RP, Slavotinek, JP, James, SL, Morphett, AD. Calcified cerebral sinus thrombosis in infancy–CT appearances with pathological correlation. Pediatr Radiol. 1989;20(1–2):101–3.Google Scholar
Halsey, JH, Jr., Allen, N, Chamberlin, HR. The morphogenesis of hydranencephaly. J Neurol Sci. 1971;12(2):187217.Google Scholar
Muir, CS. Hydranencephaly and allied disorders: a study of cerebral defect in Chinese children. Arch Dis Child. 1959;34:231–46.Google Scholar
Naidich, TP, Griffiths, PD, Rosenbloom, L. Central nervous system injury in utero: selected entities. Pediatr Radiol. 2015;45 Suppl 3:S454-S62.Google Scholar
Weiss, MH, Young, HF, McFarland, DE. Hydranencephaly of postnatal origin. Case report. J Neurosurg. 1970;32(6):715–20.Google Scholar
Fowler, M, Dow, R, White, TA, Greer, CH. Congenital hydrocephalus-hydrencephaly in five siblings, with autopsy studies: a new disease. Dev Med Child Neurol. 1972;14(2):173–88.Google Scholar
Harding, BN, Ramani, P, Thurley, P. The familial syndrome of proliferative vasculopathy and hydranencephaly-hydrocephaly: immunocytochemical and ultrastructural evidence for endothelial proliferation. Neuropathol Appl Neurobiol. 1995;21(1):61–7.Google Scholar
Williams, D, Patel, C, Fallet-Bianco, C, Kalyanasundaram, K, Yacoubi, M, Dechelotte, P, et al. Fowler syndrome-a clinical, radiological, and pathological study of 14 cases. Am J Med Genet A. 2010;152A(1):153–60.Google Scholar
Bessieres-Grattagliano, B, Foliguet, B, Devisme, L, Loeuillet, L, Marcorelles, P, Bonniere, M, et al. Refining the clinicopathological pattern of cerebral proliferative glomeruloid vasculopathy (Fowler syndrome): report of 16 fetal cases. Eur J Med Genet. 2009;52(6):386–92.Google Scholar
Meyer, E, Ricketts, C, Morgan, NV, Morris, MR, Pasha, S, Tee, LJ, et al. Mutations in FLVCR2 are associated with proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (Fowler syndrome). Am J Hum Genet. 2010;86(3):471–8.Google Scholar
Radio, FC, Di Meglio, L, Agolini, E, Bellacchio, E, Rinelli, M, Toscano, P, et al. Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome or Fowler syndrome: report of a family and insight into the disease’s mechanism. Mol Genet Genomic Med. 2018;6(3):446–51.Google Scholar
Frosk, P, Arts, HH, Philippe, J, Gunn, CS, Brown, EL, Chodirker, B, et al. A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis. J Med Genet. 2017;54(7):490501.Google Scholar
Ligam, P, Haynes, RL, Folkerth, RD, Liu, L, Yang, M, Volpe, JJ, et al. Thalamic damage in periventricular leukomalacia: novel pathologic observations relevant to cognitive deficits in survivors of prematurity. Pediatr Res. 2009;65(5):524–9.Google Scholar
Parisi, JE, Collins, GH, Kim, RC, Crosley, CJ. Prenatal symmetrical thalamic degeneration with flexion spasticity at birth. Ann Neurol. 1983;13(1):94–7.Google Scholar
Peters, B, Walka, MM, Friedmann, W, Stoltenburg-Didinger, G, Obladen, M. Hypoxic-ischemic encephalopathy with cystic brain stem necroses and thalamic calcifications in a preterm twin. Brain Dev. 2000;22(4):265–71.Google Scholar
Pols, T, de Vries, LS, Salamon, AS, Nikkels, PGJ, Lichtenbelt, KD, Mulder-de Tollenaer, SM, et al. Symmetrical thalamic lesions in the newborn: a case series. Neuropediatrics. 2019;50(3):152–9.Google Scholar
Rodriguez, MJ, Ursu, G, Bernal, F, Cusi, V, Mahy, N. Perinatal human hypoxia-ischemia vulnerability correlates with brain calcification. Neurobiol Dis. 2001;8(1):5968.Google Scholar
Rosales, RK, Riggs, HE. Symmetrical thalamic degeneration in infants. J Neuropathol Exp Neurol. 1962;21:372–6.Google Scholar
Malamud, N. Status marmoratus; a form of cerebral palsy following either birth injury or inflammation of the central nervous system. J Pediatr. 1950;37(4):610–19.Google Scholar
Norman, RM. An example of status marmoratus of the cerebral cortex. J Neurol Psychiatry. 1938;1(1):716.Google Scholar
Löwenburg, K, Malamud, W. Status marmoratus: etiology and manner of development. Arch Neurol Psychiatr. 1933;29(1):104–24.Google Scholar
Norman, RM. Etat marbre of the corpus striatum following birth injury. J Neurol Neurosurg Psychiatry. 1947;10(1):1225.Google Scholar
Norman, RM. Etat marbre of the thalamus following birth injury. Brain. 1949;72:83–8.Google Scholar
Friede, RL, Schachenmayr, W. Early stages of status marmoratus. Acta Neuropathol. 1977;38(2):123–7.Google Scholar
Aravamuthan, BR, Waugh, JL. Localization of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Pediatr Neurol. 2016;54:1121.Google Scholar
Yagishita, A, Nakano, I, Ushioda, T, Otsuki, N, Hasegawa, A. Acute encephalopathy with bilateral thalamotegmental involvement in infants and children: imaging and pathology findings. AJNR Am J Neuroradiol. 1995;16(3):439–47.Google Scholar
Miller, SP, McQuillen, PS, Hamrick, S, Xu, D, Glidden, DV, Charlton, N, et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med. 2007;357(19):1928–38.Google Scholar
Berman, JI, Hamrick, SE, McQuillen, PS, Studholme, C, Xu, D, Henry, RG, et al. Diffusion-weighted imaging in fetuses with severe congenital heart defects. AJNR Am J Neuroradiol. 2011;32(2):E21–2.Google Scholar
Schneider, H, Ballowitz, L, Schachinger, H, Hanefeld, F, Droszus, JU. Anoxic encephalopathy with predominant involvement of basal ganglia, brain stem and spinal cord in the perinatal period. Report on seven newborns. Acta Neuropathol. 1975;32(4):287–98.Google Scholar
Kwan, S, Boudes, E, Gilbert, G, Saint-Martin, C, Albrecht, S, Shevell, M, et al. Injury to the cerebellum in term asphyxiated newborns treated with hypothermia. AJNR Am J Neuroradiol. 2015;36(8):1542–9.Google Scholar
Pierson, CR, Al Sufiani, F. Preterm birth and cerebellar neuropathology. Semin Fetal Neonatal Med. 2016;21(5):305–11.Google Scholar
Biran, V, Verney, C, Ferriero, DM. Perinatal cerebellar injury in human and animal models. Neurol Res Int. 2012;2012:858929.Google Scholar
Sargent, MA, Poskitt, KJ, Roland, EH, Hill, A, Hendson, G. Cerebellar vermian atrophy after neonatal hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol. 2004;25(6):1008–15.Google Scholar
Poretti, A, Prayer, D, Boltshauser, E. Morphological spectrum of prenatal cerebellar disruptions. Eur J Paediatr Neurol. 2009;13(5):397407.Google Scholar
Poretti, A, Boltshauser, E, Huisman, TA. Prenatal cerebellar disruptions: neuroimaging spectrum of findings in correlation with likely mechanisms and etiologies of injury. Neuroimaging Clin N Am. 2016;26(3):359–72.Google Scholar
Sarnat, HB, Nochlin, D, Born, DE. Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system. Brain Dev. 1998;20(2):8894.Google Scholar
Leech, RW, Alvord, EC. Anoxic-ischemic encephalopathy in the human neonatal period. The significance of brain stem involvement. Arch Neurol. 1977;34:109–13.Google Scholar
Leong, S, Ashwell, KW. Is there a zone of vascular vulnerability in the fetal brain stem? Neurotoxicol Teratol. 1997;19(4):265–75.Google Scholar
Shioda, M, Hayashi, M, Takanashi, J, Osawa, M. Lesions in the central tegmental tract in autopsy cases of developmental brain disorders. Brain Dev. 2011;33(7):541–7.Google Scholar
Leech, RW, Brumback, RA. Massive brain stem necrosis in the human neonate: presentation of three cases with review of the literature. J Child Neurol. 1988;3(4):258–62.Google Scholar
Pindur, J, Capin, DM, Johnson, MI, Rance, NE. Cystic brain stem necrosis in a premature infant after prolonged bradycardia. Acta Neuropathol. 1992;83(6):667–9.Google Scholar
Cortez, SC, Kinney, HC. Brainstem tegmental necrosis and olivary hypoplasia: a lethal entity associated with congenital apnea. J Neuropathol Exp Neurol. 1996;55(7):841–9.Google Scholar
D’Cruz, OF, Swisher, CN, Jaradeh, S, Tang, T, Konkol, RJ. Mobius syndrome: evidence for a vascular etiology. J Child Neurol. 1993;8(3):260–5.Google Scholar
Borlot, F, da Paz, JA, Gonzalez, CH, Lucato, LT, Marques-Dias, MJ. Mobius sequence in a girl and arthrogryposis in her half-brother: distinct phenotypes caused by prenatal injuries. Fetal Pediatr Pathol. 2011;30(4):260–5.Google Scholar
Katsetos, CD, Anderson, CE, Guzman, MA, Pascasio, JM, de Chadarevian, JP, Legido, A. Brainstem tegmental necrosis and olivary hypoplasia: raising awareness of a rare neuropathologic correlate of congenital apnea. Semin Pediatr Neurol. 2014;21(2):177–83.Google Scholar
Marques-Dias, MJ, Gonzalez, CH, Rosemberg, S. Mobius sequence in children exposed in utero to misoprostol: neuropathological study of three cases. Birth Defects Res A Clin Mol Teratol. 2003;67(12):1002–7.Google Scholar
Mito, T, Becker, LE, Takashima, S. Neuropathology of central respiratory dysfunction in infancy. Pediatr Neurosurg. 1991;17(2):80–7.Google Scholar
Moya, MP, Delong, GR, Barboriak, D, Cummings, TJ. A lethal association of congenital apnea with brainstem tegmental necrosis. Pediatr Neurol. 2004;30(3):219–21.Google Scholar
Thakkar, N, O’Neil, W, Duvally, J, Liu, C, Ambler, M. Mobius syndrome due to brain stem tegmental necrosis. Arch Neurol. 1977;34(2):124–6.Google Scholar
Towfighi, J, Marks, K, Palmer, E, Vannucci, R. Mobius syndrome. Neuropathologic observations. Acta Neuropathol. 1979;48(1):1117.CrossRefGoogle ScholarPubMed
Verloes, A, Bitoun, P, Heuskin, A, Amrom, D, van de Broeck, H, Nikkel, SM, et al. Mobius sequence, Robin complex, and hypotonia: severe expression of brainstem disruption spectrum versus Carey-Fineman-Ziter syndrome. Am J Med Genet A. 2004;127A(3):277–87.Google Scholar
Wilson, ER, Mirra, SS, Schwartz, JF. Congenital diencephalic and brain stem damage: neuropathologic study of three cases. Acta Neuropathol. 1982;57(1):70–4.Google Scholar
Gerards, M, Sallevelt, SC, Smeets, HJ. Leigh syndrome: resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab. 2016;117(3):300–12.Google Scholar
Rudzinski, ER, Kapur, RP, Hevner, RF. Fetal akinesia deformation sequence with delayed skeletal muscle maturation and polymicrogyria: evidence for a hypoxic/ischemic pathogenesis. Pediatr Dev Pathol. 2010;13(3):192201.Google Scholar
Quinn, CM, Wigglesworth, JS, Heckmatt, J. Lethal arthrogryposis multiplex congenita: a pathological study of 21 cases. Histopathology. 1991;19(2):155–62.Google Scholar
Johnson, MW, Stoll, L, Rubio, A, Troncoso, J, Pletnikova, O, Fowler, DR, et al. Axonal injury in young pediatric head trauma: a comparison study of beta-amyloid precursor protein (beta-APP) immunohistochemical staining in traumatic and nontraumatic deaths. J Forensic Sci. 2011;56(5):1198–205.CrossRefGoogle ScholarPubMed
McKenzie, KJ, McLellan, DR, Gentleman, SM, Maxwell, WL, Gennarelli, TA, Graham, DI. Is beta-APP a marker of axonal damage in short-surviving head injury? Acta Neuropathol (Berl). 1996;92(6):608–13.Google Scholar
Rahaman, P, Del Bigio, MR. Histology of brain trauma and hypoxia-ischemia. Acad Forensic Pathol. 2018;8(3):539–54.Google Scholar
Riezzo, I, Neri, M, De Stefano, F, Fulcheri, E, Ventura, F, Pomara, C, et al. The timing of perinatal hypoxia/ischemia events in term neonates: a retrospective autopsy study. HSPs, ORP-150 and COX2 are reliable markers to classify acute, perinatal events. Diagn Pathol. 2010;5:49.Google Scholar
Dies, KA, Bodell, A, Hisama, FM, Guo, CY, Barry, B, Chang, BS, et al. Schizencephaly: association with young maternal age, alcohol use, and lack of prenatal care. J Child Neurol. 2013;28(2):198203.Google Scholar
Kuchukhidze, G, Unterberger, I, Dobesberger, J, Embacher, N, Walser, G, Haberlandt, E, et al. Electroclinical and imaging findings in ulegyria and epilepsy: a study on 25 patients. J Neurol Neurosurg Psychiatry. 2008;79(5):547–52.Google Scholar

References

Munell, F, Tormos, MA, Roig-Quilis, M. Brainstem dysgenesis: beyond Moebius syndrome. Rev Neurol 2018;66:241–50.Google Scholar
Webb, BD, Shaaban, S, Gaspar, H, Cunh, LF, Schubert, CR, Hao, K, Robson, CD, Chan, WM, Andrews C, , MacKinnon, S, Oystreck, DT, Hunter, DG, Iacovelli, AJ, Ye, X, Camminady, A, Engle, EC, Jabs, EW. HOXB1 founder mutation in humans recapitulates the phenotype of Hoxb1-/- mice. Am J Hum Genet 2012;91:171–9.Google Scholar
Pierson, CR, Folkerth, RD, Billiards, SS, Trachtenberg, FL, Drinkwater, ME, Volpe, JJ, Kinney, HC. Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 2007;114:619–31.Google Scholar
Sladky, JT, Rorke, LB. Perinatal hypoxic-ischemic spinal cord injury. Pediatr Pathol 1986;6:87101.Google Scholar
Singer, R, Joseph, K, Gilai, AN, Meyer, S. Nontraumatic, acute neonatal paraplegia. J Pediatr Orthop 1991;11:588–93.CrossRefGoogle ScholarPubMed
Sheikh, A, Warren, D, Childs, A-M, Russell, J, Liddington, M, Guruswamy, V, Chumas, P. Paediatric spinal cord infarction – a review of the literature and two case reports. Childs Nerv Syst 2017;33:671–6.Google Scholar
Di Gioia, SA, Connors, S, Matsunami, N, Cannavino, J, Rose, MF, Gilette, NM, Artoni, P, de Macena Sobreira, NL, Chan, WM, Webb, BD, Robson, CD, Cheng, L, Van Ryzin, C, Ramirez-Martinez, A, Mohassel, P, Leppert, M, Scholand, MB, Grunseich, C, Ferreira, CR, Hartman, T, Hayes, IM, Morgan, T, Markie, DM, Fagiolini, M, Swift, A, Chines, PS, Speck-Martins, CE, Collins, FS, Jabs, EW, Bönnemann, CG, Olson, EN; Moebius Syndrome Research Consortium, Carey, JC, Robertson, SP, Manoli, I, Engle, EC. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nat Commun 2017;8:16077–93.CrossRefGoogle ScholarPubMed
Quattrocchi, CC, Longo, D, Delfino, LN, Cilio, MR, Piersigilli, F, Capua, MD, Seganti, G, Danhaive, O, Fariello, G. Dorsal brain stem syndrome: MR imaging location of brain stem tegmental lesions in neonates with oral motor dysfunction. AJNR Am J Neuroradiol 2010;31:1438–42.Google Scholar
de Léon, GA, Radkowski, MA, Crawford, SE, Swisher, CN, Uzoaru, I, de Léon, W. Persistent respiratory failure due to low cervical cord infarction in newborn babies. J Child Neurol 1995;10:200–4.Google Scholar
Clancy, RR, Sladky, JT, Rorke, LB. Hypoxic-ischemic spinal cord injury following perinatal asphyxia. Ann Neurol 1989;25:185–9.Google Scholar
Poretti, A, Boltshauser, E, Huisman, TA. Prenatal cerebellar disruptions: Neuroimaging spectrum of findings in correlation with likely mechanisms and etiologies of injury. Neuroimaging Clin N Am 2016;26:359–72.CrossRefGoogle ScholarPubMed
Mahieu-Caputo, D, Salomon, LJ, Dommergues, M, Aubry, MC, Sonigo, P, Martinovic, Y, Le Merrer, M, Dumez, Y, Encha-Razavi, F. Arthrogryposis multiplex congenita and cerebellopontine ischemic lesions in sibs: recurrence of prenatal disruptive brain lesions with different patterns of expression? Fetal Diagn Ther 2002;17:153–6.Google Scholar
Folkerth, RD, McLaughlin, ME, Levine, D. Organizing posterior fossa hematomas simulating developmental cysts on prenatal imaging: report of 3 cases. J Ultrasound Med 2001;20:1233–40.Google Scholar
Ebinger, F, Boor, R, Bruhl, K, Reitter, B. Cervical spinal cord atrophy in the atrumatically born neonate: one form of prenatal or perinatal ischaemic insult? Neuropediatrics 2003;34:4551.Google Scholar
Jiang, ZD, Xu, X, Yin, R, Shao, XM, Wilkinson, AR. Differential changes in peripheral and central components of the brain stem auditory evoked potentials during the neonatal period in term infants after perinatal hypoxia-ischemia. Ann Otol Rhinol Laryngol 2004;113:571–6.Google Scholar
Groenendaal, F, Vles, J, Lammers, H, De Vente, J, Smit, D, Nikkels, PG. Nitrotyrosine in human neonatal spinal cord after perinatal asphyxia. Neonatology 2008;93:16.Google Scholar
van Bel, F, Groenendaal, F. Drugs for neuroprotection after birth asphyxia: Pharmacologic adjuncts to hypothermia. Semin Perinatl 2016;40:152–9.Google Scholar

References

Haynes, RL, Folkerth, RD. White matter lesions in the perinatal period. In: Developmental Neuropathology, 2nd ed., Adle-Biassette, H, Harding, BN, Golden, JA, eds. Boston: Wiley; 2018, pp. 213–27.Google Scholar
Hefti, MM, Trachtenberg, FL, Haynes, RL, Hassett, C, Volpe, JJ, Kinney, HC. A century of germinal matrix intraventricular hemorrhage in autopsied premature infants: A historical account. Pediatr Dev Pathol 2016;19:108–14.Google Scholar
Pierson, CR, Folkerth, RD, Billiards, SS, Trachtenberg, FL, Drinkwater, ME, Volpe, JJ, Kinney, HC. Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 2007;114:619–31.CrossRefGoogle ScholarPubMed
Volpe, JJ. The encephalopathy of prematurity–brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol 2009;16:167–78.Google Scholar
Benders, MJ, Kersbergen, KJ, de Vries, LS. Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage. Clin Perinatol 2014;41:6982.Google Scholar
Buser, JR, Maire, J, Riddle, A, Gong, X, Nguyen, T, Nelson, K, Luo, NL, Ren, J, Struve, J, Sherman, LS, Miller, SP, Chau, V, Hendson, G, Ballabh, P, Grafe, MR, Back, SA. Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 2012;71:93109.Google Scholar
Haynes, RL, Sleeper, LA, Volpe, JJ, Kinney, HC. Neuropathologic studies of the encephalopathy of prematurity in the late preterm infant. Clin Perinatol 2013;40:707–22.Google Scholar
Zupan, V, Gonzalez, P, Lacaze-Masmonteil, T, Boithias, C, d’Allest AM, Dehan M, Gabilan JC. Periventricular leukomalacia: risk factors revisited.Dev Med Child Neurol 1996;38:1061–7.Google Scholar
Huang, J, Zhang, L, Kang, B, Zhu, T, Li, Y, Zhao, F, Qu, Y, Mu, D. Association between perinatal hypoxia-ischemia and periventricular leukomalacia in preterm infants: A systematic review and meta-analysis. PLoS One. 2017;12(9):e0184993.Google Scholar
Volpe, JJ (2008) Neurology of the Newborn, 5th ed. Philadelphia: Saunders Elsevier.Google Scholar
Panigrahy, A, Wisnowski, JL, Furtado, A, Lepore, N, Paquette, L, Bluml, S. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome. Pediatr Radiol 2012 42 Suppl 1:S33S61.Google Scholar
Ceschin, R, Lee, VK, Schmithorst, V, Panigrahy, A. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy. Neuroimage Clin 2015 9:322–37.Google Scholar
Inder, TE, Huppi, PS, Warfield, S, Kikinis, R, Zientara, GP, Barnes, PD, Jolesz, F, Volpe, JJ. Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 1999 46(5):755–60.Google Scholar
Jin, C, Londono, I, Mallard, C, Lodygensky, GA. New means to assess neonatal inflammatory brain injury. J Neuroinflammation 205;(12):180–95.Google Scholar
O’Shea, TM, Joseph, RM, Kuban, KCK, Allred, EN, Ware, J, Coster, T, Fichorova, R, Dammann, O, Leviton, A, for the ELGAN Study Investigators.Elevated blood levels of inflammation-related proteins are associated with an attention problem at age 24 months in extremely preterm infants. Pediatr Res 2014;75:781–7.Google Scholar
Leviton, A, Gilles, FH. Acquired perinatal leukoencephalopathy. Ann Neurol 1984;6:18.Google Scholar
Haynes, RL, Billiards, SS, Borenstein, NS, Volpe, JJ, Kinney, HC. Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr Res 2008;63:656–61.Google Scholar

References

Rorke, LB. Pathology of Perinatal Brain Injury. New York: Raven Press; 1982. p. 146.Google Scholar
Friede, RL. Hemorrhages in Asphyxiated Premature Infants: Developmental Neuropathology, 2nd rev. ed. Berlin: Springer-Verlag; 1989. pp. 4458.Google Scholar
Leviton, A, Gilles, FH, Dooling, EC. The epidemiology of ganglionic eminence hemorrhage. In: Gilles, FH, Leviton, A, Dooling, EC, editors. The Developing Human Brain Growth and Epidemiologic Neuropathology. Boston: John Wright; 1983. pp. 204–16.Google Scholar
Leech, RW, Kohnen, P. Subependymal and intraventricular hemorrhages in the newborn. Am J Pathol. 1974;77(3):465–75.Google Scholar
Kutuk, MS, Yikilmaz, A, Ozgun, MT, Dolanbay, M, Canpolat, M, Uludag, S, et al. Prenatal diagnosis and postnatal outcome of fetal intracranial hemorrhage. Childs Nerv Syst. 2014;30(3):411–8.Google Scholar
Kirkinen, P, Partanen, K, Ryynanen, M, Orden, MR. Fetal intracranial hemorrhage. Imaging by ultrasound and magnetic resonance imaging. J Reprod Med. 1997;42(8):467–72.Google Scholar
Sanapo, L, Whitehead, MT, Bulas, DI, Ahmadzia, HK, Pesacreta, L, Chang, T, et al. Fetal intracranial hemorrhage: role of fetal MRI. Prenat Diagn. 2017;37(8):827–36.Google Scholar
Goto, T, Kakita, H, Takasu, M, Takeshita, S, Ueda, H, Muto, D, et al. A rare case of fetal extensive intracranial hemorrhage and whole-cerebral hypoplasia due to latent maternal vitamin K deficiency. J Neonatal Perinatal Med. 2018;11(2):191–4.Google Scholar
Burrows, RF, Caco, CC, Kelton, JG. Neonatal alloimmune thrombocytopenia: spontaneous in utero intracranial hemorrhage. Am J Hematol. 1988;28(2):98102.CrossRefGoogle ScholarPubMed
Gherman, RB, Chauhan, SP. Placental abruption and fetal intraventricular hemorrhage after airbag deployment: a case report. J Reprod Med. 2014;59(9–10):501–3.Google Scholar
Kapur, RP, Shaw, CM, Shepard, TH. Brain hemorrhages in cocaine-exposed human fetuses. Teratology. 1991;44(1):1118.Google Scholar
Tongsong, T, Sukpan, K, Wanapirak, C, Phadungkiatwattna, P. Fetal cytomegalovirus infection associated with cerebral hemorrhage, hydrops fetalis, and echogenic bowel: case report. Fetal Diagn Ther. 2008;23(3):169–72.Google Scholar
Matsumoto, T, Miyakoshi, K, Fukutake, M, Ochiai, D, Minegishi, K, Tanaka, M. Intracranial sonographic features demonstrating in utero development of hemorrhagic brain damage leading to schizencephaly-associated COL4A1 mutation. J Med Ultrason. (2001) 2015;42(3):445–6.Google Scholar
Kutuk, MS, Balta, B, Kodera, H, Matsumoto, N, Saitsu, H, Doganay, S, et al. Is there a relation between COL4A1/A2 mutations and antenatally detected fetal intraventricular hemorrhage? Childs Nerv Syst. 2014;30(3):419–24.Google Scholar
Huang, YF, Chen, WC, Tseng, JJ, Ho, ES, Chou, MM. Fetal intracranial hemorrhage (fetal stroke): report of four antenatally diagnosed cases and review of the literature. Taiwan J Obstet Gynecol. 2006;45(2):135–41.Google Scholar
Morioka, T, Hashiguchi, K, Nagata, S, Miyagi, Y, Mihara, F, Hikino, S, et al. Fetal germinal matrix and intraventricular hemorrhage. Pediatr Neurosurg. 2006;42(6):354–61.Google Scholar
Kim, KR, Jung, SW, Kim, DW. Risk factors associated with germinal matrix-intraventricular hemorrhage in preterm neonates. J Korean Neurosurg Soc. 2014;56(4):334–7.Google Scholar
Chevallier, M, Debillon, T, Pierrat, V, Delorme, P, Kayem, G, Durox, M, et al. Leading causes of preterm delivery as risk factors for intraventricular hemorrhage in very preterm infants: results of the EPIPAGE 2 cohort study. Am J Obstet Gynecol. 2017;216(5):518.e1e12.Google Scholar
Lim, J, Hagen, E. Reducing germinal matrix-intraventricular hemorrhage: perinatal and delivery room factors. Neoreviews. 2019;20(8):e452–e63.Google Scholar
Poryo, M, Boeckh, JC, Gortner, L, Zemlin, M, Duppre, P, Ebrahimi-Fakhari, D, et al. Ante-, peri- and postnatal factors associated with intraventricular hemorrhage in very premature infants. Early Hum Dev. 2018;116:18.Google Scholar
Ment, LR, Aden, U, Lin, A, Kwon, SH, Choi, M, Hallman, M, et al. Gene-environment interactions in severe intraventricular hemorrhage of preterm neonates. Pediatr Res. 2014;75(1–2):241–50.Google Scholar
Rong, Z, Liu, H, Xia, S, Chang, L. Risk and protective factors of intraventricular hemorrhage in preterm babies in Wuhan, China. Childs Nerv Syst. 2012;28(12):2077–84.Google Scholar
Shalak, L, Perlman, JM. Hemorrhagic-ischemic cerebral injury in the preterm infant: current concepts. Clin Perinatol. 2002;29(4):745–63.Google Scholar
Ment, LR, Bada, HS, Barnes, P, Grant, PE, Hirtz, D, Papile, LA, et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2002;58(12):1726–38.Google Scholar
Papile, LA, Burstein, J, Burstein, R, Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92(4):529–34.Google Scholar
Intrapiromkul, J, Northington, F, Huisman, TA, Izbudak, I, Meoded, A, Tekes, A. Accuracy of head ultrasound for the detection of intracranial hemorrhage in preterm neonates: comparison with brain MRI and susceptibility-weighted imaging. J Neuroradiol. 2013;40(2):81–8.Google Scholar
Parodi, A, Morana, G, Severino, MS, Malova, M, Natalizia, AR, Sannia, A, et al. Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med. 2015;28 Suppl 1:2261–4.Google Scholar
McCormick, MC, Litt, JS, Smith, VC, Zupancic, JA. Prematurity: an overview and public health implications. Annu Rev Public Health. 2011;32:367–79.Google Scholar
De Noronha, L, Medeiros, F, Nones, RB, Martins, VD, Sepulcri R de, P, Sampaio, GA, et al. Injúria hipóxico-isquêmica de padrao hemorrágico em encéfalos de neomortos do Hospital de Clínicas de Curitiba. Análise de 1028 casos de necrópsia entre 1960 e 1995. Arq Neuropsiquiatr. 1999;57(4):950–8.Google Scholar
Jammes, JL, Gilles, FH. Telencephalic development: matrix volume and isocortex and allocortex surface areas. In: Gilles, FH, Leviton, A, Dooling, EC, editors. The Developing Human Brain Growth and Epidemiologic Neuropathology. Boston: John Wright; 1983. pp. 8793.Google Scholar
Terplan, KL. Histopathologic brain changes in 1152 cases of the perinatal and early infancy period. Biol Neonat. 1967;11:348–66.Google Scholar
Chen, HJ, Wei, KL, Zhou, CL, Yao, YJ, Yang, YJ, Fan, XF, et al. Incidence of brain injuries in premature infants with gestational age </= 34 weeks in ten urban hospitals in China. World J Pediatr. 2013;9(1):1724.Google Scholar
Del Bigio, MR. Hemorrhagic lesions. In: Adle-Biassette, H, Harding, BN, Golden, JA, editors. Developmental Neuropathology, 2nd ed. Hoboken: John Wiley and Sons; 2018. p. 203–11.Google Scholar
Berger, R, Bender, S, Sefkow, S, Klingmuller, V, Kunzel, W, Jensen, A. Peri/intraventricular haemorrhage: a cranial ultrasound study on 5286 neonates. Eur J Obstet Gynecol Reprod Biol. 1997;75(2):191203.Google Scholar
Ancel, PY, Goffinet, F, Kuhn, P, Langer, B, Matis, J, Hernandorena, X, et al. Survival and morbidity of preterm children born at 22 through 34 weeks’ gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr. 2015;169(3):230–8.Google Scholar
Sheth, RD. Trends in incidence and severity of intraventricular hemorrhage. J Child Neurol. 1998;13(6):261–4.Google Scholar
Groenendaal, F, Termote, J, van der Heide-Jalving, M, van Haastert, I, de Vries, L. Complications affecting preterm neonates from 1991 to 2006: what have we gained? Acta Paediatr. 2010;99(3):354–8.Google Scholar
Kuban, KC, Allred, EN, Dammann, O, Pagano, M, Leviton, A, Share, J, et al. Topography of cerebral white-matter disease of prematurity studied prospectively in 1607 very-low-birthweight infants. J Child Neurol. 2001;16(6):401–8.Google Scholar
Larroche, JC. Hémorragies cérébrales intra-ventriculaires chez le prématuré. Ie partie: anatomie at physiopathologie. Biol Neonat. 1964;91:2656.Google Scholar
Shankaran, S. Hemorrhagic lesions of the central nervous system. In: Stevenson, DK, Benitz, WE, Sunshine, P, editors. Fetal and Neonatal Brain Injury, 3rd ed. Cambridge: Cambridge University Press; 2003. pp. 175–88.Google Scholar
Darrow, VC, Alvord, ECJ, Mack, LA, Hodson, WA. Histologic evaluation of the reactions to hemorrhage in the premature human infant’s brain. A combined ultrasound and autopsy study and a comparison with the reaction in adults. Am J Pathol. 1988;130:4458.Google Scholar
Xue, M, Balasubramaniam, J, Del Bigio, MR. Brain inflammation following intracerebral hemorrhage. Current Neuropharmacol. 2003;1(4):325–32.Google Scholar
Towbin, A. Cerebral intraventricular hemorrhage and subependymal matrix infarction in the fetus and premature newborn. Am J Pathol. 1968;52(1):121–40.Google Scholar
Lategan, B, Chodirker, BN, Del Bigio, MR. Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol. 2010;20(2):391–8.Google Scholar
Dolfin, T, Skidmore, MB, Fong, KW, Hoskins, EM, Shennan, AT. Incidence, severity, and timing of subependymal and intraventricular hemorrhages in preterm infants born in a perinatal unit as detected by serial real-time ultrasound. Pediatrics. 1983;71(4):541–6.Google Scholar
Paneth, N, Pinto-Martin, J, Gardiner, J, Wallenstein, S, Katsikiotis, V, Hegyi, T, et al. Incidence and timing of germinal matrix/intraventricular hemorrhage in low birth weight infants. Am J Epidemiol. 1993;137(11):1167–76.Google Scholar
Ballabh, P. Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol. 2014;41(1):4767.CrossRefGoogle ScholarPubMed
Tortora, D, Severino, M, Malova, M, Parodi, A, Morana, G, Sedlacik, J, et al. Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH. Arch Dis Child Fetal Neonatal Ed. 2018;103:F59F65.Google Scholar
Ghazi-Birry, HS, Brown, WR, Moody, DM, Challa, VR, Block, SM, Reboussin, DM. Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol. 1997;18(2):219–29.Google Scholar
Nakamura, Y, Okudera, T, Hashimoto, T. Microvasculature in germinal matrix layer: its relationship to germinal matrix hemorrhage. Mod Pathol. 1991;4(4):475–80.Google Scholar
Nakamura, Y, Okudera, T, Fukuda, S, Hashimoto, T. Germinal matrix hemorrhage of venous origin in preterm neonates. Hum Pathol. 1990;21(10):1059–62.Google Scholar
Ment, LR, Stewart, WB, Ardito, TA, Madri, JA. Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Dev Brain Res. 1995;84(1):142–9.Google Scholar
Del Bigio, MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain. 2011;134(Pt 5):1344–61.Google Scholar
Alderliesten, T, Lemmers, PM, Smarius, JJ, van de Vosse, RE, Baerts, W, van Bel, F. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr. 2013;162(4):698704.Google Scholar
McAllister, JP, Guerra, MM, Ruiz, LC, Jimenez, AJ, Dominguez-Pinos, D, Sival, D, et al. Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol. 2017;76(5):358–75.Google Scholar
Folkerth, RD. Germinal matrix haemorrhage: destroying the brain’s building blocks. Brain. 2011;134(Pt 5):1261–3.Google Scholar
Bruschettini, M, Romantsik, O, Zappettini, S, Banzi, R, Ramenghi, LA, Calevo, MG. Antithrombin for the prevention of intraventricular hemorrhage in very preterm infants. Cochrane Database Syst Rev. 2016;3:CD011636.Google Scholar
Whitelaw, A, Lee-Kelland, R. Repeated lumbar or ventricular punctures in newborns with intraventricular haemorrhage. Cochrane Database Syst Rev. 2017;4:Cd000216.Google Scholar
Lekic, T, Klebe, D, Pichon, P, Brankov, K, Sultan, S, McBride, D, et al. Aligning animal models of clinical germinal matrix hemorrhage, from basic correlation to therapeutic approach. Curr Drug Targets. 2017;18(12):1316–28.Google Scholar
Flores, JJ, Klebe, D, Tang, J, Zhang, JH. A comprehensive review of therapeutic targets that induce microglia/macrophage-mediated hematoma resolution after germinal matrix hemorrhage. J Neurosci Res. 2020 98(1):121–128.Google Scholar
Klebe, D, McBride, D, Krafft, PR, Flores, JJ, Tang, J, Zhang, JH. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: established mechanisms and proposed pathways. J Neurosci Res. 2020 98(1):105–120.Google Scholar
Larroque, B, Marret, S, Ancel, PY, Arnaud, C, Marpeau, L, Supernant, K, et al. White matter damage and intraventricular hemorrhage in very preterm infants: the EPIPAGE study. J Pediatr. 2003;143(4):477–83.Google Scholar
Gilles, FH, Leviton, A, Golden, JA, Paneth, N, Rudelli, RD. Groups of histopathologic abnormalities in brains of very low birthweight infants. J Neuropathol Exp Neurol. 1998;57(11):1026–34.Google Scholar
Wang, LW, Lin, YC, Tu, YF, Wang, ST, Huang, CC. Isolated cystic periventricular leukomalacia differs from cystic periventricular leukomalacia with intraventricular hemorrhage in prevalence, risk factors and outcomes in preterm infants. Neonatology. 2017;111(1):8692.Google Scholar
Mito, T, Becker, LE, Perlman, M, Takashima, S. A neuropathologic analysis of neonatal deaths occurring in a single neonatal unit over a 20-year period. Pediatr Pathol. 1993;13(6):773–85.Google Scholar
Golden, JA, Gilles, FH, Rudelli, R, Leviton, A. Frequency of neuropathological abnormalities in very low birth weight infants. J Neuropathol Exp Neurol. 1997;56(5):472–8.Google Scholar
Armstrong, DL, Sauls, CD, Goddard-Finegold, J. Neuropathologic findings in short-term survivors of intraventricular hemorrhage. Am J Dis Child. 1987;141(6):617–21.Google Scholar
Babcock, DS, Bove, KE, Han, BK. Intracranial hemorrhage in premature infants: sonographic-pathologic correlation. AJNR Am J Neuroradiol. 1982;3(3):309–17.Google Scholar
Lun, MP, Monuki, ES, Lehtinen, MK. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci. 2015;16(8):445–57.Google Scholar
Xiang, J, Routhe, LJ, Andrew Wilkinson, D, Hua, Y, Moos, T, Xi, G, et al. The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fluids Barriers CNS. 2017;14(1):8.Google Scholar
Haines, KM, Wang, W, Pierson, CR. Cerebellar hemorrhagic injury in premature infants occurs during a vulnerable developmental period and is associated with wider neuropathology. Acta Neuropathol Commun. 2013;1(1):69.Google Scholar
Pierson, CR, Al Sufiani, F. Preterm birth and cerebellar neuropathology. Semin Fetal Neonatal Med. 2016;21(5):305–11.Google Scholar
Kusters, CD, Chen, ML, Follett, PL, Dammann, O.Intraventricular” hemorrhage and cystic periventricular leukomalacia in preterm infants: how are they related? J Child Neurol. 2009;24(9):1158–70.Google Scholar
Lin, PY, Hagan, K, Fenoglio, A, Grant, PE, Franceschini, MA. Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage. Sci Rep. 2016;6:25903.Google Scholar
Goldstein, RF, Cotten, CM, Shankaran, S, Gantz, MG, Poole, WK. Influence of gestational age on death and neurodevelopmental outcome in premature infants with severe intracranial hemorrhage. J Perinatol. 2013;33(1):2532.Google Scholar
Bolisetty, S, Dhawan, A, Abdel-Latif, M, Bajuk, B, Stack, J, Lui, K. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics. 2014;133(1):5562.Google Scholar
Fumagalli, M, Bassi, L, Sirgiovanni, I, Mosca, F, Sannia, A, Ramenghi, LA. From germinal matrix to cerebellar haemorrhage. J Matern Fetal Neonatal Med. 2015;28 Suppl 1:2280–5.Google Scholar
Reubsaet, P, Brouwer, AJ, van Haastert, IC, Brouwer, MJ, Koopman, C, Groenendaal, F, et al. The impact of low-grade germinal matrix-intraventricular hemorrhage on neurodevelopmental outcome of very preterm infants. Neonatology. 2017;112(3):203–10.Google Scholar
Ou, X, Glasier, CM, Ramakrishnaiah, RH, Mulkey, SB, Ding, Z, Angtuaco, TL, et al. Impaired white matter development in extremely low-birth-weight infants with previous brain hemorrhage. AJNR Am J Neuroradiol. 2014;35(10):1983–9.Google Scholar
Jeong, HJ, Shim, SY, Cho, HJ, Cho, SJ, Son, DW, Park, EA. Cerebellar development in preterm infants at term-equivalent age is impaired after low-grade intraventricular hemorrhage. J Pediatr. 2016;175:86–92 e2.Google Scholar
Sancak, S, Gursoy, T, Karatekin, G, Ovali, F. Effect of intraventricular hemorrhage on cerebellar growth in preterm neonates. Cerebellum. 2017;16(1):8994.Google Scholar
Young, JM, Vandewouw, MM, Mossad, SI, Morgan, BR, Lee, W, Smith, ML, et al. White matter microstructural differences identified using multi-shell diffusion imaging in six-year-old children born very preterm. Neuroimage Clin. 2019;23:101855.Google Scholar
Dewan, MC, Rattani, A, Mekary, R, Glancz, LJ, Yunusa, I, Baticulon, RE, et al. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg. 2019; 130:1065–1079.Google Scholar
Nagra, G, Del Bigio, MR. Pathology of pediatric hydrocephalus. In: Cinalli, G, Özek, MM, Sainte-Rose, C, editors. Pediatric Hydrocephalus, 2nd ed. New York: Springer; 2019. pp. 359–77.Google Scholar

References

Volpe, JJ. Cerebellum of the premature infant – Rapidly developing, vulnerable, clinically important. J Child Neurol 2009; 24:1085–104.Google Scholar
Limperopoulos, C, Benson, CB, Bassan, H, DiSalvo, DN, Kinnamon, DD, Moore, M, Ringer, SA, Volpe, JJ, du Plessis, AJ. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 2005;116:717–24.Google Scholar
Pierson, CR, Folkerth, RD, Billards, SS, Trachtenberg, FL, et al. Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 2007;114:619–31.Google Scholar
Brouwer, AJ, Groenendaal, , Koopman, C, Nievelstein, R-JA, Han, SK, de Vries, LS. Intracranial hemorrhage in full-term newborns: a hospital-based cohort study. Neuroradiology 2010;52:567–76.Google Scholar
Limperopoulos, C, Soul, JS, Haidar, H, Huppi, PS, Bassan, H, Warfield, SK, Robertson, RL, Moore, M, Akins, P, Volpe, JJ, du Plessis, AJ. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics 2005;116:844–50.Google Scholar
Folkerth, RD, McLaughlin, ME, Levine, D. Organizing posterior fossa hematomas simulating developmental cysts on prenatal imaging: report of 3 cases. J Ultrasound Med 2001 20(11):1233–40.Google Scholar
Limperopoulos, C, Folkerth, R, Barnewolt, CE, Connolly, S, Du Plessis, AJ. Posthemorrhagic cerebellar disruption mimicking Dandy-Walker malformation: fetal imaging and neuropathology findings. Semin Pediatr Neurol 2010 17(1):7581.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×