Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T18:26:25.796Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 August 2017

James Carlson
Affiliation:
University of Utah
Stefan Müller-Stach
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Chris Peters
Affiliation:
Université Grenoble Alpes, France
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulali, S. 1994. Conjugates of strongly equivariant maps. Pac. J. Math., 165, 207–216.Google Scholar
Accola, R. 1979. On Castelnuovo's inequality for algebraic curves, I. Trans. Am. Math. Soc., 251, 357–373.Google Scholar
Addington, S. 1987. Equivariant holomorphic maps of symmetric domains. Duke Math. Journal, 55, 65–88.Google Scholar
Allcock, D., J., Carlson, and D., Toledo. 2002. The complex hyperbolic geometry of the moduli space of cubic surfaces. J. Algebraic Geom., 11, 659–724.Google Scholar
Allcock, D., J., Carlson, and D., Toledo. 2011. The Moduli Space of Cubic Threefolds as a Ball Quotient. Mem. Amer. Math. Soc., 209, A.M.S., Providence R.I.
Amerik, E. 1998. On a problem of Noether–Lefschetz type. Comp. Math., 112, 255–271.Google Scholar
del Angel, P. L. and S., Müller-Stach. 2002. The transcendental part of the regulator map for K1 on a mirror family of K3 surfaces. Duke Math. J., 112, 581–598.Google Scholar
André, Y. 1989. G-functions and Geometry. Vieweg Verlag, Braunschweig.
André, Y. 1992. Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part. Compositio Math., 82, 1–24.Google Scholar
Arakelov, A. 1971. Families of algebraic curves with fixed degeneracies. Izv. Akad. Nauk. SSSR, Ser. Math, 35, 1277–1302.Google Scholar
Asakura, M. 1999. Arithmetic Hodge structures and higher Abel–Jacobi maps. ArXiv;math/990819[math.AG].
Asakura, M. and S., Saito. 1998. Filtrations on Chow groups and higher Abel–Jacobi maps. Preprint.
Ash, A., D., Mumford, M., Rapoport, and Y., Tai. 1975. Smooth Compactification of Locally Symmetric Varieties. Math. Sci. Press, Boston. Second edition (2010) Cambridge University Press, Cambridge.
Atiyah, M. F. 1957. Complex analytic connections in fibre bundles. Trans. Am. Math. Soc., 85, 715–726.Google Scholar
Atiyah, M. F. and F., Hirzebruch. 1962. Analytic cycles on complex manifolds. Topology, 1, 25–45.Google Scholar
Atiyah, M. F. and W. V. D., Hodge. 1955. Integrals of the second kind on an algebraic variety. Ann. Math., 62, 56–91.Google Scholar
Baily, W. and A., Borel. 1966. Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math,, 84, 442–528.Google Scholar
Bardelli, F. 1989. Curves of genus three on a general abelian threefold and the nonfinite generation of the Griffiths group. Arithmetic of Complex Manifolds, Erlangen 1988, Lect. Notes in Maths, 1399, Springer-Verlag, Berlin, 10–26.
Bardelli, F. and S., Müller-Stach. 1994. Algebraic cycles on certain Calabi–Yau 3-folds. Math. Z., 215, 569–582.Google Scholar
Barlet, D. 1975. Espace analytique réduit des cycles analytiques compacts d'un espace analytique complexe de dimension finie. Sém. Francois Norguet, Springer Lect. Notes Math., 482, Springer-Verlag, Berlin, 1–158.
Barth, W., K., Hulek, C., Peters, and A., Van de Ven. 1993. Compact Complex Surfaces (Second enlarged edition). Ergebnisse der Math., 3, Springer-Verlag, New York, Berlin.
Beauville, A. 1982. Les familles stables de courbes elliptiques sur P1 admettant quatre fibres singulières. C. R. Acad. Sci. Paris, Ser I Math., 294, 657–660.Google Scholar
Beauville, A. 1983. Variétés kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom., 18, 755–782.Google Scholar
Beauville, A. 1986a. Sur l'anneau de Chow d'une variété abélienne. Math. Ann., 273, 647–651.Google Scholar
Beauville, A. 1986b. Le groupe de monodromie d'hypersurfaces et d'intersections complètes. Springer Lect. Notes Math., 1194, Springer-Verlag, Berlin, 1–18.
Bedulev, E. and E., Viehweg, 2000. On the Shafarevich conjecture for surfaces of general type over function fields. Invent. Math., 139, 603–615.Google Scholar
Bertin, J. and C., Peters. 2002. Variations of Hodge structure, Calabi–Yau manifolds and mirror symmetry. Introduction to Hodge Theory (translation of Introduction à la Théorie de Hodge), Am. Math. Soc., SMF/AMS Texts and Monographs, 8.Google Scholar
Bingener, J. 1987. Lokale Modulräume in der analytischen Geometrie I, II. Aspects of Mathematics, 1-2, Vieweg Verlag, Braunsweig.
Bloch, S. 1979. Some elementary theorems about algebraic cycles on Abelian varieties. Invent. Math., 37, 215–228.Google Scholar
Bloch, S. 1980. Lectures on Algebraic Cycles. Duke University Press. Second edition (2010), New Mathematical Monographs, 16, Cambridge University Press, Cambridge.
Bloch, S. 1986. Algebraic cycles and higher K-theory. Adv. Math., 61, 267– 304.Google Scholar
Borel, A. 1969. Introduction aux Groupes Arithmétiques. Pub. Inst. Math. University Strasbourg, XV, Act. Scient. et Industr. 1341, Hermann, Paris.
Borel, A. 1997. Linear Algebraic Groups. Graduate Texts in Mathematics, 126, 2nd enlarged edition, Springer-Verlag, New York, Berlin, Heidelberg.
Borel, A. and Harish-Chandra. 1962. Arithmetic Subgroups of Algebraic Groups. Ann. Math., 75, 485–535.Google Scholar
Borel, A. and T., Springer. 1968. Rationality properties of linear algebraic groups II. Tôhoku Math. J., 20, 443–497.Google Scholar
Bott, R. 1957. Homogeneous vector bundles. Ann. Math., 66, 203–248.Google Scholar
Bott, R. and L.W., Tu. 1982. Differential Forms in Algebraic Topology. Springer-Verlag, New York, Berlin.
Braun, R. and S., Müller-Stach. 1996. Effective bounds for Nori's connectivity theorem. Higher Dimensional Varieties, Proc. Int. Conf. in Trento, de Gruyter, 83–88.
Bryant, R. L. 1985. Lie groups and twistor spaces. Duke Math. J., 52, 223–261.Google Scholar
Burns, D. and M., Rapoport. 1975. On the Torelli problem for Kählerian K-3 surfaces. Ann. Sci. École Norm. Sup. (4), 8, 235–273.Google Scholar
Calabi, E. 1967. Minimal immersions of surfaces in Euclidean spheres. J. Diff. Geom., 1, 11–125.Google Scholar
Carlson, J. 1980. Extensions of mixed Hodge structures. Journées de Géométrie Algébriques d'Angers 1979, Sijthoff-Noordhoff, Alphen a/d Rijn, 107–127.
Carlson, J. 1986. Bounds on the dimension of a variation of Hodge structure. Trans. AMS., 294, 45–64.Google Scholar
Carlson, J., M., Green, P., Griffiths, and J., Harris. 1983. Infinitesimal variations of Hodge structure I. Comp. Math., 50, 109–205.Google Scholar
Carlson, J., A., Kasparian, and D., Toledo. 1989. Variation of Hodge structure of maximal dimension. Duke Math. J., 58, 669–694.Google Scholar
Carlson, J. and P., Griffiths. 1980. Infinitesimal variations of Hodge structure and the global Torelli problem. Journées de Géométrie Algébriques d'Angers 1979, Sijthoff-Noordhoff, Alphen a/d Rijn, 51–76.
Carlson, J. and C., Simpson. 1987. Shimura varieties of weight two Hodge structures. Hodge theory, Proceedings, Sant Cugat, Spain 1985, Springer Lect. Notes in Math., 1246, 1–15.Google Scholar
Carlson, J. and D., Toledo. 1989a. Variations of Hodge structure, Legendre submanifolds and accessibility. Trans. Am. Math. Soc., 312, 319–412.Google Scholar
Carlson, J. and D., Toledo. 1989b. Harmonic mappings of Kähler manifolds to locally symmetric spaces. Publ. Math. IHES, 69, 173–201.Google Scholar
Carlson, J. and D., Toledo. 1993. Rigidity of harmonic maps of maximum rank. J.Geom. Anal., 3, 99–140.Google Scholar
Carlson, J. and D., Toledo. 1999. Discriminant complements and kernels of monodromy representations. Duke J. Math., 97, 621–648.Google Scholar
Carlson, J. and D., Toledo. 2014. Compact quotients of non-classical domains are not Kähler. Hodge Theory, Complex Geometry, and Representation Theory, Contemp. Math., 608, Amer. Math. Soc., Providence, RI, 1–57.
Cartan, H. 1957. Quotients d'un espace analytique par un groupe d'automorphismes. Algebraic Geometry and Topology, Princeton University Press, Princeton, NJ. 165–180.
Catanese, F. 1979. Surfaces with K2 = pg = 1 and their period mapping. Algebraic Geometry, Proc. Summer Meeting Copenhagen 1978, Springer Lect. Notes Math., 732, 1–29.Google Scholar
Catanese, F. 1980. The moduli and the global period mapping of surfaces with K2 = pg = 1: A counterexample to the global Torelli problem. Comp. Math., 41, 401–414.Google Scholar
Cattani, E., P., Deligne, and A., Kaplan. 1995. On the locus of Hodge classes. J. Am. Math. Soc., 8, 483–506.Google Scholar
Ceresa, G. 1983. C is not equivalent to C− in its Jacobian. Ann. of Math, 117, 285–291.Google Scholar
Chakiris, K. 1980. Counterexamples to global Torelli for certain simply connected surfaces. Bull. Am. Math. Soc., 2, 297–299.Google Scholar
Chen, K., X., Lu, and K., Zuo. 2015. On the Oort conjecture for Shimura varieties of unitary and orthogonal types. arxiv.org/abs/1410.5739.
Chern, S. 1967. Complex Manifolds Without Potential Theory. Van Nostrand Math. Studies, 15, Princeton.
Chowla, S. and A., Selberg. 1949. On Epstein's zeta function (I). Proc. N.A.S, 35, 371–374.Google Scholar
Ciliberto, C. and A., Lopez. 1991. On the existence of components of the Noether– Lefschetz locus with given codimension. Manuscr. Math., 73, 341–357.Google Scholar
Ciliberto, C., J., Harris, and R., Miranda. 1988. General components of the Noether– Lefschetz locus and their density in the space of all surfaces. Math. Ann., 282, 667–680.Google Scholar
Clemens, C. H. 1977. Degenerations of Kaehler manifolds. Duke Math. J., 44, 215–290.Google Scholar
Clemens, C. H. 1980. A Scrapbook of Complex Curve Theory. Plenum University Press, New York, London.
Clemens, C. H. and P., Griffiths. 1972. The intermediate jacobian of the cubic threefold. Ann. Math., 95, 218–356.Google Scholar
Coleman, R. 1987. Torsion points on curves. Galois Representations and Arithmetic Algebraic Geometry (Kyoto 1985/Tokyo 1986), Adv. Math. Stud. Pure Math., 12, North-Holland, Amsterdam, 235–247.
Collino, A. 1997. Griffiths' infinitesimal invariant and higher K-theory on hyperelliptic Jacobians. J. Alg. Geom., 6, 393–415.Google Scholar
Collino, A. and G. P., Pirola. 1995. Griffiths infinitesimal invariant for a curve in its Jacobian. Duke Math. J., 78, 59–88.Google Scholar
Corlette, K. 1988. Flat G-bundles with canonical metrics. J. Differential Geom., 28, 361–382.Google Scholar
Cox, D. 1990. The Noether–Lefschetz locus of regular elliptic surfaces with section and pg ≥ 2. Am. J. Math., 112, 289–329.Google Scholar
Cox, D. and R., Donagi. 1986. On the failure of variational Torelli for regular elliptic surfaces with a section. Math. Ann., 273, 673–683.Google Scholar
Cox, D., R., Donagi, and L.W., Tu. 1987. Variational Torelli implies generic Torelli. Inv. Math., 88, 439–446.Google Scholar
Debarre, O. and Y., Laszlo. 1990. Le lieu de Noether–Lefschetz pour les variétés abéliennes. C. R. Acad. Sci. Paris, Ser. I, 311, 337–340.Google Scholar
Deligne, P. 1970a. Équations Differentielles à Points Singuliers Réguliers. Springer Lect. Notes Math., 163, Springer-Verlag, Berlin.
Deligne, P. 1970b. Travaux de Griffiths. Exp. 376, Sém., Bourbaki (Juin 1970), Springer Lecture Notes Math., 180, Springer-Verlag, Berlin.
Deligne, P. 1971a. Théorie de Hodge I. Actes du Congrès International des Mathématiciens, (Nice, 1970), Tome 1, 425–430. Gauthier-Villars, Paris.
Deligne, P. 1971b. Théorie de Hodge II. Publ. Math. IHES, 40, 5–57.Google Scholar
Deligne, P. 1971c. Travaux de Shimura. Séminaire Bourbaki (1970/71), Exp. 389 123–165, Springer Lecture Notes in Math., 244, Springer, Berlin.
Deligne, P. 1974. Théorie de Hodge III. Publ. Math. IHES, 44, 5–77.Google Scholar
Deligne, P. 1979. Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. Automorphic Forms, Representations and L-functions (Oregon State University, Corvallis, Oregon, 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 247–289.
Deligne, P. and A., Dimca. 1990. Filtrations de Hodge et par l'ordre du pôle pour les hypersurfaces singuliéres. Ann. Sci. E.N.S., 23, 645–656.Google Scholar
Deligne, P. and L., Illusie. 1987. Relèvements modulo p2 et décomposition du complexe de De Rham. Inv. Math., 89, 247–270.Google Scholar
Deligne, P., J. S., Milne, A., Ogus, and K., Shih. 1982. Hodge Cycles, Motives and Shimura Varieties. Springer Lecture Notes in Math. 900, Springer-Verlag, Berlin.
Deninger, Ch. and J., Murre. 1991. Motivic decomposition of abelian schemes and the Fourier transform. J. reine u. angew. Math., 422, 201–219.Google Scholar
Dieudonné, J. A. and J. B., Carrell.1971. Invariant Theory, Old and New. Academic Press, New York.
Donagi, R. 1983. Generic Torelli for projective hypersurfaces. Comp. Math., 50, 325–353.Google Scholar
Donagi, R. and M., Green. 1984. A new proof of the symmetrizer lemma and a stronger weak Torelli theorem for projective hypersurfaces. J. Diff. Geom, 20, 459–461.Google Scholar
Donagi, R. and L.W., Tu. 1987. Generic Torelli for weighted hypersurfaces. Math. Ann., 276, 399–413.Google Scholar
Donaldson, S. K. 2011. Riemann Surfaces. Oxford Graduate Texts in Mathematics 12, Oxford University Press, Oxford.
Donaldson, S. K. and P. B., Kronheimer. 1990. The Geometry of Four-Manifolds. Oxford Mathematical Monographs, Oxford University Press, Oxford.
Donin, I. F. 1978. On deformations of non-compact complex spaces. Russ. Math. Surv., 33, 181–182.Google Scholar
Douady, A. 1984/85. Le probleme de modules pour les variétés analytiques complexes. Sém. Bourbaki, Exp. 277.Google Scholar
Edixhoven, B. and A., Yafaev. 2003. Subvarieties of Shimura varieties. Ann. of Math., 157, 621–645.Google Scholar
Eells, J. and J. H., Sampson. 1964. Harmonic mappings of Riemannian manifolds. Am. J. Math., 86, 109–160.Google Scholar
Ehresmann, C. 1947. Sur les espaces fibrés différentiables. C. R. Acad. Sci. Paris, 224, 1611–1612.Google Scholar
Ein, L. 1985. An analogue of Max Noether's theorem. Duke Math. J., 52, 689–706.Google Scholar
Eisenbud, D. 1994. Commutative Algebra with a View Toward Algebraic Geometry. Springer-Verlag, New York, Berlin.
Enriques, F. 1914. Sulla classificazione delle superficie algebriche e particolarmente sulle superficie di genere p1 = 1 (2 notes). Atti Acc. Lincei V Ser., 231.Google Scholar
Esnault, H. and E., Viehweg. 1988. Deligne-Beilinson cohomology. Special Values of L-Functions, Arbeitsgemeinschaft Oberwolfach 1986, Perspectives in Math., 4, Academic Press, Boston, MA, 43–91.
Eyssidieux, Ph. 1997. La caracteristique d'Euler du complexe de Gauss-Manin. J. reine u. angew. Math., 490, 155–212.Google Scholar
Fakhruddin, N. 1996. Algebraic cycles on generic abelian varieties. Comp. Math., 100, 101–119.Google Scholar
Faltings, G. 1983. Arakelov's theorem for abelian varieties. Inv. Math., 73, 337–348.Google Scholar
Flenner, H. 1986. The infinitesimal Torelli problem for zero sections of vector bundles. Math. Z., 193, 307–322.Google Scholar
Forster, O. 1981. Lectures on Riemann Surfaces. Springer-Verlag, New York, Berlin.
Fujita, T. 1978. On Kähler fiber spaces over curves. J. Math. Soc. Japan, 30, 779–794.Google Scholar
Fulton, W. and J., Harris. 1991. Representation Theory, a First Course. Graduate Texts in Math., 129, Springer-Verlag, Berlin.
Gerkmann, R., M., Sheng, and K., Zuo. 2007. Disproof of modularity of the moduli space of CY 3-folds of double covers of P3 ramified along eight planes in general position. arXiv AG/07091051.
Gillet, H. 1984. Deligne homology and Abel–Jacobi maps. Bull. Am. Math. Soc., 10, 285–288.Google Scholar
Godement, R. 1964. Théorie des Faisceaux. Hermann, Paris.
Gordon, B. and J., Lewis. 1998. Indecomposable higher Chow cycles on products of elliptic curves. J. Alg. Geom., 8, 543–567.Google Scholar
Grauert, H. 1962. Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146, 331–368.Google Scholar
Grauert, H. 1972. Über Deformationen isolierter Singularitäten analytischer Mengen. Inv. Math., 15, 171–198.Google Scholar
Grauert, H. 1974. Der Satz von Kuranishi für kompakte komplexe Raüme. Inv. Math., 25, 107–142.Google Scholar
Grauert, H. and R., Remmert. 1977. Theorie der Steinschen Raüme. Grundl. Math., 227, Springer-Verlag, Berlin, Heidelberg.
Green, M. 1984a. Koszul cohomology and the geometry of projective varieties. Appendix: The nonvanishing of certain Koszul cohomology groups (by Mark Green and Robert Lazarsfeld). J. Diff. Geom., 19, 125–167; 168–171.Google Scholar
Green, M. 1984b. The period map for hypersurface sections of high degree of an arbitrary variety. Comp. Math., 55, 135–171.Google Scholar
Green, M. 1988. A new proof of the explicit Noether–Lefschetz theorem. J. Diff. Geom., 27, 155–159.Google Scholar
Green, M. 1989a. Components of maximal dimension in the Noether–Lefschetz locus. J. Diff. Geom., 29, 295–302.Google Scholar
Green, M. 1989b. Griffiths' infinitesimal invariant and the Abel-Jacobi map. J. Diff. Geom., 29, 545–555.Google Scholar
Green, M. 1996. What comes after the Abel–Jacobi map? Unpublished manuscript.
Green, M. 1998. Higher Abel–Jacobi maps, Invited Lecture at the International Congress Berlin 1998. Documenta Math, II, 267–276.Google Scholar
Green, M. and S., Müller-Stach. 1996. Algebraic cycles on a general complete intersection of high multidegree of a smooth projective variety. Comp. Math., 100, 305–309.Google Scholar
Green, M., P. A., Griffiths, and M., Kerr. 2012. Mumford-Tate Groups and Domains: Their Geometry and Arithmetic. Princeton University Press, Princeton, NJ.
Green, M., J., Murre, and C., Voisin. 1994. Algebraic Cycles and Hodge theory (ed. A., Albano and F., Bardelli), Springer Lect. Notes Math., 1594.
Greenberg, M. J. 1967. Lectures on Algebraic Topology. W. A. Benjamin, Reading, MA.
Griffiths, P. 1968. Periods of integrals on algebraic manifolds, I, II. Am. J. Math., 90, 568–626; 805–865.Google Scholar
Griffiths, P. 1969. On the periods of certain rational integrals I, II. Ann. Math., 90, 460–495; 498–541.Google Scholar
Griffiths, P. 1970. Periods of integrals on algebraic manifolds, III. Publ. Math. IHÉS, 38, 125–180.Google Scholar
Griffiths, P. 1983. Infinitesimal variations of Hodge structure (III): determinantal varieties and the infinitesimal invariant of normal functions. Comp. Math., 50, 267–324.Google Scholar
Griffiths, P. and J., Harris. 1978. Principles of Algebraic Geometry. Wiley, New York.
Griffiths, P. and J., Harris. 1983. Infinitesimal variations of Hodge structure (II): an infinitesimal invariant of Hodge classes. Comp. Math., 50, 207–266.Google Scholar
Griffiths, P. and J., Harris. 1985. On the Noether–Lefschetz theorem and some remarks on codimension-two cycles. Math. Ann., 271, 31–51.Google Scholar
Griffiths, P. and W., Schmid. 1969. Locally homogenous complex manifolds. Acta Math., 123, 145–166.Google Scholar
Griffiths, P., C., Robles, and D., Toledo. 2015. Quotients of non-classical flag domains are not algebraic. http://arxiv.org/abs/1303.0252.
Gross, M., D., Huybrechts, and D., Joyce. 2003. Calabi–Yau Manifolds and Related Geometries (Lectures from the Summer School held in Nordfjordeid, June 2001.). Springer-Verlag, Berlin, Heidelberg.
Grothendieck, A. 1958. La théorie des classes de Chern. Bull. Soc. Math., France, 86, 137–154.Google Scholar
Guillemin, V. and A., Pollack. 1974. Differential Topology. Prentice-Hall, Englewood Cliffs, NJ.
Gunning, R. C. and H., Rossi. 1965. Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, NJ.
Harris, J. 1992. Algebraic Geometry, a First Course. Grad. Texts in Math, 133, Springer-Verlag, Berlin, Heidelberg.
Hartshorne, R. 1975. Equivalence relations on algebraic cycles and subvarieties of small codimension. Proc. Symp. Pure Math., 29, Am. Math. Soc., Providence, RI. 129–164.
Hartshorne, R. 1987. Algebraic Geometry. Springer-Verlag, Berlin, Heidelberg.
Hatcher, A. 2002. Algebraic Topology. Cambridge University Press, Cambridge.
Helgason, S. 1962. Differential Geometry and Symmetric Spaces. Academic Press, New York, London.
Helgason, S. 1978. Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York, London.
Hironaka, H. 1964. Resolution of singularities of an algebraic variety of characteristic zero. Ann. Math., 79, 109–326.Google Scholar
Hirzebruch, F. 1966. Topological Methods in Algebraic Geometry. Grundl. Math. Wiss., 131 (dritte Ausgabe), Springer-Verlag, New York, Berlin.
Hirzebruch, F. 1976. Hilbert's modular group of the field Q(√ 5) and the cubic diagonal surface of Clebsch and Klein. Russ. Math. Surv., 31, 96–110.Google Scholar
Hitchin, N. 1987. The self-duality equations on a Riemann surface. Proc. London Math. Soc., 55, 59–126.Google Scholar
Hodge, W. V. D. 1952. The topological invariants of algebraic varieties. Proc. Int. Congr. Math. (Cambridge 1950)., Am. Math. Soc., Providence, RI, 182–192.
Hodge, W. V. D. 1959. The Theory and Applications of Harmonic Integrals. Cambridge University Press, Cambridge, UK.
Holzapfel, R.-P. 1986a. Chern numbers of algebraic surfaces – Hirzebruch's examples are Picard modular surfaces. Math. Nachrichten, 126, 255–273.Google Scholar
Holzapfel, R.-P. 1986b. Geometry and Arithmetic Around Euler Partial Differential Equations. Reidel Publishing Company, Kluwer, Dordrecht.
Horikawa, E. 1976. Algebraic surfaces of general type with small c2 1, I. Ann. Math., 104, 357–387.Google Scholar
Huber, A. and S., Müller-Stach. 2017. Periods and Nori Motives. Ergebnisse Series 3rd series 65, Springer-Verlag, Berlin.
Humphreys, J. 1981. Linear Algebraic Groups. Graduate Texts in Mathematics, 21, Springer-Verlag, Berlin, Heidelberg, New York.
Husemoller, D. 1966. Fibre Bundles. MacGraw-Hill, New York.
Huybrechts, D. 1999. Compact hyperkahler manifolds: basic results. Invent. Math., 135, 63–113.Google Scholar
Huybrechts, D. 2012. A global Torelli theorem for hyperkähler manifolds (after Verbitsky). Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042, Astérisque, 348, 375-403. See also arxiv:1106.5573.Google Scholar
Huybrechts, D. 2016. Lectures on K3 Surfaces. Cambridge University Press.
Ihara, S-i. 1967. Holomorphic imbeddings of symmetric domains. J. Math. Soc. Japan, 19, 261–302.Google Scholar
Ince, E. L. 1956. Ordinary Differential Equations. Dover Publ., New York.
Ivinskis, K. 1993. A variational Torelli theorem for cyclic coverings of high degree. Comp. Math., 85, 201–228.Google Scholar
Jannsen, U. 2000. Equivalence relations on algebraic cycles. The Arithmetic and Geometry of Algebraic Cycles Proc. Banff 1998, Kluwer Acad. Publ., Dordrecht, Ser. C 548, 225–260.
Joshi, K. 1995. A Noether–Lefschetz theorem and applications. J. Alg. Geom., 4, 105–135.Google Scholar
Jost, J. and K., Zuo. 2002. Arakelov type inequalities for Hodge bundles over algebraic varieties, Part I: Hodge bundles over algebraic curves with unipotent monodromies around singularities. J. Alg. Geom., 11, 535–546.Google Scholar
van Kampen, E. R. 1933. On the fundamental group of an algebraic curve. Am. J. Math., 55, 255–260.Google Scholar
Katz, N. and T., Oda. 1968. On the differentiation of de Rham cohomology classes with respect to parameters. J. Math. Kyoto University, 8, 199–213.Google Scholar
Kempf, G., F., Knudsen, D., Mumford, and B., Saint-Donat. 1973. Toroidal Embeddings I. Springer Lect. Notes, 336, Springer-Verlag, Berlin.
Kiĭ, K. 1973. A local Torelli theorem for cyclic coverings of Pn with positive class. Math. Sb., 92, 142–151.Google Scholar
Kiĭ, K. 1978. The local Torelli theorem for varieties with divisible canonical class. Math. USSR Izv., 12, 53–67.Google Scholar
Kim, Sung-Ock. 1991. Noether–Lefschetz locus for surfaces. Trans. Am. Math. Soc., 324, 369–384.Google Scholar
Klingler, B. and A., Yafaev. 2014. The André–Oort conjecture. Ann. Math., 180, 867–925.Google Scholar
Knapp, A. 2005. Lie Groups Beyond an Introduction(second edition). Progress in Maths., 140, Birkhäuser, Boston, Basel, Berlin.
Kobayashi, S. 1987. Differential Geometry of Complex Vector Bundles. Princeton University Press, Princeton, NJ.
Kodaira, K. and D., Spencer. 1953. Divisor class groups on algebraic varieties. Proc. Natl. Acad. Sci. USA, 39, 872–877.Google Scholar
Kodaira, K. and D., Spencer. 1962. A theorem of completeness for complex analytic fibre spaces. Acta Math., 100, 43–76.Google Scholar
Kodaira, K., L., Nirenberg, and D., Spencer. 1958. On the existence of deformations of complex structures. Ann. Math., 90, 450–459.Google Scholar
Konno, K. 1985. On deformations and the local Torelli problem for cyclic branched coverings. Math. Ann., 271, 601–618.Google Scholar
Konno, K. 1986. Infinitesimal Torelli theorems for complete intersections in certain homogeneous Kähler manifolds. Tôhoku Math. J., 38, 609–624.Google Scholar
Konno, K. 1991. On the variational Torelli problem for complete intersections. Comp. Math., 78, 271–296.Google Scholar
Koszul, J.-L. and B., Malgrange. 1958. Sur certaines structures fibrées complexes. Arch. Math., 9, 102–109.Google Scholar
Kronecker, L. 1857. Zwei Sätze über Gleichungen mit ganzzahligen Coeffizienten. J. reine u. angew. Math., 53, 173–175.Google Scholar
Kunnemann, K. 1994. On the Chow motive of an abelian scheme. Motives Seattle WA 1991, Proc. Symp. Pure Math., 55 (1), Amer. Math. Soc., Providence RI, 189–205.
Kuranishi, M. 1965. New proof for the existence of locally complete families of complex analytic structures. Proc. Conf. Complex Analysis, Minneapolis, 1964, Springer-Verlag New York, Berlin, 142–154.
Kynev, V. 1977. An example of a simply connected surface for which the local Torelli theorem does not hold (Russian). C.R.Ac. Bulg. Sc., 30, 323–325.Google Scholar
Lamotke, K. 1981. The topology of complex projective varieties after S. Lefschetz. Topology, 20, 15–52.Google Scholar
Landman, A. 1973. On the Picard–Lefschetz transformation for algebraic manifolds acquiring general singularities. Trans. Am. Math. Soc., 181, 89–126.Google Scholar
Lang, S. 1985. Introduction to Differentiable Manifolds (second edition 2002). Springer-Verlag, New York, Berlin.
Lawson, H. B., Jr. 1980. Lectures on Minimal Submanifolds, Volume I. Mathematics Lecture Series, 9, Publish or Perish, Inc.
Lefschetz, S. 1924. L'Analysis Situs et la Géométrie Algébrique. Gauthiers-Villars Paris.
Lelong, P. 1957. Intégration sur un ensemble analytique complexe. Bull. Soc. Math. France, 85, 239–262.Google Scholar
Leray, J. 1959. Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy III). Bull. Soc. Math. France, 87, 81–180.Google Scholar
Levine, M. 1998. Mixed Motives. Mathematical Surveys and Monographs, 57, AMS, Providence, RI.
Lewis, J. D. 1991. A Survey of the Hodge Conjecture. Publications C.R.M., Montreal.
Libgober, A. and I., Dolgachev. 1981. On the fundamental group of the complement to a discriminant variety. Algebraic Geometry, Springer Lect. Notes Math., 862, 1–25.
Lieberman, D. 1978. Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds. Sém. Norguet 1976, Springer Lect. Notes Math., 670, (1978), 140–186.
Lieberman, D., C., Peters, and R., Wilsker. 1977. A theorem of Torelli type. Math. Ann., 231, 39–45.Google Scholar
Liu, K., A., Todorov, S.-T., Yau, and K., Zuo. 2011. Finiteness of subfamilies of Calabi-Yau N-folds over curves with maximal length of Yukawa-coupling. Pure and Applied Mathematics Quarterly, 7 (Special Issue: In honor of EckartViehweg), 1585–1598.Google Scholar
Looijenga, E. and R., Swierstra. 2007. The period map for cubic threefolds. Compos. Math., 143, 1037–1049.Google Scholar
Lopez, A. 1991. Noether–Lefschetz Theory and the Picard group of Projective Surfaces. Mem. Am. Math. Soc. monograph, 438.
Lu, X. and K., Zuo. 2014. On Shimura curves in the Torelli locus of curves. arxiv.org/abs/1311.5858.
Lu, X. and K., Zuo. 2015. The Oort conjecture on Shimura curves in the Torelli locus of curves. arxiv.org/abs/1405.4751.
Lu, X., S.-L., Tan and K., Zuo 2016. Singular fibers and Kodaira dimensions. arxiv.org/abs/arXiv:1610.07756.
Macaulay, F. S. 1916. The Algebraic Theory of Modular Systems. Revised 1994 reprint of the 1916 original, with an introduction by Paul, Roberts, Cambridge Mathematical Library, Cambridge University Press, Cambridge.
Malgrange, B. 1974. Intégrales asymptotiques et monodromie. Ann. Sci. École Norm. Sup., ser. 4, 7, 405–430.Google Scholar
Margulis, G. 1991. Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Math. und ihrer Grenzgebiete, 17, Springer-Verlag, Berlin.
Matsumura, H. 1989. Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge.
Mazza, C., V., Voevodsky, and C., Weibel. 2006. Lecture Notes on Motivic Cohomology. CMI/AMS, Claymath Publ., 7.
Miller, A., S., Müller-Stach, S., Wortmann, Y.-H., Yang, and K., Zuo. 2007. Chow-Kunneth decomposition for universal families over Picard modular surfaces. Algebraic Cycles and Motives Part II (eds. J., Nagel and Ch. Peters), London Math. Soc. Lecture Notes, 344, Cambridge University Press.
Milne, J. 2004. Introduction to Shimura Varieties. http://www.jmilne.org/math/xnotes/svi.pdf
Milnor, J. 1963. Morse Theory. Princeton University Press, Princeton, NJ.
Milnor, J. and J., Stasheff. 1974. Characteristic Classes. Ann. Math. Studies, 76, Princeton University Press, Princeton, NJ.
Mohajer, A., S., Müller-Stach, and K., Zuo. 2016. Special subvarieties in Mumford-Tate varieties. arXiv:1410.4654 [math.AG].
Möller, M., E., Viehweg, and K., Zuo. 2006. Special families of curves, of Abelian varieties and of certain minimal manifolds over curves, Global Aspects of Complex Geometry, Springer-Verlag, Berlin, 417–450.
Moonen, B. 1998. Linearity properties of Shimura varieties, I. J. Alg. Geom, 7, 539–567.Google Scholar
Moonen, B. 1999. Notes on Mumford–Tate groups www.math.ru.nl/∼bmoonen/Lecturenotes/CEBnotesMT.pdf.
Moonen, B. 2016. Notes on Mumford-Tate groups and Galois representations. Forthcoming.
Morrison, D. 1988. On the moduli of Todorov surfaces. Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata 1987, Kinokuniya, Tokyo, 313–355.
Mostow, G. and T., Tamagawa. 1962. On the compactness of arithmetically defined homogeneous spaces. Ann. of Math., 76, 440–463.Google Scholar
Müller-Stach, S. 1992. On the non-triviality of the Griffiths group. J. reine u. angew. Math., 427, 209–218.Google Scholar
Müller-Stach, S. 1994. Syzygies and the Abel–Jacobi map for cyclic coverings. Manuscr. Math., 82, 433–443.Google Scholar
Müller-Stach, S. 1997. Constructing indecomposable motivic cohomology classes on algebraic surfaces. J. Alg. Geom., 6, 513–543.Google Scholar
Müller-Stach, S. and K., Zuo. 2011. A characterization of special subvarieties in orthogonal Shimura varieties, Pure and Applied Mathematics Quarterly, 7 (Special Issue: In honor of Eckart Viehweg), 1599–1630.Google Scholar
Müller-Stach, S., C., Peters, and V., Srinivas. 2012a. Abelian varieties and theta functions as invariants for compact Riemannian manifolds; constructions inspired by superstring theory. J. Math. Pures et Appliquées, 97.Google Scholar
Müller-Stach, S., M., Sheng, X., Ye, and K., Zuo. 2011. On the cohomology groups of local systems over Hilbert modular varieties via Higgs bundles. math.AG 1009.2011.
Müller-Stach, S., E., Viehweg, and K., Zuo. 2009. Relative proportionality for subvarieties of moduli spaces of K3 and abelian surfaces. Pure and Applied Mathematics Quarterly, 5 (Special Issue: In honor of Friedrich Hirzebruch), 1161–1199.Google Scholar
Müller-Stach, S., X., Ye, and K., Zuo. 2012b. Mixed Hodge complexes and L2- cohomology for local systems on ball quotients. To appear in Documenta Mathematica.
Mumford, D. 1963. Curves on Algebraic Surfaces. Princeton University Press, Princeton, NJ.
Mumford, D. 1965. Geometric Invariant Theory. Springer-Verlag, Berlin, New York.
Mumford, D. 1966. Families of abelian varieties. Algebraic Groups and Discontinuous Subgroups (Boulder, Colorado, 1965). Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 347–351.
Mumford, D. 1969a. A note on Shimura's paper “Discontinuous groups and abelian varieties”. Math. Annalen, 181, 345–351.Google Scholar
Mumford, D. 1969b. Rational equivalence of zero-cycles on surfaces. J. Math. Kyoto University, 9, 195–204.Google Scholar
Mumford, D. 1970. Varieties defined by quadratic equations. Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 29–100.
Mumford, D. 1976. Algebraic Geometry I, Complex Projective Varieties. Grundl. Math. Wissensch., 221, Springer-Verlag, Berlin, New York.
Murre, J. 1993. On a conjectural filtration on the Chow groups of an algebraic variety. Indag. Math., 4, 177–188.Google Scholar
Murre, J., J., Nagel, and C., Peters. 2013. Lectures on the Theory of Pure Motives. University Lecture Series, 61, AMS, Providence RI.
Nagel, J. 1997. The Image of the Abel-Jacobi Map for Complete Intersections. Proefschrift (Thesis), Rijksuniversiteit Leiden.
Nagel, J. 2002. Effective bounds for Hodge theoretic connectivity. J. Alg. Geom., 11, 1–32.Google Scholar
Newstead, P. E. 1978. Introduction to Moduli Problems and Orbit Spaces. Springer- Verlag, Berlin, New York.
Nori, M. 1989. Cycles on the generic abelian threefold. Proc. Indian Acad. Sci. Math. Sci, 99, 191–196.Google Scholar
Nori, M. 1993. Algebraic cycles and Hodge theoretic connectivity. Inv. Math., 111, 349–373.Google Scholar
Oguiso, K. and E., Viehweg. 2001. On the isotriviality of families of elliptic surfaces. J. Alg. Geom., 10, 569–598.Google Scholar
Oort, F. 1997. Canonical liftings and dense sets of CM points. Arithmetic Geometry (Cortona 1994), Symp. Math., XXXVII, Cambridge University Press, Cambridge, 228–234.
Palamodov, V. 1976. Deformations of complex spaces. Russ. Math. Surv., 31, 129–197.Google Scholar
Paranjape, K. 1991. Curves on threefolds with trivial canonical bundle. Proc. Ind. Acad. Sci. Math. Sci, 101, 199–213.Google Scholar
Paranjape, K. 1994. Cohomological and cycle-theoretic connectivity. Ann. of Math., 140, 349–373.Google Scholar
Peters, C. 1975. The local Torelli theorem: complete intersections. Math. Ann., 217, 1–16.Google Scholar
Peters, C. 1976a. Erratum to “The local Torelli theorem. I: complete intersections”. Math. Ann., 223, 191–192.Google Scholar
Peters, C. 1976b. The local Torelli theorem II: cyclic branched coverings. Ann. Sc. Norm. Sup. Pisa Ser. IV, 3, 321–339.Google Scholar
Peters, C. 1984. A criterion for flatness of Hodge bundles over curves and geometric applications. Math. Ann., 268, 1–19.Google Scholar
Peters, C. 1988. Some remarks about Reider's article ‘On the infinitesimal Torelli theorem for certain irregular surfaces of general type.’ Math. Ann., 282, 315–324.Google Scholar
Peters, C. 1990. Rigidity for variations of Hodge structure and Arakelov-type finiteness theorems. Comp. Math., 75, 113–126.Google Scholar
Peters, C. 2000. Arakelov inequalities for Hodge bundles. Prépub. de l'Inst. Fourier, 511.Google Scholar
Peters, C. 2010. Rigidity, past and present. Proceedings of Teichmueller Theory and Moduli Problems (HRI, India, January 2006). Ramanujan Mathematical Society's Lecture Notes Series, 10, 529–548.Google Scholar
Peters, C. 2016. Inequalities for semi-stable fibrations on surfaces, and their relation to the Coleman-Oort conjecture. Pure and Applied Math. Q. 12, 1–30. See also arxiv.org/abs/1405.4531v2.Google Scholar
Peters, C. and J., Steenbrink. 1983. Infinitesimal variation of Hodge Structure and the generic Torelli problem for projective hypersurfaces. Classification of Algebraic and Analytic Varieties, Birkhäuser Verlag, Basel, 399–464.
Peters, C. and J., Steenbrink, 2008. Mixed Hodge structures. Ergebnisse der Math., 52, Springer-Verlag, Berlin.
Piateckii-Shapiro, I. and I., Shafarevich. 1971. A Torelli theorem for algebraic surfaces of type K3. Izv. Akad. Nauk. SSSR. Ser.Math., 35, 530–572.Google Scholar
Picard, E. 1883. Sur des fonctions de deux variables indépendentes analogues aux fonctions modulaires. Acta. Math., 2, 114–135.Google Scholar
Pourcin, G. 1974. Déformations de singularités isolées. Asterique, 16, 161–173.Google Scholar
Quillen, D. 1973. Higher algebraic K-theory, I (Proc. Conf. Battle Inst. 1972). Lect. Notes Math., 341, Springer-Verlag, Berlin., 85–147.
Ravi, M. 1993. An effective version of Nori's theorem. Math. Z., 214, 1–7.Google Scholar
Reider, I. 1988. On the infinitesimal Torelli theorem for certain types of irregular surfaces. Math. Ann., 279, 285–302.Google Scholar
Roberts, J. 1972. Chow's moving lemma. Algebraic Geometry Oslo Conf. 1970, Wolters–Noordhoff, Groningen, 89–96.
Roĭtman, A. A. 1974. Rational equivalence of zero-dimensional cycles. Math. USSR Sb., 18, 571–588.Google Scholar
Saint-Donat, B. 1975. Variétés de translation et théorème de Torelli. C.R.Ac. Sci. Paris, Sér. A., 280, 1611–1612.Google Scholar
Saito, Ma. 1983. On the infinitesimal Torelli problem of elliptic surfaces. J. Math. Kyoto University, 23, 441–460.Google Scholar
Saito, Ma. 1986. Weak global Torelli theorem for certain weighted projective hypersurfaces. Duke Math. J., 53, 67–111.Google Scholar
Saito, Ma. 1993. Classification of non-rigid families of abelian varieties. Tôhoku Math. J., 45, 159–189.Google Scholar
Saito, Ma. and S., Zucker. 1991. Classification of non-rigid families of K3-surfaces and a finiteness theorem of Arakelov type. Math. Ann., 289, 1–31.Google Scholar
Saito, Mo. 2001. Arithmetic mixed Hodge structures. Inv. Math., 144, 533–569.Google Scholar
Saito, S. 1996. Motives and filtrations on Chow groups. Inv. Math., 125, 149–196.Google Scholar
Sampson, J. H. 1978. Some properties and applications of harmonic mappings. Ann. Sci. ÉNS, 11, 211–228.Google Scholar
Sampson, J. H. 1986. Applications of harmonic maps to Kähler geometry. Contemp. Math., 49, 125–133.Google Scholar
Satake, I. 1965. Holomorphic embeddings of symmetric domains into a Siegel space. Amer. J. Math., 87, 425–461.Google Scholar
Satake, I. 1966. Symplectic representations of algebraic groups. Algebraic Groups and Discontinous Subgroups, Proc. of Symposia, IX, 352–360.
Satake, I. 1967. Symplectic representations of algebraic groups satisfying a certain analyticity condition. Acta Math., 117, 215–279.Google Scholar
Satake, I. 1980. Algebraic Structures of Symmetric Domains. Princeton University Press, Princeton.
Schmid, W. 1973. Variations of Hodge structure: the singularities of the period mapping. Inv. Math., 22, 211–320.Google Scholar
Schur, I. 1905. Zur Theorie der vertauschbaren Matrizen. J. reine u. angew. Math., 130, 66–78.Google Scholar
Sebastiani, M. and R., Thom. 1955. Un résultat sur la monodromie. Invent. Math., 13, 90–96.Google Scholar
Serre, J.-P. 1955. Faiscaux algébriques cohérents. Ann. Math., 61, 197–278.Google Scholar
Serre, J.-P. 1956. Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier, 6, 1–42.Google Scholar
Serre, J.-P. 1979. A Course in Arithmetic. Springer-Verlag, Berlin.
Shimura, G. 1963. On analytic families of polarized abelian varieties and automorphic functions. Ann. of Math., 78, 149–192.Google Scholar
Shimura, G. 1964. On the field of definition for a field of automorphic functions. I, Ann. of Math., 80, 160–189.Google Scholar
Shimura, G. 1965. On the field of definition for a field of automorphic functions. II. Ann. of Math., 81, 124–165.Google Scholar
Shimura, G. 1966. On the field of definition for a field of automorphic functions. III. Ann. of Math., 83, 377–385.Google Scholar
Shioda, T. 1981. On the Picard number of a complex-projective variety. Ann. Sc. ENS, 14, 303–321.Google Scholar
Shioda, T. 1985. A note on a theorem of Griffiths on the Abel–Jacobi map. Inv. Math., 82, 461–466.Google Scholar
Silverman, J. 1992. The Arithmetic of Elliptic Curves. Graduate Texts in Math., 106, Springer Verlag, Berlin.
Simpson, C. 1990. Harmonic bundles on non-compact curves. J. Am. Math. Soc., 3, 713–770.Google Scholar
Simpson, C. 1992. Higgs bundles and local systems. Publ. Math. IHES, 75, 5–95.Google Scholar
Simpson, C. 1994. Moduli of representations of the fundamental group of a smooth variety. Publ. Math. IHES, 79, 47–129.Google Scholar
Simpson, C. 1995. Moduli of representations of the fundamental group of a smooth projective variety, II. Publ. Math. IHES, 80, 5–79.Google Scholar
Siu, Y.-T. 1980. Complex analyticity of harmonic maps and strong rigidity of complex Kähler manifolds. Ann. Math., 112, 73–111.Google Scholar
Siu, Y.-T. 1983. Every K3-surface is Kähler. Invent. Math., 73, 139–150.Google Scholar
Spandaw, J. 1992. A Noether–Lefschetz theorem for linked surfaces in P4. Indag. Math. New Ser., 3, 91–112.Google Scholar
Spandaw, J. 1994. Noether–Lefschetz problems for vector bundles. Math. Nachr., 169, 287–308.Google Scholar
Spandaw, J. 1996. A Noether–Lefschetz theorem for vector bundles. Manuscri. Math., 89, 319–323.Google Scholar
Spandaw, J. 2002. Noether–Lefschetz Theorems for Degeneracy Loci. Habilitationsschrift, Hannover (2000), Mem. Am. Math. Soc., 161.
Spanier, E. 1966. Algebraic Topology. Springer-Verlag, Berlin, Heidelberg.
Sun, X., S.-L., Tan, and K., Zuo. 2003. Families of K3-surfaces reaching the Arakelov–Yau upper bounds and modularity. Math. Res. Letters, 10, 323–342.Google Scholar
Szabo, E. 1996. Complete intersection subvarieties of general hypersurfaces. Pac. J. Math., 175, 271–294.Google Scholar
Tian, G. 1986. Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric. Mathematical Methods of Theoretical Physics (S.-T., Yau, ed.), World Scientific, Hong Kong.
Todorov, A. N. 1980. Surfaces of general type with pg = 1 and (K, K) = 1. I. Ann. Sci. École Norm. Sup. (4), 13, (1980), 1–21.Google Scholar
Todorov, A. N. 1981. A construction of surfaces with pg = 1, q = 0 and 2 ≤ K2 ≤ 8. Counterexamples of the global Torelli theorem. Inv. Math., 63, 287–304.Google Scholar
Torelli, R. 1913. Sulle varietà di Jacobi. Rend. Accad. Lincei, Cl. Fis. Mat. Nat., 22 (5), 98–103.Google Scholar
Tsimerman, J. 2015. A proof of the André–Oort conjecture. arXiv:1506.01466.
Tu, L. W. 1983. Hodge Theory and the Local Torelli Problem. Mem. Am. Math. Soc., 279.Google Scholar
Usui, S. 1976. The local Torelli theorem for non-singular complete intersections. Jap. J. Math., 2, 411–418.Google Scholar
Usui, S. 1982. Torelli theorem for surfaces with pg = c2 1 = 1 and K ample and with certain type of automorphism. Comp. Math., 45, 293–314.Google Scholar
Ullmo, E. and A., Yafaev 2014. Galois orbits and equidistribution of special subvarieties: towards the André–Oort conjecture. Ann. Math., 180, 823–865.Google Scholar
Verbitsky, M. 2013. Mapping class group and global Torelli theorem for hyperkähler manifolds. Duke Math. J., 162, 2929–2986.Google Scholar
Viehweg, E. 1982. Die Additivität der Kodaira Dimension für projektive Faserraüme über Varietäten des allgemeinen Typs. J. reine u. angewandte Math, 330, 132–142.Google Scholar
Viehweg, E. 1995. Quasi-Projective Moduli for Polarized Manifolds. Springer-Verlag, Berlin, New York.
Viehweg, E. 2008. Arakelov (in)equalities. arXiv:0812.3350v2.
Viehweg, E. and K., Zuo. 2001. On the isotriviality of families of projective manifolds over curves. J. Alg. Geom., 10, 781–799.Google Scholar
Viehweg, E. and K., Zuo. 2003a. Discreteness of minimal models of Kodaira dimension zero and subvarieties of moduli stacks. Surveys in Differential Geometry, Vol. VIII, Int. Press, Somerville, MA, 337–356.
Viehweg, E. and K., Zuo. 2003b. On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds. Duke Math. J., 118, 103–150.Google Scholar
Viehweg, E. and K., Zuo. 2004. A characterization of certain Shimura curves in the moduli stack of abelian varieties. J. Differential Geom., 66, 233–287.Google Scholar
Viehweg, E. and K., Zuo. 2005. Complex multiplication, Griffiths–Yukawa couplings and rigidity for families of hypersurfaces. J. Alg. Geom., 14, 481–528.Google Scholar
Viehweg, E. and K., Zuo. 2006. Numerical bounds for semistable families of curves or of certain higher dimensional manifolds. J. Alg. Geom., 15, 771–791.Google Scholar
Viehweg, E. and K., Zuo. 2007. Arakelov inequalities and the uniformization of certain rigid Shimura varieties. J. Diff. Geom., 77, 291–352.Google Scholar
Viehweg, E. and K., Zuo. 2008. Special subvarieties of Ag. Third International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 42, Amer. Math. Soc., Providence, RI, 111–124.
Voevodsky, V., A., Suslin, and E., Friedlander. 2000. Cycles, Transfers and Motivic Homology Theories. Ann. Math. Studies, 143, Princeton University Press, Princeton, NJ.
Voisin, C. 1988a. Une précision concernant le théorème de Noether. Math. Ann., 280, 605–611.Google Scholar
Voisin, C. 1988b. Une remarque sur l'invariant infinitésimal des fonctions normales. C. R. Acad. Sci. Paris, 307, 157–160.Google Scholar
Voisin, C. 1989a. Sur une conjecture de Griffiths et Harris. Algebraic Curves and Projective Geometry (Proc. Conf., Trento/Italy 1988), Springer Lect. Notes Math., 1389, 270–275.
Voisin, C. 1989b. Composantes de petite codimension du lieu de Noether–Lefschetz. Comm. Math. Helv., 64, 515–526.Google Scholar
Voisin, C. 1990. Sur le lieu de Noether–Lefschetz en degrés 6 et 7. Comp. Math., 74, 47–68.Google Scholar
Voisin, C. 1991. Contrexemple à une conjecture de J. Harris. C. R. Acad. Sci., Paris, Ser. I, 313, 685–687.Google Scholar
Voisin, C. 1992. Une approche infinitésimale du théorème de H. Clemens sur les cycles d'une quintique générale de P4. J. Alg. Geom., 1, 157–174.Google Scholar
Voisin, C. 1994a. Sur l'application d'Abel–Jacobi des variétés de Calabi–Yau de dimension trois. Ann. Sci. ENS, 27, 209–226.Google Scholar
Voisin, C. 1994b. Variations de structure de Hodge et zéro-cycles sur les surfaces générales. Math. Ann., 299, 77–103.Google Scholar
Voisin, C. 1995. Variations of Hodge structures and algebraic cycles. Proc. Int. Congr. Zurich 1994, 706–715.Google Scholar
Voisin, C. 1999a. A generic Torelli theorem for the quintic threefold. New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., 264, 425–463.
Voisin, C. 1999b. Some results on Green's higher Abel–Jacobi map. Ann. Math., 149, 451–473.Google Scholar
Voisin, C. 2000. The Griffiths group of a general Calabi–Yau threefold is not finitely generated. Duke Math. J., 102, 151–186.Google Scholar
Warner, F. W. 1983. Foundations of Differentiable Manifolds and Lie Groups. Springer-Verlag, Berlin, Heidelberg.
Wehler, J. 1986. Cyclic coverings: deformations and Torelli theorems. Math. Ann., 274, 443–472.Google Scholar
Wehler, J. 1988. Hypersurfaces of the flag variety: deformation theory and the theorems of Kodaira–Spencer, Torelli, Lefschetz, M. Noether and Serre. Math. Z., 198, 21–38.Google Scholar
Weil, A. 1958. Variétés Kähleriennes. Hermann, Paris.
Wells, R. 1980. Differential Analysis on Complex Manifolds. Springer-Verlag, Berlin, Heidelberg.
Wu, Xian. 1990a. On a conjecture of Griffiths and Harris generalizing the Noether– Lefschetz theorem. Duke Math. J., 60, 465–472.Google Scholar
Wu, Xian. 1990b. On an infinitesimal invariant of normal functions. Math. Ann., 288, 121–132.Google Scholar
Xu, Geng. 1994. Subvarieties of general hypersurfaces in projective space. J. Differ. Geom., 39, 139–172.Google Scholar
Yuan, X. and S.-W., Zhang. 2015. On the averaged Colmez conjecture. arXiv:1507.06903.
Zariski, O. 1971. Algebraic Surfaces (second supplemented edition). Springer-Verlag, Berlin, Heidelberg.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×