Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-14T01:21:14.790Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  20 April 2020

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
A Philosophical Approach to MOND
Assessing the Milgromian Research Program in Cosmology
, pp. 237 - 264
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, M. 1983. Accurate radial velocities for carbon stars in Draco and Ursa Minor: The first hint of a dwarf spheroidal mass-to-light ratio. The Astrophysical Journal Letters, 266, L11L15.Google Scholar
Aaronson, M., Huchra, J., and Mould, J. 1979. The infrared luminosity/H I velocity-width relation and its application to the distance scale. The Astrophysical Journal, 229, 113.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., et al. 2017. GW170817: observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters, 119(16), 161101.Google Scholar
Adams, T. F. 1976. The detectability of deuterium Lyman alpha in QSOs. Astronomy and Astrophysics, 50, 461.Google Scholar
Aguirre, A., Schaye, J., and Quataert, E. 2001. Problems for modified Newtonian dynamics in clusters and the Lyα forest? The Astrophysical Journal, 561, 550558.CrossRefGoogle Scholar
Albornoz Vásquez, D., Belikov, A., Coc, A., Silk, J., and Vangioni, E. 2012. Neutron injection during primordial nucleosynthesis alleviates the primordial Li7 problem. Physical Review D, 86, 063501.Google Scholar
Alder, H. L., and Roessler, E. B. 1968. Introduction to Probability and Statistics. Freeman.Google Scholar
Alonso, A., Arribas, S., and Martínez-Roger, C. 1999. The effective temperature scale of giant stars (F0-K5). I. The effective temperature determination by means of the IRFM. Astronomy and Astrophysics Supplement, 139, 335358.Google Scholar
Anderson, J. D., Laing, P. A., Lau, E. L., Liu, A. S., Nieto, M. M., and Turyshev, S. G. 1998. Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Physical Review Letters, 81, 28582861.Google Scholar
Ando, S., Cyburt, R. H., Hong, S. W., and Hyun, C. H. 2006. Radiative neutron capture on a proton at big-bang nucleosynthesis energies. Physical Review C, 74, 025809.Google Scholar
Andreon, S. 2010. The stellar mass fraction and baryon content of galaxy clusters and groups. Monthly Notices of the Royal Astronomical Society, 407, 263276.Google Scholar
Angulo, C., Casarejos, E., Couder, M., Demaret, P., Leleux, P., Vanderbist, F., Coc, A., Kiener, J., Tatischeff, V., Davinson, T., Murphy, A. S., Achouri, N. L., Orr, N. A., Cortina-Gil, D., Figuera, P., Fulton, B. R., Mukha, I., and Vangioni, E. 2005. The 7Be(d,p)2α cross section at big bang energies and the primordial 7Li abundance. The Astrophysical Journal Letters, 630, L105L108.Google Scholar
Angus, G. W. 2009. Is an 11eV sterile neutrino consistent with clusters, the cosmic microwave background and modified Newtonian dynamics? Monthly Notices of the Royal Astronomical Society, 394, 527532.Google Scholar
Angus, G. W., Famaey, B., and Buote, D. A. 2008. X-ray group and cluster mass profiles in MOND: Unexplained mass on the group scale. Monthly Notices of the Royal Astronomical Society, 387, 14701480.Google Scholar
Aoki, W., Barklem, P. S., Beers, T. C., Christlieb, N., Inoue, S., García Pérez, A. E., Norris, J. E., and Carollo, D. 2009. Lithium abundances of extremely metal-poor turnoff stars. The Astrophysical Journal, 698, 18031812.Google Scholar
Arraut, I. 2014. Can a nonlocal model of gravity reproduce dark matter effects in agreement with MOND? International Journal of Modern Physics D, 23, 1450008.Google Scholar
Asplund, M., Lambert, D. L., Nissen, P. E., Primas, F., and Smith, V. V. 2006. Lithium isotopic abundances in metal-poor halo stars. The Astrophysical Journal, 644, 229259.Google Scholar
Audouze, J., and Tinsley, B. M. 1976. Chemical evolution of galaxies. Annual Reviews of Astronomy and Astrophysics, 14, 4379.Google Scholar
Ayer, A. J. 1946. Language, Truth and Logic. Victor Gollantz.Google Scholar
Bacon, F. 1621/1863. Novum organum. The Works of Francis Bacon, Volume VIII. Taggard and Thompson. Edited by J. Spedding, R. L. Ellis and D. D. Heath.Google Scholar
Bahcall, J. N. 1984a. K giants and the total amount of matter near the sun. The Astrophysical Journal, 287, 926944.Google Scholar
Bahcall, J. N. 1984b. Self-consistent determinations of the total amount of matter near the sun. The Astrophysical Journal, 276, 169181.CrossRefGoogle Scholar
Bahcall, J. N. 1987. Dark matter in the galactic disk. Pages 17–27 of: Kormendy, J., and Knapp, G. R. (eds), Dark Matter in the Universe. IAU Symposium, vol. 117.Google Scholar
Bahcall, J. N., and Soneira, R. M. 1980. The universe at faint magnitudes. I. Models for the galaxy and the predicted star counts. The Astrophysical Journal Supplement, 44, 73110.CrossRefGoogle Scholar
Bahcall, J. N., Flynn, C., and Gould, A. 1992. Local dark matter from a carefully selected sample. The Astrophysical Journal, 389, 234250.CrossRefGoogle Scholar
Balashev, S. A., Zavarygin, E. O., Ivanchik, A. V., Telikova, K. N., and Varshalovich, D. A. 2016. The primordial deuterium abundance: subDLA system at zabs = 2.437 towards the QSO J1444+2919. Monthly Notices of the Royal Astronomical Society, 458, 21882198.Google Scholar
Barkana, R., and Loeb, A. 2001. In the beginning: the first sources of light and the reionization of the universe. Physics Reports, 349, 125238.Google Scholar
Barvinsky, A. O. 2003. Nonlocal action for long-distance modifications of gravity theory. Physics Letters B, 572, 109116.Google Scholar
Begeman, K. G., Broeils, A. H., and Sanders, R. H. 1991. Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics. Monthly Notices of the Royal Astronomical Society, 249, 523537.Google Scholar
Begum, A., Chengalur, J. N., Karachentsev, I. D., and Sharina, M. E. 2008. Baryonic Tully–Fisher relation for extremely low mass galaxies. Monthly Notices of the Royal Astronomical Society, 386, 138144.Google Scholar
Bekenstein, J. D. 1992. New gravitational theories as alternatives to dark matter. Pages 905–924 of: Satō, F., and Nakamura, T. (eds), Marcel Grossmann Meeting on General Relativity.Google Scholar
Bekenstein, J. D. 1993. Relation between physical and gravitational geometry. Physical Review D, 48, 36413647.Google Scholar
Bekenstein, J. D. 2004. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Physical Review D, 70, 083509.Google Scholar
Bekenstein, J. D., and Milgrom, M. 1984. Does the missing mass problem signal the breakdown of Newtonian gravity? The Astrophysical Journal, 286, 714.Google Scholar
Bekenstein, J. D., and Sagi, E. 2008. Do Newton’s G and Milgrom’s a0 vary with cosmological epoch? Physical Review D, 77, 103512.Google Scholar
Bennett, C. L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Page, L., Spergel, D. N., Tucker, G. S., Wollack, E., Wright, E. L., Barnes, C., Greason, M. R., Hill, R. S., Komatsu, E., Nolta, M. R., Odegard, N., Peiris, H. V., Verde, L., and Weiland, J. L. 2003. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results. The Astrophysical Journal Supplement, 148, 127.Google Scholar
Berezhiani, L., and Khoury, J. 2015. Theory of dark matter superfluidity. Physical Review D, 92, 103510.Google Scholar
Berezhiani, L., and Khoury, J. 2016. Dark matter superfluidity and galactic dynamics. Physics Letters B, 753, 639643.Google Scholar
Berezhiani, L., Famaey, B., and Khoury, J. 2017. Phenomenological consequences of superfluid dark matter with baryon-phonon coupling. ArXiv e-prints, 1711.05748.Google Scholar
Bernstein, G. M., Guhathakurta, P., Raychaudhury, S., Giovanelli, R., Haynes, M. P., Herter, T., and Vogt, N. P. 1994. Tests of the Tully–Fisher relation. 1: Scatter in infrared magnitude versus 21 cm width. The Astronomical Journal, 107, 19621976.CrossRefGoogle Scholar
Bertulani, C. A., and Kajino, T. 2016. Frontiers in nuclear astrophysics. Progress in Particle and Nuclear Physics, 89, 56100.Google Scholar
Bienaymé, O. 2009. Potential-density pairs and vertical tilt of the stellar velocity ellipsoid. Astronomy and Astrophysics, 500, 781784.Google Scholar
Bienaymé, O., Robin, A. C., and Creze, M. 1987. The mass density in our Galaxy. Astronomy and Astrophysics, 180, 94110.Google Scholar
Bienaymé, O., Soubiran, C., Mishenina, T. V., Kovtyukh, V. V., and Siebert, A. 2006. Vertical distribution of Galactic disk stars. Astronomy and Astrophysics, 446, 933942.Google Scholar
Bienaymé, O., Famaey, B., Wu, X., Zhao, H. S., and Aubert, D. 2009. Galactic kinematics with modified Newtonian dynamics. Astronomy and Astrophysics, 500, 801805.Google Scholar
Bienaymé, O., Famaey, B., Siebert, A., Freeman, K. C., Gibson, B. K., Gilmore, G., Grebel, E. K., Bland-Hawthorn, J., Kordopatis, G., Munari, U., Navarro, J. F., Parker, Q., Reid, W., Seabroke, G. M., Siviero, A., Steinmetz, M., Watson, F., Wyse, R. F. G., and Zwitter, T. 2014. Weighing the local dark matter with RAVE red clump stars. Astronomy and Astrophysics, 571, A92.Google Scholar
Blackwell, D. E., Petford, A. D., and Shallis, M. J. 1980. Use of the infra-red flux method for determining stellar effective temperatures and angular diameters – The stellar temperature scale. Astronomy and Astrophysics, 82, 249252.Google Scholar
Blackwell, D. E., Petford, A. D., Arribas, S., Haddock, D. J., and Selby, M. J. 1990. Determination of temperatures and angular diameters of 114 F-M stars using the infrared flux method (IRFM). Astronomy and Astrophysics, 232, 396410.Google Scholar
Blome, H.-J., Chicone, C., Hehl, F. W., and Mashhoon, B. 2010. Nonlocal modification of Newtonian gravity. Physical Review D, 81, 065020.Google Scholar
Blumenthal, G. R., Faber, S. M., Flores, R., and Primack, J. R. 1986. Contraction of dark matter galactic halos due to baryonic infall. The Astrophysical Journal, 301, 27.Google Scholar
Bode, P., Ostriker, J. P., and Vikhlinin, A. 2009. Exploring the energetics of intracluster gas with a simple and accurate model. The Astrophysical Journal, 700, 989999.Google Scholar
Bodenheimer, P. 1965. Studies in stellar evolution. II. Lithium depletion during the pre-main contraction. The Astrophysical Journal, 142, 451461.Google Scholar
Boesgaard, A. M., and Steigman, G. 1985. Big bang nucleosynthesis: Theories and observations. Annual Reviews of Astronomy and Astrophysics, 23, 319378.Google Scholar
Bohr, N. 1913. On the constitution of atoms and molecules. Part III. Systems containing several nuclei. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26, 857875.Google Scholar
Bosma, A. 1983. HI velocity fields and rotation curves. Pages 11–20 of: Athanassoula, E. (ed), Internal Kinematics and Dynamics of Galaxies. IAU Symposium, vol. 100.Google Scholar
Bovy, J., and Rix, H.-W. 2013. A direct dynamical measurement of the Milky Way’s disk surface density profile, disk scale length, and dark matter profile at 4 kpc ≲ R ≲ 9 kpc. The Astrophysical Journal, 779, 115.Google Scholar
Bovy, J., and Trelayne, S. 2012. On the local dark matter density. The Astrophysical Journal, 756, 89.Google Scholar
Boylan-Kolchin, M., Bullock, J. S., and Kaplinghat, M. 2011. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Monthly Notices of the Royal Astronomical Society, 415, L40L44.Google Scholar
Brada, R., and Milgrom, M. 1995. Exact solutions and approximations of MOND fields of disc galaxies. Monthly Notices of the Royal Astronomical Society, 276, 453459.Google Scholar
Brada, R., and Milgrom, M. 1999. The modified Newtonian dynamics predicts an absolute maximum to the acceleration produced by “dark halos”. The Astrophysical Journal Letters, 512, L17L18.Google Scholar
Bradford, J. D., Geha, M. C., and Blanton, M. R. 2015. A study in blue: The baryon content of isolated low-mass galaxies. The Astrophysical Journal, 809, 146.Google Scholar
Bradford, J. D., Geha, M. C., and van den Bosch, F. C. 2016. A slippery slope: Systematic uncertainties in the line width baryonic Tully–Fisher relation. The Astrophysical Journal, 832(1), 11.Google Scholar
Bridle, S. L., Zehavi, I., Dekel, A., Lahav, O., Hobson, M. P., and Lasenby, A. N. 2001. Cosmological parameters from velocities, cosmic microwave background and supernovae. Monthly Notices of the Royal Astronomical Sociey, 321, 333340.Google Scholar
Bristow, P. D., and Phillipps, S. 1994. On the baryon content of the universe. Monthly Notices of the Royal Astronomical Sociey, 267, 13.Google Scholar
Broeils, A. H. 1992. The mass distribution of the dwarf spiral NGC 1560. Astronomy and Astrophysics, 256, 1932.Google Scholar
Broggini, C., Canton, L., Fiorentini, G., and Villante, F. L. 2012. The cosmological 7Li problem from a nuclear physics perspective. Journal of Cosmology and Astroparticle Physics, 6, 030.Google Scholar
Bromm, V., and Larson, R. B. 2004. The first stars. Annual Review of Astronomy and Astrophysics, 42, 79118.Google Scholar
Brown, L., and Schramm, D. N. 1988. The lithium isotope ratio in Population II halo dwarfs: A proposed test of the late decaying massive particle nucleosynthesis scenario. The Astrophysical Journal Letters, 329, L103L106.Google Scholar
Bruneton, J.-P., and Esposito-Farèse, G. 2007. Field-theoretical formulations of MOND-like gravity. Physical Review D, 76, 124012.Google Scholar
Bull, P., Akrami, Y., Adamek, J., Baker, T., Bellini, E., Beltrán Jiménez, J., Bentivegna, E., Camera, S., Clesse, S., and Davis, J. H. 2016. Beyond Λ CDM: Problems, solutions, and the road ahead. Physics of the Dark Universe, 12, 5699.Google Scholar
Bullock, J. S. 2010. Notes on the missing satellites problem. ArXiv e-prints, arXiv:1009.4505.Google Scholar
Bullock, J. S., and Boylan-Kolchin, M. 2017. Small-scale challenges to the ΛCDM paradigm. Annual Review of Astronomy and Astrophysics, 55, 343387.Google Scholar
Bullock, J. S., Kolatt, T. S., Sigad, Y., Somerville, R. S., Kravtsov, A. V., Klypin, A. A., Primack, J. R., and Dekel, A. 2001. Profiles of dark haloes: Evolution, scatter and environment. Monthly Notices of the Royal Astronomical Society, 321, 559575.Google Scholar
Burles, S., and Tytler, D. 1998a. The deuterium abundance toward Q1937–1009. The Astrophysical Journal, 499, 699712.Google Scholar
Burles, S., and Tytler, D. 1998b. The deuterium abundance toward QSO 1009+2956. The Astrophysical Journal, 507, 732744.Google Scholar
Campbell, N. 1921. What is Science? Methuen.Google Scholar
Cappellari, M., Bacon, R., Bureau, M., Damen, M. C., Davies, R. L., de Zeeuw, P. T., Emsellem, E., Falcón-Barroso, J., Krajnović, D., Kuntschner, H., McDermid, R. M., Peletier, R. F., Sarzi, M., van den Bosch, R. C. E., and van de Ven, G. 2006. The SAURON project–IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies. Monthly Notices of the Royal Astronomical Society, 366, 11261150.Google Scholar
Cardone, V. F., Angus, G., Diaferio, A., Tortora, C., and Molinaro, R. 2011. The modified Newtonian dynamics fundamental plane. Monthly Notices of the Royal Astronomical Society, 412, 26172630.Google Scholar
Carrier, M. 1988. On novel facts: A discussion of criteria for non-ad-hoc-ness in the methodology of scientific research programmes. Zeitschrift für allgemeine Wissenschaftstherorie, 19, 205231.Google Scholar
Carrier, M. 2002. Explaining scientific progress: Lakatos’ methodological account of Kuhnian patterns of theory change. In Kampis, G., Kvasz, L., and Stöltzner, M. (eds), Appraising Lakatos: Mathematics, Methodology and the Man. Kluwer.Google Scholar
Carroll, S. 2014. Falsifiability. In 2014: What Scientific Idea is Ready for Retirement? https://www.edge.org/response-detail/25322/.Google Scholar
Casagrande, L., Ramírez, I., Meléndez, J., Bessell, M., and Asplund, M. 2010. An absolutely calibrated Teff scale from the infrared flux method. Dwarfs and subgiants. Astronomy and Astrophysics, 512, A54.Google Scholar
Catinella, B., Kauffmann, G., Schiminovich, D., Lemonias, J., Scannapieco, C., Wang, J., Fabello, S., Hummels, C., Moran, S. M., Wu, R., Cooper, A. P., Giovanelli, R., Haynes, M. P., Heckman, T. M., and Saintonge, A. 2012. The GALEX Arecibo SDSS survey– IV. Baryonic mass–velocity–size relations of massive galaxies. Monthly Notices of the Royal Astronomical Society, 420, 19591976.Google Scholar
Cattaneo, A., Tollet, E., Kucukbas, M., Mamon, G. A., Guiderdoni, B., Blaizot, J., Devriendt, J. E. G., Dekel, A., and Thob, A. C. R. 2017. The new semi-analytic code GalICS 2.0: Reproducing the galaxy stellar mass function and the Tully–Fisher relation simultaneously. Monthly Notices of the Royal Astronomical Society, 471, 14011427.Google Scholar
Chakraborty, N., Fields, B. D., and Olive, K. A. 2011. Resonant destruction as a possible solution to the cosmological lithium problem. Physical Review D, 83, 063006.Google Scholar
Chamcham, K., Silk, J., Barrow, J. D., and Saunders, S. 2017. The Philosophy of Cosmology. Cambridge University Press.Google Scholar
Chandrasekhar, S. 1967. An Introduction to the Study of Stellar Structure. Dover.Google Scholar
Chang, C.-K., Ko, C.-M., and Peng, T.-H. 2011. Information on the Milky Way from the Two Micron All Sky Survey whole sky star count: The structure parameters. The Astrophysical Journal, 740, 34.Google Scholar
Chiu, M.-C., Ko, C.-M., and Shu, C. 2017. Origin of the fundamental plane of elliptical galaxies in the Coma cluster without fine-tuning. Physical Review D, 95, 063020.Google Scholar
Ciotti, L., Lanzoni, B., and Renzini, A. 1996. The tilt of the fundamental plane of elliptical galaxies – I. Exploring dynamical and structural effects. Monthly Notices of the Royal Astronomical Society, 282, 112.Google Scholar
Civitarese, O., and Mosquera, M. E. 2013. Nuclear structure constrains on resonant energies: A solution of the cosmological 7Li problem? Nuclear Physics A, 898, 113.Google Scholar
Clark, P. 1976. Atomism versus thermodynamics. Pages 41–106 of: Howson, C. (ed), Method and Appraisal in the Physical Sciences. Cambridge University Press.Google Scholar
Clifton, T., Ferreira, P. G., Padilla, A., and Skordis, C. 2012. Modified gravity and cosmology. Physics Reports, 513, 1189.Google Scholar
Coc, A. 2013. Primordial nucleosynthesis. Acta Physica Polonica B, 44, 521.Google Scholar
Coc, A., and Vangioni, E. 2010. Big-Bang nucleosynthesis with updated nuclear data. Journal of Physics Conference Series, 202, 012001.Google Scholar
Coc, A., and Vangioni, E. 2017. Primordial nucleosynthesis. International Journal of Modern Physics E, 26, 1741002.Google Scholar
Coc, A., Vangioni-Flam, E., Descouvemont, P., Adahchour, A., and Angulo, C. 2004. Updated big bang nucleosynthesis compared with Wilkinson Microwave Anisotropy Probe observations and the abundance of light elements. The Astrophysical Journal, 600, 544552.Google Scholar
Coc, A., Goriely, S., Xu, Y., Saimpert, M., and Vangioni, E. 2012. Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network. The Astrophysical Journal, 744, 158.CrossRefGoogle Scholar
Coc, A., Uzan, J.-P., and Vangioni, E. 2013. Standard big-bang nucleosynthesis after Planck. ArXiv e-prints, 1307.6955.Google Scholar
Coc, A., Pospelov, M., Uzan, J.-P., and Vangioni, E. 2014. Modified big bang nucleosynthesis with nonstandard neutron sources. Physical Review D, 90, 085018.Google Scholar
Coc, A., Petitjean, P., Uzan, J.-P., Vangioni, E., Descouvemont, P., Iliadis, C., and Longland, R. 2015. New reaction rates for improved primordial D/H calculation and the cosmic evolution of deuterium. Physical Review D, 92, 123526.CrossRefGoogle Scholar
Coleman, P. H., and Pietronero, L. 1992. The fractal structure of the universe. Physics Reports, 213, 311389.Google Scholar
Collins, M. L. M., Chapman, S. C., Rich, R. M., Ibata, R. A., Martin, N. F., Irwin, M. J., Bate, N. F., Lewis, G. F., Peñarrubia, J., Arimoto, N., Casey, C. M., Ferguson, A. M. N., Koch, A., McConnachie, A. W., and Tanvir, N. 2013. A kinematic study of the Andromeda dwarf spheroidal system. The Astrophysical Journal, 768, 172.Google Scholar
Conn, A. R., Ibata, R. A., Lewis, G. F., Parker, Q. A., Zucker, D. B., Martin, N. F., McConnachie, A. W., Irwin, M. J., Tanvir, N., and Fardal, M. A. 2012. A Bayesian approach to locating the red giant branch tip magnitude. II. Distances to the satellites of M31. The Astrophysical Journal, 758, 11.Google Scholar
Contaldi, C. R., Wiseman, T., and Withers, B. 2008. TeVeS gets caught on caustics. Physical Review D, 78, 044034.Google Scholar
Cooke, R., Pettini, M., Jorgenson, R. A., Murphy, M. T., and Steidel, C. C. 2014. Precision measures of the primordial abundance of deuterium. The Astrophysical Journal, 781.Google Scholar
Copi, C. J., Schramm, D. N., and Turner, M. S. 1995. Big-bang nucleosynthesis and the baryon density of the universe. Science, 267, 192199.Google Scholar
Courteau, S., McDonald, M., Widrow, L. M., and Holtzman, J. 2007. The bulge– halo connection in galaxies: A physical interpretation of the Vc –σ0 relation. The Astrophysical Journal Letters, 655(1), L21L24.Google Scholar
Creasey, P., Sameie, O., Sales, L. V., Yu, H.-B., Vogelsberger, M., and Zavala, J. 2017. Spreading out and staying sharp: Creating diverse rotation curves via baryonic and self-interaction effects. Monthly Notices of the Royal Astronomical Society, 468, 22832295.Google Scholar
Crézé, M., Chereul, E., Bienayme, O., and Pichon, C. 1998. The distribution of nearby stars in phase space mapped by Hipparcos. I. The potential well and local dynamical mass. Astronomy and Astrophysics, 329, 920936.Google Scholar
Crighton, N. H. M., Webb, J. K., Ortiz-Gil, A., and Fernández-Soto, A. 2004. Deuterium/hydrogen in a new Lyman limit absorption system at z = 3.256 towards PKS1937–1009. Monthly Notices of the Royal Astronomical Society, 355, 10421052.Google Scholar
Crupi, V., Festa, R., and Buttasi, C. 2010. Towards a grammar of Bayesian confirmation. Pages 73–93 of: Suárez, M., Dorato, M., and Rédei, M. (eds), EPSA Epistemology and Methodology of Science: Launch of the European Philosophy of Science Association. Springer.Google Scholar
Cuddeford, P., and Amendt, P. 1991. Extended stellar hydrodynamics for galactic discs. II. Monthly Notices of the Royal Astronomical Society, 253, 427444.Google Scholar
Cyburt, R. H., Fields, B. D., and Olive, K. A. 2008. An update on the big bang nucleosynthesis prediction for 7Li: The problem worsens. Journal of Cosmology and Astroparticle Physics, 11, 012.Google Scholar
Daly, R. A., and Djorgovski, S. G. 2005. Direct determinations of the redshift behavior of the pressure, energy density, and equation of state of the dark energy and the acceleration of the universe. International Journal of Modern Physics A, 20, 11131120.Google Scholar
Davies, J. I. 1990. Visibility and the selection of galaxies. Monthly Notices of the Royal Astronomical Society, 244, 824.Google Scholar
de Bernardis, P., Ade, P. A. R., Bock, J. J., Bond, J. R., Borrill, J., Boscaleri, A., Coble, K., Crill, B. P., De Gasperis, G., Farese, P. C., Ferreira, P. G., Ganga, K., Giacometti, M., Hivon, E., Hristov, V. V., Iacoangeli, A., Jaffe, A. H., Lange, A. E., Martinis, L., Masi, S., Mason, P. V., Mauskopf, P. D., Melchiorri, A., Miglio, L., Montroy, T., Netterfield, C. B., Pascale, E., Piacentini, F., Pogosyan, D., Prunet, S., Rao, S., Romeo, G., Ruhl, J. E., Scaramuzzi, F., Sforna, D., and Vittorio, N. 2000. A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature, 404, 955959.Google Scholar
de Bernardis, P., Ade, P. A. R., Bock, J. J., Bond, J. R., Borrill, J., Boscaleri, A., Coble, K., Contaldi, C. R., Crill, B. P., De Troia, G., Farese, P., Ganga, K., Giacometti, M., Hivon, E., Hristov, V. V., Iacoangeli, A., Jaffe, A. H., Jones, W. C., Lange, A. E., Martinis, L., Masi, S., Mason, P., Mauskopf, P. D., Melchiorri, A., Montroy, T., Netterfield, C. B., Pascale, E., Piacentini, F., Pogosyan, D., Polenta, G., Pongetti, F., Prunet, S., Romeo, G., Ruhl, J. E., and Scaramuzzi, F. 2002. Multiple peaks in the angular power spectrum of the cosmic microwave background: Significance and consequences for cosmology. The Astrophysical Journal, 564, 559566.Google Scholar
de Blok, W. J. G. 2010. The core-cusp problem. Advances in Astronomy, 2010, 789293.Google Scholar
de Blok, W. J. G., and McGaugh, S. S. 1997. The dark and visible matter content of low surface brightness disc galaxies. Monthly Notices of the Royal Astronomical Society, 290, 533552.Google Scholar
de Blok, W. J. G., McGaugh, S. S., and Rubin, V. C. 2001. High-resolution rotation curves of low surface brightness galaxies. II. Mass models. The Astronomical Journal, 122, 23962427.Google Scholar
Deffayet, C., Esposito-Farèse, G., and Woodard, R. P. 2011. Nonlocal metric formulations of modified Newtonian dynamics with sufficient lensing. Physical Review D, 84, 124054.Google Scholar
Deffayet, C., Esposito-Farèse, G., and Woodard, R. P. 2014. Field equations and cosmology for a class of nonlocal metric models of MOND. Physical Review D, 90, 064038.Google Scholar
Del Popolo, A., and Le Delliou, M. 2017. Small scale problems of the ΛCDM model: A short review. Galaxies, 5, 1746.Google Scholar
Deliyannis, C. P., Demarque, P., and Kawaler, S. D. 1990. Lithium in halo stars from standard stellar evolution. The Astrophysical Journal Supplement, 73, 2165.Google Scholar
Descouvemont, P., Adahchour, A., Angulo, C., Coc, A., and Vangioni-Flam, E. 2004. Compilation and R-matrix analysis of big bang nuclear reaction rates. Atomic Data and Nuclear Data Tables, 88, 203236.Google Scholar
Deser, S., and Woodard, R. P. 2007. Nonlocal cosmology. Physical Review Letters, 99, 111301.Google Scholar
Desmond, H. 2017. The scatter, residual correlations and curvature of the SPARC baryonic Tully–Fisher relation. Monthly Notices of the Royal Astronomical Society, 472, L35L39.Google Scholar
Desmond, H., and Wechsler, R. H. 2015. The Tully–Fisher and mass–size relations from halo abundance matching. Monthly Notices of the Royal Astronomical Society, 454, 322343.Google Scholar
Desmond, H., and Wechsler, R. H. 2017. The Faber–Jackson relation and Fundamental Plane from halo abundance matching. Monthly Notices of the Royal Astronomical Society, 465, 820833.Google Scholar
Di Leva, A., Gialanella, L., and Strieder, F. 2016. Experimental status of 7Be production and destruction at astrophysical relevant energies. Journal of Physics: Conference Series, 665, 012002.Google Scholar
Dodelson, S. 2011. The real problem with MOND. International Journal of Modern Physics D, 20, 27492753.Google Scholar
Dodelson, S., and Widrow, L. M. 1994. Sterile neutrinos as dark matter. Physical Review Letters, 72, 1720.Google Scholar
Donato, F., Gentile, G., Salucci, P., Frigerio Martins, C., Wilkinson, M. I., Gilmore, G., Grebel, E. K., Koch, A., and Wyse, R. 2009. A constant dark matter halo surface density in galaxies. Monthly Notices of the Royal Astronomical Society, 397, 11691176.Google Scholar
Drewes, M. 2013. The phenomenology of right handed neutrinos. International Journal of Modern Physics E, 22, 1330019–593.Google Scholar
Duncan, D. K. 1981. Lithium abundances, K line emission and ages of nearby solar type stars. The Astrophysical Journal, 248, 651669.Google Scholar
Dutton, A. A., Conroy, C., van den Bosch, F. C., Simard, L., Mendel, J. T., Courteau, S., Dekel, A., More, S., and Prada, F. 2011. Dark halo response and the stellar initial mass function in early-type and late-type galaxies. Monthly Notices of the Royal Astronomical Society, 416, 322345.Google Scholar
Dutton, A. A., Macciò, A. V., Mendel, J. T., and Simard, L. 2013. Universal IMF versus dark halo response in early-type galaxies: Breaking the degeneracy with the Fundamental Plane. Monthly Notices of the Royal Astronomical Society, 432(3), 24962511.Google Scholar
Earman, J. 1996. Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory. MIT Press.Google Scholar
Einasto, J. 2005. Dark matter: Early considerations. Page 241 of: Blanchard, A., and Signore., M. (eds), Frontiers of Cosmology, vol. 187.Google Scholar
Ellis, G. F. R., and Hawking, S. W. 1999. The Large Scale Structure of Space-Time. Cambridge University Press.Google Scholar
Epstein, R. I., Lattimer, J. M., and Schramm, D. N. 1976. The origin of deuterium. Nature, 263, 198202.Google Scholar
Faber, S. M., and Gallagher, J. S. 1979. Masses and mass-to-light ratios of galaxies. Annual Review of Astronomy and Astrophysics, 17, 135187.Google Scholar
Faber, S. M., and Jackson, R. E. 1976. Velocity dispersions and mass-to-light ratios for elliptical galaxies. The Astrophysical Journal, 204, 668683.Google Scholar
Fabian, A. C. 1991. On the baryon content of the Shapley Supercluster. Monthly Notices of the Royal Astronomical Society, 253, 29P.Google Scholar
Fabjan, D., Borgani, S., Tornatore, L., Saro, A., Murante, G., and Dolag, K. 2010. Simulating the effect of active galactic nuclei feedback on the metal enrichment of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 401(3), 16701690.Google Scholar
Famaey, B., and McGaugh, S. 2012. Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions. Living Reviews in Relativity, 15.Google Scholar
Famaey, B., Gentile, G., Bruneton, J.-P., and Zhao, H. 2007. Insight into the baryon–gravity relation in galaxies. Physical Review D, 75, 063002.Google Scholar
Felten, J. E. 1984. Milgrom’s revision of Newton’s laws: Dynamical and cosmological consequences. The Astrophysical Journal, 286, 36.Google Scholar
Feyerabend, P. 1970. Consolations for the specialist. Pages 197–230 of: Lakatos, I., and Musgrave, A. (eds), Criticism and the Growth of Knowledge. Cambridge University Press.Google Scholar
Feyerabend, P. 1975. Against Method: Outline of an Anarchistic Theory of Knowledge. Verso.Google Scholar
Fields, B. D. 2011. The primordial lithium problem. Annual Review of Nuclear and Particle Science, 61, 4768.Google Scholar
Fields, B. D., Olive, K. A., and Vangioni-Flam, E. 2005. Implications of a new temperature scale for halo dwarfs on LiBeB and chemical evolution. The Astrophysical Journal, 623, 10831091.Google Scholar
Flores, R. A., and Primack, J. R. 1994. Observational and theoretical constraints on singular dark matter halos. The Astrophysical Journal Letters, 427, L1.Google Scholar
Flynn, C., Holmberg, J., Portinari, L., Fuchs, B., and Jahreiß, H. 2006. On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy. Monthly Notices of the Royal Astronomical Society, 372, 11491160.Google Scholar
Forbes, D. A., and Kroupa, P. 2011. What is a galaxy? Cast your vote here. Publications of the Astronomical Society of Australia, 28, 7782.Google Scholar
Frebel, A., and Norris, J. E. 2013. Metal-poor stars and the chemical enrichment of the universe. Page 55 of: Oswalt, T. D., and Gilmore, G. (eds), Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations.Google Scholar
Freeman, K. C. 1970. On the disks of spiral and S0 galaxies. The Astrophysical Journal, 160, 811.Google Scholar
Freeman, K. C. 1999. Historical introduction. Pages 3–8 of: Davies, J. I., Impey, C., and Phillips, S. (eds), The Low Surface Brightness Universe. Astronomical Society of the Pacific Conference Series, vol. 170.Google Scholar
Freese, K. 2017. Status of dark matter in the universe. International Journal of Modern Physics D, 26, 1730012.Google Scholar
Fukugita, M., and Peebles, P. J. E. 2004. The cosmic energy inventory. The Astrophysical Journal, 616, 643668.CrossRefGoogle Scholar
Fukugita, M., Hogan, C. J., and Peebles, P. J. E. 1998. The cosmic baryon budget. The Astrophysical Journal, 503, 518530.Google Scholar
Garbari, S., Liu, C., Read, J. I., and Lake, G. 2012. A new determination of the local dark matter density from the kinematics of K dwarfs. Monthly Notices of the Royal Astronomical Society, 425, 14451458.Google Scholar
Gardner, M. 1982. Predicting novel facts. The British Journal for the Philosophy of Science, 33, 115.Google Scholar
Garrison-Kimmel, S., Boylan-Kolchin, M., Bullock, J. S., and Kirby, E. N. 2014. Too big to fail in the Local Group. Monthly Notices of the Royal Astronomical Society, 444, 222236.Google Scholar
Geha, M., Blanton, M. R., Masjedi, M., and West, A. A. 2006. The baryon content of extremely low mass dwarf galaxies. The Astrophysical Journal, 653, 240254.Google Scholar
Gehren, T. 1981. The temperature scale of solar-type stars. Astronomy and Astrophysics, 100, 97106.Google Scholar
Gentile, G., Salucci, P., Klein, U., Vergani, D., and Kalberla, P. 2004. The cored distribution of dark matter in spiral galaxies. Monthly Notices of the Royal Astronomical Society, 351, 903922.Google Scholar
Gentile, G., Salucci, P., Klein, U., and Granato, G. L. 2007. NGC 3741: The dark halo profile from the most extended rotation curve. Monthly Notices of the Royal Astronomical Society, 375, 199212.Google Scholar
Gerbal, D., Durret, F., Lachieze-Rey, M., and Lima-Neto, G. 1992. Analysis of X-ray galaxy clusters in the framework of modified Newtonian dynamics. Astronomy and Astrophysics, 262, 395400.Google Scholar
Gilmore, G., Wilkinson, M. I., Wyse, R. F. G., Kleyna, J. T., Koch, A., Wyn Evans, N., and Grebel, E. K. 2007. The observed properties of dark matter on small spatial scales. The Astrophysical Journal, 663, 948959.Google Scholar
Giunti, C., and Laveder, M. 2008. νe disappearance in MiniBooNE. Physical Review D, 77, 093002.Google Scholar
Glass, J. C., and Johnson, W. 1989. Economics: Progression, Stagnation or Degeneration? Iowa State University Press.Google Scholar
Glymour, C. 1980. Theory and Evidence. Princeton University Press.Google Scholar
Gnedin, N. I., and Ostriker, J. P. 1992. Light element nucleosynthesis: A false clue? The Astrophysical Journal, 400, 120.Google Scholar
Goldstein, A., Veres, P., Burns, E., Briggs, M. S., Hamburg, R., Kocevski, D., Wilson-Hodge, C. A., Preece, R. D., Poolakkil, S., Roberts, O. J., Hui, C. M., Connaughton, V., Racusin, J., von Kienlin, A., Canton, T. Dal, Christensen, N., Littenberg, T., Siellez, K., Blackburn, L., Broida, J., Bissaldi, E., Cleveland, W. H., Gibby, M. H., Giles, M. M., Kippen, R. M., McBreen, S., McEnery, J., Meegan, C. A., Paciesas, W. S., and Stanbro, M. 2017. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. The Astrophysical Journal, 848, L14.Google Scholar
Gonzalez, A. H., Zaritsky, D., and Zabludoff, A. I. 2007. A census of baryons in galaxy clusters and groups. The Astrophysical Journal, 666, 147155.Google Scholar
González Hernández, J. I., and Bonifacio, P. 2009. A new implementation of the infrared flux method using the 2MASS catalogue. Astronomy and Astrophysics, 497, 497509.Google Scholar
Governato, F., Brook, C., Mayer, L., Brooks, A., Rhee, G., Wadsley, J., Jonsson, P., Willman, B., Stinson, G., Quinn, T., and Madau, P. 2010. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature, 463, 203206.Google Scholar
Greene, G. L., and Geltenbort, P. 2016. The neutron enigma. Scientific American, 314, 3641.Google Scholar
Greiter, M., Wilczek, F., and Witten, E. 1989. Hydrodynamic relations in superconductivity. Modern Physics Letters B, 3, 903918.Google Scholar
Grünbaum, A. 1976. Is falsifiability the touchstone of scientific rationality? Karl Popper versus inductivism. Pages 213–252 of: Cohen, R. S., Feyerabend, P. K., and Wartofsky, M. W. (eds), Essays in Memory of Imre Lakatos. D. Reidel.Google Scholar
Grünbaum, A. 1989. The degeneration of Popper’s theory of demarcation. Pages 141–161 of: D’Agostino, F., and Jarvie, I. C. (eds), Freedom and Rationality. Essays in Honor of John Watkins. Kluwer.Google Scholar
Gruyters, P., Korn, A. J., Richard, O., Grundahl, F., Collet, R., Mashonkina, L. I., Osorio, Y., and Barklem, P. S. 2013. Atomic diffusion and mixing in old stars. IV. Weak abundance trends in the globular cluster NGC 6752. Astronomy and Astrophysics, 555, A31.Google Scholar
Gurovich, S., Freeman, K., Jerjen, H., Staveley-Smith, L., and Puerari, I. 2010. The slope of the baryonic Tully–Fisher relation. The Astronomical Journal, 140, 663676.Google Scholar
Hammache, F., Coc, A., de Séréville, N., Stefan, I., Roussel, P., Ancelin, S., Assié, M., Audouin, L., Beaumel, D., Franchoo, S., Fernandez-Dominguez, B., Fox, S., Hamadache, C., Kiener, J., Laird, A., Le Crom, B., Lefebvre-Schuhl, A., Lefebvre, L., Matea, I., Matta, A., Mavilla, G., Mrazek, J., Morfouace, P., de Oliveira Santos, F., Parikh, A., Perrot, L., Sanchez-Benitez, A. M., Suzuki, D., Tatischeff, V., Ujic, P., and Vandebrouck, M. 2013. Search for new resonant states in 10C and 11C and their impact on the cosmological lithium problem. Physical Review C, 88, 062802.Google Scholar
Hehl, F. W., and Mashhoon, B. 2009a. Formal framework for a nonlocal generalization of Einstein’s theory of gravitation. Physical Review D, 79, 064028.Google Scholar
Hehl, F. W., and Mashhoon, B. 2009b. Nonlocal gravity simulates dark matter. Physics Letters B, 673, 279282.Google Scholar
Hempel, C. G. 1937. Le problème de la vérité. Theoria, 3, 206246.Google Scholar
Hempel, C. G. 1945. Studies in the logic of confirmation. Mind, 54, 1–26, 97121.Google Scholar
Hempel, C. G. 1965. Aspects of Scientific Explanation. The Free Press.Google Scholar
Hempel, C. G. 1973. The meaning of theoretical terms: A critique of the standard empiricist construal. Pages 351–378 of: Suppes, P., Henkin, L., Joya, A., and Moisil, G. C. (eds), Logic, Methodology and Philosophy of Science, vol. 4. North Holland Publishers.Google Scholar
Herschel, J. 1842. Preliminary Discourse on the Study of Natural Philosophy. London.Google Scholar
Hill, E. R. 1960. The component of the galactic gravitational field perpendicular to the galactic plane, Kz. Bulletin of the Astronomical Institutes of the Netherlands, 15, 1.Google Scholar
Hinshaw, G., Nolta, M. R., Bennett, C. L., Bean, R., Doré, O., Greason, M. R., Halpern, M., Hill, R. S., Jarosik, N., Kogut, A., Komatsu, E., Limon, M., Odegard, N., Meyer, S. S., Page, L., Peiris, H. V., Spergel, D. N., Tucker, G. S., Verde, L., Weiland, J. L., Wollack, E., and Wright, E. L. 2007. Three-year Wilkinson microwave anisotropy probe (WMAP) observations: Temperature analysis. The Astrophysical Journal Supplement Series, 170, 288334.Google Scholar
Hinshaw, G., Larson, D., Komatsu, E., Spergel, D. N., Bennett, C. L., Dunkley, J., Nolta, M. R., Halpern, M., Hill, R. S., Odegard, N., Page, L., Smith, K. M., Weiland, J. L., Gold, B., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., Wollack, E., and Wright, E. L. 2013. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. The Astrophysical Journal Supplement, 208, 19.Google Scholar
Hodson, A. O., Zhao, H., Khoury, J., and Famaey, B. 2017. Galaxy clusters in the context of superfluid dark matter. Astronomy and Astrophysics, 607, A108.Google Scholar
Holmberg, J., and Flynn, C. 2000. The local density of matter mapped by Hipparcos. Monthly Notices of the Royal Astronomical Society, 313, 209216.Google Scholar
Holmberg, J., and Flynn, C. 2004. The local surface density of disc matter mapped by Hipparcos. Monthly Notices of the Royal Astronomical Society, 352, 440446.Google Scholar
Hosford, A., Ryan, S. G., García Pérez, A. E., Norris, J. E., and Olive, K. A. 2009. Lithium abundances of halo dwarfs based on excitation temperature. I. Local thermodynamic equilibrium. Astronomy and Astrophysics, 493, 601612.Google Scholar
Hosford, A., García Pérez, A. E., Collet, R., Ryan, S. G., Norris, J. E., and Olive, K. A. 2010. Lithium abundances of halo dwarfs based on excitation temperatures. II. Nonlocal thermodynamic equilibrium. Astronomy and Astrophysics, 511, A47.Google Scholar
Hosiasson-Lindenbaum, J. 1940. On confirmation. Journal of Symbolic Logic, 5, 133148.Google Scholar
Howson, C. (ed). 1976. Method and Appraisal in the Physical Sciences. Cambridge University Press.Google Scholar
Howson, C., and Urbach, P. (eds). 2006. Scientific Reasoning: The Bayesian Approach, 3rd edn. Open Court Publishing Company.Google Scholar
Hu, W., and Dodelson, S. 2002. Cosmic microwave background anisotropies. Annual Review of Astronomy and Astrophysics, 40, 171216.Google Scholar
Hu, W., Sugiyama, N., and Silk, J. 1997. The physics of microwave background anisotropies. Nature, 386, 3743.Google Scholar
Hull, D. L. 2010. Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science. Science and Its Conceptual Foundations series. University of Chicago Press.Google Scholar
Hume, D. 1739–40/1978. A Treatise of Human Nature. L. A. Selby-Bigge and P. H. Nidditch (eds.), 2nd edn. Clarendon Press, 1978.Google Scholar
Hume, D. 1748/1975. An Enquiry concerning Human Understanding. Cited from Enquiries concerning Human Understanding and concerning the Principles of Morals, Selby-Bigge, L. A. and Nidditch, P. H. (eds.), 3rd edn. Clarendon Press, 1975.Google Scholar
Ivanchik, A. V., Petitjean, P., Balashev, S. A., Srianand, R., Varshalovich, D. A., Ledoux, C., and Noterdaeme, P. 2010. HD molecules at high redshift: The absorption system at z = 2.3377 towards Q 1232 + 082. Monthly Notices of the Royal Astronomical Society, 404, 15831590.Google Scholar
Jammer, M. 1966. The Conceptual Development of Quantum Mechanics. McGraw-Hill.Google Scholar
Jeans, J. H. 1914. Discussion on radiation. Pages 376–386 of: Report of the 83rd Meeting of the British Association for the Advancement of Science.Google Scholar
Jeans, J. H. 1922. The motions of stars in a Kapteyn universe. Monthly Notices of the Royal Astronomical Society, 82, 122132.Google Scholar
Jedamzik, K. 2004. Did something decay, evaporate, or annihilate during big bang nucleosynthesis? Physical Review D, 70, 063524.Google Scholar
Jurieu, P. 1687. Traité de la Nature et de la Grâce. F. Halma.Google Scholar
Kadvany, J. 2001. Imre Lakatos and the Guises of Reason. Duke University Press.Google Scholar
Kahn, F. D., and Woltjer, L. 1959. Intergalactic matter and the galaxy. The Astrophysical Journal, 130, 705.Google Scholar
Kahya, E. O. 2008. A decisive test to confirm or rule out the existence of dark matter emulators using gravitational wave observations. Classical and Quantum Gravity, 25, 184008.Google Scholar
Kahya, E. O., and Woodard, R. P. 2007. A generic test of modified gravity models which emulate dark matter. Physics Letters B, 652, 213216.Google Scholar
Kaplinghat, M., and Turner, M. 2002. How cold dark matter theory explains Milgrom’s law. The Astrophysical Journal Letters, 569, L19L22.Google Scholar
Kaplinghat, M., Chu, M., Haiman, Z., Holder, G. P., Knox, L., and Skordis, C. 2003. Probing the reionization history of the universe using the cosmic microwave background polarization. The Astrophysical Journal, 583, 2432.Google Scholar
Kapteyn, J. C. 1922. First attempt at a theory of the arrangement and motion of the sidereal system. The Astrophysical Journal, 55, 302.Google Scholar
Karachentsev, I. D., Kaisina, E. I., and Kashibadze Nasonova, O. G. 2017. The local Tully– Fisher relation for dwarf galaxies. The Astronomical Journal, 153(1), 6.Google Scholar
Keller, B. W., and Wadsley, J. W. 2017. ΛCDM is consistent with SPARC radial acceleration relation. The Astrophysical Journal Letters, 835, L17.Google Scholar
Kent, S. M. 1987. Dark matter in spiral galaxies. II. Galaxies with H I rotation curves. The Astronomical Journal, 93, 816.Google Scholar
Kernan, P. J., and Krauss, L. M. 1994. Refined big bang nucleosynthesis constraints on ΩB and Nν. Physical Review Letters, 72, 33093312.Google Scholar
Kim, M., Rahat, M. H., Sayeb, M., Tan, L., Woodard, R. P., and Xu, B. 2016. Determining cosmology for a nonlocal realization of MOND. Physical Review D, 94, 104009.Google Scholar
Kirkman, D., Tytler, D., Suzuki, N., O’Meara, J. M., and Lubin, D. 2003. The cosmological baryon density from the deuterium-to-hydrogen ratio in QSO absorption systems: D/H toward Q1243+3047. The Astrophysical Journal Supplement, 149, 128.Google Scholar
Kirsebom, O. S., and Davids, B. 2011. One fewer solution to the cosmological lithium problem. Physical Review C, 84, 058801.Google Scholar
Kitcher, P. 1995. Author’s response. Philosophy and Phenomenological Research, 55, 653673.Google Scholar
Klypin, A., Gottlöber, S., Kravtsov, A. V., and Khokhlov, A. M. 1999. Galaxies in N-body simulations: Overcoming the overmerging problem. The Astrophysical Journal, 516, 530551.Google Scholar
Kolb, E. W., and Turner, M. S. 1994. The Early Universe. Addison-Wesley.Google Scholar
Kormendy, J., Drory, N., Bender, R., and Cornell, M. E. 2010. Bulgeless giant galaxies challenge our picture of galaxy formation by hierarchical clustering. The Astrophysical Journal, 723, 5480.Google Scholar
Korn, A. J. 2012. Shedding light on lithium evolution: The globular cluster perspective. Memorie della Societa Astronomica Italiana Supplementi, 22, 64.Google Scholar
Korn, A. J., Grundahl, F., Richard, O., Barklem, P. S., Mashonkina, L., Collet, R., Piskunov, N., and Gustafsson, B. 2006. A probable stellar solution to the cosmological lithium discrepancy. Nature, 442, 657659.Google Scholar
Korn, A. J., Grundahl, F., Richard, O., Mashonkina, L., Barklem, P. S., Collet, R., Gustafsson, B., and Piskunov, N. 2007. Atomic diffusion and mixing in old stars. I. Very Large Telescope FLAMES-UVES observations of stars in NGC 6397. The Astrophysical Journal, 671, 402419.Google Scholar
Kourkchi, E., Khosroshahi, H. G., Carter, D., and Mobasher, B. 2012. Dwarf galaxies in the Coma cluster – II. Spectroscopic and photometric fundamental planes. Monthly Notices of the Royal Astronomical Society, 420, 28352850.Google Scholar
Kowalski, M., Rubin, D., Aldering, G., Agostinho, R. J., Amadon, A., Amanullah, R., Balland, C., Barbary, K., Blanc, G., Challis, P. J., Conley, A., Connolly, N. V., Covarrubias, R., Dawson, K. S., Deustua, S. E., Ellis, R., Fabbro, S., Fadeyev, V., Fan, X., Farris, B., Folatelli, G., Frye, B. L., Garavini, G., Gates, E. L., Germany, L., Goldhaber, G., Goldman, B., Goobar, A., Groom, D. E., Haissinski, J., Hardin, D., Hook, I., Kent, S., Kim, A. G., Knop, R. A., Lidman, C., Linder, E. V., Mendez, J., Meyers, J., Miller, G. J., Moniez, M., Mourão, A. M., Newberg, H., Nobili, S., Nugent, P. E., Pain, R., Perdereau, O., Perlmutter, S., Phillips, M. M., Prasad, V., Quimby, R., Regnault, N., Rich, J., Rubenstein, E. P., Ruiz-Lapuente, P., Santos, F. D., Schaefer, B. E., Schommer, R. A., Smith, R. C., Soderberg, A. M., Spadafora, A. L., Strolger, L. G., Strovink, M., Suntzeff, N. B., Suzuki, N., Thomas, R. C., Walton, N. A., Wang, L., Wood-Vasey, W. M., and Yun, J. L. 2008. Improved cosmological constraints from new, old, and combined supernova data sets. The Astrophysical Journal, 686, 749778.Google Scholar
Kragh, H. 2012. “The most philosophically of all the sciences”: Karl Popper and physical cosmology. Perspectives on Science, 21, 325357.Google Scholar
Kroupa, P. 2012. The dark matter crisis: falsification of the current standard model of cosmology. Publications of the Astronomical Society of Australia, 29, 395433.Google Scholar
Kroupa, P. 2014. The planar satellite distributions around Andromeda, the Milky Way and other galaxies, and their implications for fundamental physics. Page 183 of: Iodice, E., and Corsini, E. M. (eds), Multi-Spin Galaxies. Astronomical Society of the Pacific Conference Series, vol. 486.Google Scholar
Kroupa, P. 2015a. Galaxies as simple dynamical systems: Observational data disfavor dark matter and stochastic star formation. Canadian Journal of Physics, 93, 169202.Google Scholar
Kroupa, P. 2015b. Lessons from the Local Group (and beyond) on dark matter. Pages 337– 352 of: Freeman, K., Elmegreen, B., Block, D., and Woolway, M. (eds), Lessons from the Local Group. Springer International Publishing.Google Scholar
Kroupa, P., Famaey, B., de Boer, K. S., Dabringhausen, J., Pawlowski, M. S., Boily, C. M., Jerjen, H., Forbes, D., Hensler, G., and Metz, M. 2010. Local-Group tests of dark-matter concordance cosmology: Towards a new paradigm for structure formation. Astronomy and Astrophysics, 523, A32.Google Scholar
Kroupa, P., Pawlowski, M., and Milgrom, M. 2012. The failures of the standard model of cosmology require a new paradigm. International Journal of Modern Physics D, 21, 1230003.Google Scholar
Kuhn, T. S. 1962. The Structure of Scientific Revolutions. The University of Chicago Press.Google Scholar
Kuhn, T. S. 1970. Logic of discovery or psychology of research? Pages 1–24 of: Lakatos, I., and Musgrave, A. (eds), Criticism and the Growth of Knowledge. Cambridge University Press.Google Scholar
Kuijken, K., and Gilmore, G. 1989a. The mass distribution in the galactic disc – II. Determination of the surface mass density of the galactic disc near the Sun. Monthly Notices of the Royal Astronomical Society, 239, 605649.Google Scholar
Kuijken, K., and Gilmore, G. 1989b. The mass distribution in the galactic disc – III. The local volume mass density. Monthly Notices of the Royal Astronomical Society, 239, 651664.Google Scholar
Kuijken, K., and Gilmore, G. 1989c. The mass distribution in the galactic disc – I. A technique to determine the integral surface mass density of the disc near the sun. Monthly Notices of the Royal Astronomical Society, 239, 571603.Google Scholar
Kuijken, K., and Gilmore, G. 1991. The galactic disk surface mass density and the galactic force K(z) at z = 1.1 kiloparsecs. The Astrophysical Journal Letters, 367, L9–L13.Google Scholar
Kusakabe, Motohiko, Cheoun, Myung-Ki, and Kim, K. S. 2014. General limit on the relation between abundances of D and 7Li in big bang nucleosynthesis with nucleon injections. Physical Review D, 90, 045009.Google Scholar
Kyburg, H. E. Jr. 1970. Probability and Inductive Logic. Macmillan.Google Scholar
Lakatos, I. 1970. Falsification and the methodology of scientific research programmes. In Lakatos (1978), 8–101.Google Scholar
Lakatos, I. 1971. History of science and its rational reconstructions. In Lakatos (1978), 102138.Google Scholar
Lakatos, I. 1973. Introduction: Science and pseudoscience. In Lakatos (1978), 17.Google Scholar
Lakatos, I. 1974. Popper on demarcation and induction. In Lakatos (1978), 139167.Google Scholar
Lakatos, I. 1978. The Methodology of Scientific Research Programmes (Philosophical Papers Volume I). Worrall, J. and Currie, G. (eds). Cambridge University Press.Google Scholar
Lakatos, I., and Zahar, E. 1976. Why did Copernicus’s research programme supersede Ptolemy’s? In Lakatos (1978), 168–192.Google Scholar
Lakatos, I., Worrall, J., and Zahar, E. 1976. Proofs and Refutations: The Logic of Mathematical Discovery. Philosophical Papers, vol. 1. Cambridge University Press.Google Scholar
Lake, G. 1989. Testing modifications of gravity. The Astrophysical Journal Letters, 345, L17.Google Scholar
Lambert, D. L. 2004. Lithium in very metal-poor dwarf stars: Problems for standard big bang nucleosynthesis? Pages 206–223 of: Allen, R. E., Nanopoulos, D. V., and Pope, C. N. (eds), The New Cosmology: Conference on Strings and Cosmology. American Institute of Physics Conference Series, vol. 743.Google Scholar
Landau, L. D. 1941. The theory of superfluidity of helium-II. Journal of Physics - USSR, 5, 71.Google Scholar
Landau, L. D. 1947. On the theory of superfluidity of helium-II. Journal of Physics - USSR, 11, 91.Google Scholar
Lange, A. E., Ade, P. A., Bock, J. J., Bond, J. R., Borrill, J., Boscaleri, A., Coble, K., Crill, B. P., de Bernardis, P., Farese, P., Ferreira, P., Ganga, K., Giacometti, M., Hivon, E., Hristov, V. V., Iacoangeli, A., Jaffe, A. H., Martinis, L., Masi, S., Mauskopf, P. D., Melchiorri, A., Montroy, T., Netterfield, C. B., Pascale, E., Piacentini, F., Pogosyan, D., Prunet, S., Rao, S., Romeo, G., Ruhl, J. E., Scaramuzzi, F., and Sforna, D. 2001. Cosmological parameters from the first results of Boomerang. Physical Review D, 63, 042001.Google Scholar
Laudan, L. 1983. The demise of the demarcation problem. Pages 111–128 of: Cohen, R. S., and Laudan, L. (eds), Physics, Philosophy, and Psychoanalysis: Essays in Honor of Adolf Grünbaum. D. Reidel.Google Scholar
Laudan, L. 1984. Science and Values. University of California Press.Google Scholar
Laudan, R., Laudan, L., and Donovan, A. 1988. Testing theories of scientific change. Pages 3–46 of: Donovan, A., Laudan, L., and Laudan, R. (eds), Scrutinizing Science, vol. 13. Kluwer.Google Scholar
Lazutkina, A. 2017. Theoretical terms of contemporary cosmology as intellectual artifacts. ArXiv e-prints, arXiv:1707.05235.Google Scholar
Leibniz, G. W. 1678. Letter to Herman Conring, 19 March. Pages 186–191 of: Loemker, L. (ed), Gottfried Wilhelm Leibniz: Philosophical Papers and Letters, 2nd edn. Reidel, 1970.Google Scholar
Lelli, F., McGaugh, S. S., and Schombert, J. M. 2016a. SPARC: Mass models for 175 disk galaxies with Spitzer photometry and accurate rotation curves. The Astronomical Journal, 152, 157.Google Scholar
Lelli, F., McGaugh, S. S., Schombert, J. M., and Pawlowski, M. S. 2016b. The relation between stellar and dynamical surface densities in the central regions of disk galaxies. The Astrophysical Journal Letters, 827, L19.Google Scholar
Lelli, F., McGaugh, S. S., and Schombert, J. M. 2016c. The small scatter of the baryonic Tully–Fisher relation. The Astrophysical Journal Letters, 816, L14.Google Scholar
Lelli, F., McGaugh, S. S., Schombert, J. M., and Pawlowski, M. S. 2017. One law to rule them all: The radial acceleration relation of galaxies. The Astrophysical Journal, 836, 152.Google Scholar
Lem, S. 1970. Robots in science fiction. The Journal of Omphalistic Epistemology, Jan., 8–20.Google Scholar
Lemaître, G. 1927. Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles, 47, 4959.Google Scholar
Lind, K., Melendez, J., Asplund, M., Collet, R., and Magic, Z. 2013. The lithium isotopic ratio in very metal-poor stars. Astronomy and Astrophysics, 554, A96.Google Scholar
Linsky, J. L. 2003. Atomic deuterium/hydrogen in the Galaxy. Space Science Reviews, 106, 4960.Google Scholar
Lisanti, M. 2017. Lectures on dark matter physics. Pages 399–446 of: New Frontiers in Fields and Strings (TASI 2015).Google Scholar
Liu, J., Chen, X., and Ji, X. 2017. Current status of direct dark matter detection experiments. Nature Physics, 13(3), 212216.Google Scholar
Livio, M. 2011. Mystery of the missing text solved. Nature, 479, 171173.Google Scholar
Llinares, C., Knebe, A., and Zhao, H. 2008. Cosmological structure formation under MOND: A new numerical solver for Poisson’s equation. Monthly Notices of the Royal Astronomical Society, 391, 17781790.Google Scholar
Losee, J. 2004. Theories of Scientific Progress. Routledge.Google Scholar
Losee, J. 2005. Theories on the Scrap Heap. University of Pittsburgh Press.Google Scholar
Ludlow, A. D., Benítez-Llambay, A., Schaller, M., Theuns, T., Frenk, C. S., Bower, R., Schaye, J., Crain, R. A., Navarro, J. F., and Fattahi, A. 2017. Mass-discrepancy acceleration relation: A natural outcome of galaxy formation in cold dark matter halos. Physical Review Letters, 118, 161103.Google Scholar
Mackey, A. D., and Gilmore, G. F. 2003. Surface brightness profiles and structural parameters for globular clusters in the Fornax and Sagittarius dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 340, 175190.Google Scholar
Madison, G. B. 1988. A critique of Hirsch’s Validity. Chapter 1, pages 3–24 of: The Hermeneutics of Postmodernity. Indiana University Press.Google Scholar
Magee, B. 1997. Confessions of a Philosopher: A Journey Through Western Philosophy. Random House.Google Scholar
Mahoney, M. J., and DeMonbreun, B. G. 1977. Psychology of the scientist: An analysis of problem-solving bias. Cognitive Therapy and Research, 1, 229238.Google Scholar
Margenau, H. 1950. The Nature of Physical Reality: A Philosophy of Modern Physics. McGraw-Hill.Google Scholar
Mashchenko, S., Couchman, H. M. P., and Wadsley, J. 2006. The removal of cusps from galaxy centres by stellar feedback in the early Universe. Nature, 442, 539542.Google Scholar
Mashian, N., Oesch, P. A., and Loeb, A. 2016. An empirical model for the galaxy luminosity and star formation rate function at high redshift. Monthly Notices of the Royal Astronomical Society, 455, 21012109.Google Scholar
Masterman, M. 1970. The nature of a paradigm. Pages 59–90 of: Lakatos, I., and Musgrave, A. (eds), Criticism and the Growth of Knowledge. Cambridge University Press.Google Scholar
Mathews, G. J., Kajino, T., and Shima, T. 2005. Big bang nucleosynthesis with a new neutron lifetime. Physical Review D, 71, 021302.Google Scholar
Matteucci, F. 2003. What determines galactic evolution? Astrophysics and Space Science, 284, 539548.Google Scholar
Mayer, L., and Moore, B. 2004. The baryonic mass–velocity relation: Clues to feedback processes during structure formation and the cosmic baryon inventory. Monthly Notices of the Royal Astronomical Sociey, 354, 477484.Google Scholar
McCrea, W. H., and Milne, E. A. 1934. Newtonian universes and the curvature of space. The Quarterly Journal of Mathematics, 5.Google Scholar
McCulloch, M. E. 2007. Modelling the Pioneer anomaly as modified inertia. Monthly Notices of the Royal Astronomical Society, 376, 338342.Google Scholar
McGaugh, S. S. 1996. The number, luminosity and mass density of spiral galaxies as a function of surface brightness. Monthly Notices of the Royal Astronomical Society, 280, 337354.Google Scholar
McGaugh, S. S. 1999a. Distinguishing between cold dark matter and modified Newtonian dynamics: Predictions for the microwave background. The Astrophysical Journal Letters, 523, L99L102.Google Scholar
McGaugh, S. S. 1999b. How galaxies don’t form: The effective force law in disk galaxies. In Merritt, D. R., Valluri, M., and Sellwood, J. A. (eds), Galaxy Dynamics: A Rutgers Symposium. Astronomical Society of the Pacific Conference Series, vol. 182.Google Scholar
McGaugh, S. S. 2004. The mass discrepancy–acceleration relation: Disk mass and the dark matter distribution. The Astrophysical Journal, 609, 652666.Google Scholar
McGaugh, S. S. 2005. The baryonic Tully–Fisher relation of galaxies with extended rotation curves and the stellar mass of rotating galaxies. The Astrophysical Journal, 632, 859871.Google Scholar
McGaugh, S. S. 2008. Milky Way mass models and MOND. The Astrophysical Journal, 683, 137148.Google Scholar
McGaugh, S. S. 2011. Novel test of modified Newtonian dynamics with gas rich galaxies. Physical Review Letters, 106, 121303.Google Scholar
McGaugh, S. S. 2012. The baryonic Tully–Fisher relation of gas-rich galaxies as a test of ΛCDM and MOND. The Astronomical Journal, 143, 40.Google Scholar
McGaugh, S. S. 2015. A tale of two paradigms: The mutual incommensurability of ΛCDM and MOND. Canadian Journal of Physics, 93, 250259.Google Scholar
McGaugh, S. S., and de Blok, W. J. G. 1998a. Testing the dark matter hypothesis with low surface brightness galaxies and other evidence. The Astrophysical Journal, 499, 4165.Google Scholar
McGaugh, S. S., and de Blok, W. J. G. 1998b. Testing the hypothesis of modified dynamics with low surface brightness galaxies and other evidence. The Astrophysical Journal, 499, 6681.Google Scholar
McGaugh, S. S., and Milgrom, M. 2013a. Andromeda dwarfs in light of modified Newtonian dynamics. The Astrophysical Journal, 766, 22.Google Scholar
McGaugh, S. S., and Milgrom, M. 2013b. Andromeda dwarfs in light of MOND. II. Testing prior predictions. The Astrophysical Journal, 775, 139.Google Scholar
McGaugh, S. S., Schombert, J. M., Bothun, G. D., and de Blok, W. J. G. 2000. The baryonic Tully–Fisher relation. The Astrophysical Journal Letters, 533, L99L102.Google Scholar
McGaugh, S. S., Lelli, F., and Schombert, J. M. 2016. Radial acceleration relation in rotationally supported galaxies. Physical Review Letters, 117, 201101.Google Scholar
Meléndez, J., and Ramírez, I. 2004. Reappraising the Spite lithium plateau: Extremely thin and marginally consistent with WMAP data. The Astrophysical Journal Letters, 615, L33L36.Google Scholar
Merritt, D. 1987. The distribution of dark matter in the coma cluster. The Astrophysical Journal, 313, 121135.Google Scholar
Merritt, D. 2001. Brownian motion of a massive binary. The Astrophysical Journal, 556, 245264.Google Scholar
Merritt, D. 2013. Dynamics and Evolution of Galactic Nuclei. Princeton: Princeton University Press.Google Scholar
Merritt, D. 2017. Cosmology and convention. Studies in History and Philosophy of Modern Physics, 57, 4152.Google Scholar
Merritt, D., and Milosavljević, M. 2002. Dynamics of dark-matter cusps. Pages 79–89 of: Klapdor-Kleingrothaus, H. V., and Viollier, R. D. (eds), Dark Matter in Astro- and Particle Physics. Springer.Google Scholar
Merritt, D., and Sellwood, J. A. 1994. Bending instabilities in stellar systems. The Astrophysical Journal, 425, 551567.Google Scholar
Michaud, G., Fontaine, G., and Beaudet, G. 1984. The lithium abundance: Constraints on stellar evolution. The Astrophysical Journal, 282, 206213.Google Scholar
Milgrom, M. 1983a. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal, 270, 365370.Google Scholar
Milgrom, M. 1983b. A modification of the Newtonian dynamics: Implications for galaxies. The Astrophysical Journal, 270, 371383.Google Scholar
Milgrom, M. 1983c. A modification of the Newtonian dynamics: Implications for galaxy systems. The Astrophysical Journal, 270, 384389.Google Scholar
Milgrom, M. 1984. Isothermal spheres in the modified dynamics. The Astrophysical Journal, 287, 571576.Google Scholar
Milgrom, M. 1989a. Alternatives to dark matter. Comments on Astrophysics, 13, 215230.Google Scholar
Milgrom, M. 1989b. On stability of galactic disks in the modified dynamics and the distribution of their mean surface brightness. The Astrophysical Journal, 338, 121127.Google Scholar
Milgrom, M. 1994a. Dynamics with a nonstandard inertia–acceleration relation: An alternative to dark matter in galactic systems. Annals of Physics, 229, 384415.Google Scholar
Milgrom, M. 1994b. Modified dynamics predictions agree with observations of the HI kinematics in faint dwarf galaxies contrary to the conclusions of Lo, Sargent, and Young. The Astrophysical Journal, 429, 540544.Google Scholar
Milgrom, M. 1997. Nonlinear conformally invariant generalization of the Poisson equation to D > 2 dimensions. Physical Review E, 56, 11481159.Google Scholar
Milgrom, M. 1999. The modified dynamics as a vacuum effect. Physics Letters A, 253, 273279.Google Scholar
Milgrom, M. 2001a. MOND–A pedagogical review. Acta Physica Polonica B, 32, 36133627.Google Scholar
Milgrom, M. 2001b. The shape of ‘dark matter’ haloes of disc galaxies according to MOND. Monthly Notices of the Royal Astronomical Society, 326, 12611264.Google Scholar
Milgrom, M. 2002. Do modified Newtonian dynamics follow from the cold dark matter paradigm? The Astrophysical Journal Letters, 571, L81L83.Google Scholar
Milgrom, M. 2006. MOND as modified inertia. EAS Publications Series, 20, 217224.Google Scholar
Milgrom, M. 2008. The MOND paradigm. ArXiv e-prints, 0801.3133.Google Scholar
Milgrom, M. 2009. Bimetric MOND gravity. Physical Review D, 80, 123536.Google Scholar
Milgrom, M. 2009a. The MOND limit from spacetime invariance. The Astrophysical Journal, 698, 16301638.Google Scholar
Milgrom, M. 2009b. The central surface density of ‘dark haloes’ predicted by MOND. Monthly Notices of the Royal Astronomical Society, 398, 10231026.Google Scholar
Milgrom, M. 2010. Quasi-linear formulation of MOND. Monthly Notices of the Royal Astronomical Society, 403, 886895.Google Scholar
Milgrom, M. 2011a. MD or DM? Modified dynamics at low accelerations vs dark matter. ArXiv e-prints, 1101.5122.Google Scholar
Milgrom, M. 2011b. MOND–particularly as modified inertia. Acta Physica Polonica B, 42, 21752184.Google Scholar
Milgrom, M. 2014. MOND laws of galactic dynamics. Monthly Notices of the Royal Astronomical Society, 437, 25312541.Google Scholar
Milgrom, M. 2015. MOND theory. Canadian Journal of Physics, 93, 107118.Google Scholar
Milgrom, M. 2016a. MOND impact on and of the recently updated mass-discrepancy– acceleration relation. ArXiv e-prints, arXiv:1609.06642.Google Scholar
Milgrom, M. 2016b. The ΛCDM simulations of Keller and Wadsley do not account for the MOND mass-discrepancy–acceleration relation. ArXiv e-prints, 1610.07538.Google Scholar
Milgrom, M. 2016c. Universal modified Newtonian dynamics relation between the baryonic and “dynamical” central surface densities of disc galaxies. Physical Review Letters, 117, 141101.Google Scholar
Milgrom, M., and Braun, E. 1988. The rotation curve of DDO 154: A particularly acute test of the modified dynamics. The Astrophysical Journal, 334, 130133.Google Scholar
Milgrom, M., and Sanders, R. H. 2005. MOND predictions of ‘halo’ phenomenology in disc galaxies. Monthly Notices of the Royal Astronomical Society, 357, 4548.Google Scholar
Milgrom, M., and Sanders, R. H. 2008. Rings and shells of “dark matter” as MOND artifacts. The Astrophysical Journal, 678, 131143.Google Scholar
Miller, D. 2014a. Critical Rationalism: A Restatement and Defence. Open Court.Google Scholar
Miller, D. 2014b. Some hard questions for critical rationalism. Discusiones Filosóficas, 15(24), 1540.Google Scholar
Moffat, J. W. 2006. Scalar–tensor–vector gravity theory. Journal of Cosmology and Astroparticle Physics, 2006, 004.Google Scholar
Moni Bidin, C., Carraro, G., Méndez, R. A., and Smith, R. 2012. Kinematical and chemical vertical structure of the galactic thick disk. II. A lack of dark matter in the solar neighborhood. The Astrophysical Journal, 751, 30.Google Scholar
Moore, B. 1994. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature, 370, 629631.Google Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., and Tozzi, P. 1999. Dark matter substructure within galactic halos. The Astrophysical Journal, 524, L19L22.Google Scholar
Mott, A., Steffen, M., Caffau, E., Spada, F., and Strassmeier, K. G. 2017. Lithium abundance and 6Li/7Li ratio in the active giant HD 123351. I. A comparative analysis of 3D and 1D NLTE line-profile fits. Astronomy and Astrophysics, 604, A44.Google Scholar
Motterlini, M. (ed). 1999. For and Against Method: Including Lakatos’s Lectures on Scientific Method and the Lakatos–Feyerabend Correspondence. The University of Chicago Press.Google Scholar
Mucciarelli, A., Salaris, M., Lovisi, L., Ferraro, F. R., Lanzoni, B., Lucatello, S., and Gratton, R. G. 2011. Lithium abundance in the globular cluster M4: From the turnoff to the red giant branch bump. Monthly Notices of the Royal Astronomical Society, 412, 8194.Google Scholar
Musgrave, A. 1971. Kuhn’s second thoughts. The British Journal for the Philosophy of Science, 22, 287297.Google Scholar
Musgrave, A. 1974. Logical versus historical theories of confirmation. The British Journal for the Philosophy of Science, 25, 123.Google Scholar
Musgrave, A. 1978. Evidential support, falsification, heuristics, and anarchism. Pages 181– 202 of: Radnitzky, G., and Andersson, G. (eds), Progress and Rationality in Science. Boston Studies in the Philosophy of Science, vol. 58. Dordrecht.Google Scholar
Musil, R. 1961. Notebooks. Quoted in the Foreword to The Man Without Qualities, I, p. xii. Secker and Warburg, 1961.Google Scholar
Naab, T., and Ostriker, J. P. 2017. Theoretical challenges in galaxy formation. Annual Review of Astronomy and Astrophysics, 55, 59109.Google Scholar
Nagai, D., Kravtsov, A. V., and Vikhlinin, A. 2007. Effects of galaxy formation on thermodynamics of the intracluster medium. The Astrophysical Journal, 668(1), 114.Google Scholar
Natoli, J., and Hutcheon, L. (eds). 1993. A Postmodern Reader. State University of New York Press.Google Scholar
Netterfield, C. B., Ade, P. A. R., Bock, J. J., Bond, J. R., Borrill, J., Boscaleri, A., Coble, K., Contaldi, C. R., Crill, B. P., de Bernardis, P., Farese, P., Ganga, K., Giacometti, M., Hivon, E., Hristov, V. V., Iacoangeli, A., Jaffe, A. H., Jones, W. C., Lange, A. E., Martinis, L., Masi, S., Mason, P., Mauskopf, P. D., Melchiorri, A., Montroy, T., Pascale, E., Piacentini, F., Pogosyan, D., Pongetti, F., Prunet, S., Romeo, G., Ruhl, J. E., and Scaramuzzi, F. 2002. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. The Astrophysical Journal, 571, 604614.Google Scholar
Newton-Smith, W. H. 1981. The Rationality of Science. Routledge and Kegan Paul.Google Scholar
Nicastro, F., Krongold, Y., Mathur, S., and Elvis, M. 2017. A decade of warm hot intergalactic medium searches: Where do we stand and where do we go? Astronomische Nachrichten, 338, 281286.Google Scholar
Nicolis, A. 2011. Low-energy effective field theory for finite-temperature relativistic superfluids. ArXiv e-prints, 1108.2513.Google Scholar
Nipoti, C., Londrillo, P., and Ciotti, L. 2007a. Galaxy merging in modified Newtonian dynamics. Monthly Notices of the Royal Astronomical Sociey, 381, L104L108.Google Scholar
Nipoti, C., Londrillo, P., Zhao, H., and Ciotti, L. 2007b. Vertical dynamics of disc galaxies in modified Newtonian dynamics. Monthly Notices of the Royal Astronomical Society, 379, 597604.Google Scholar
Nordlander, T., Korn, A. J., Richard, O., and Lind, K. 2012. Lithium in globular clusters: Significant systematics. Atomic diffusion, the temperature scale, and pollution in NGC 6397. Memorie della Societa Astronomica Italiana Supplementi, 22, 110.Google Scholar
Nusser, A. 2002. Modified Newtonian dynamics of large-scale structure. Monthly Notices of the Royal Astronomical Society, 331, 909916.Google Scholar
Oh, K. S., Lin, D. N. C., and Richer, H. B. 2000. Globular clusters in the Fornax dwarf spheroidal galaxy. The Astrophysical Journal, 531, 727738.Google Scholar
O’Hear, A. 1980. Karl Popper. Routledge and Kegan Paul.Google Scholar
Olive, K. A. 2004. Big bang nucleosynthesis in the post-WMAP era. Pages 190–205 of: Allen, R. E., Nanopoulos, D. V., and Pope, C. N. (eds), The New Cosmology: Conference on Strings and Cosmology. American Institute of Physics Conference Series, vol. 743.Google Scholar
Olive, K. A., Schramm, D. N., Turner, M. S., Yang, J., and Steigman, G. 1981. Big-bang nucleosynthesis as a probe of cosmology and particle physics. The Astrophysical Journal, 246, 557568.Google Scholar
Olive, K. A., et al. 2014. Review of particle physics (Particle Data Group). Chinese Physics C, 38, 090001.Google Scholar
O’Malley, P. D., Bardayan, D. W., Adekola, A. S., Ahn, S., Chae, K. Y., Cizewski, J. A., Graves, S., Howard, M. E., Jones, K. L., Kozub, R. L., Lindhardt, L., Matos, M., Moazen, B. M., Nesaraja, C. D., Pain, S. D., Peters, W. A., Pittman, S. T., Schmitt, K. T., Shriner, J. F. Jr., Smith, M. S. Spassova, I. Strauss, S. Y. and Wheeler, J. L. 2011. Search for a resonant enhancement of the 7Be + d reaction and primordial 7Li abundances. Physical Review C, 84, 042801.Google Scholar
Oman, K. A., Navarro, J. F., Fattahi, A., Frenk, C. S., Sawala, T., White, S. D. M., Bower, R., Crain, R. A., Furlong, M., and Schaller, M. 2015. The unexpected diversity of dwarf galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 452, 36503665.Google Scholar
Oort, J. H. 1960. Note on the determination of Kz and on the mass density near the Sun. Bulletin of the Astronomical Institutes of the Netherlands, 15, 4553.Google Scholar
Ostrogradski, M. V. 1850. Mémoires sur les equations differentielles relatives au problème des isopérimètres. Mémoires présentés à l’Académie impériale des sciences de Saint-Pétersbourg, 385. Series VI (4).Google Scholar
Page, L., Nolta, M. R., Barnes, C., Bennett, C. L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Peiris, H. V., Spergel, D. N., Tucker, G. S., Wollack, E., and Wright, E. L. 2003. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Interpretation of the TT and TE angular power spectrum peaks. The Astrophysical Journal Supplement Series, 148, 233241.Google Scholar
Pagel, B. E. J. 1986. Nucleosynthesis. Philosophical Transactions of the Royal Society of London Series A, 320, 557564.Google Scholar
Papastergis, E., Giovanelli, R., Haynes, M. P., and Shankar, F. 2015. Is there a “too big to fail” problem in the field? Astronomy and Astrophysics, 574, A113.Google Scholar
Patton, D. R., Carlberg, R. G., Marzke, R. O., Pritchet, C. J., da Costa, L. N., and Pellegrini, P. S. 2000. New techniques for relating dynamically close galaxy pairs to merger and accretion rates: Application to the second Southern Sky Redshift Survey. The Astrophysical Journal, 536, 153172.Google Scholar
Pawlowski, M. S., Famaey, B., Jerjen, H., Merritt, D., Kroupa, P., Dabringhausen, J., Lüghausen, F., Forbes, D. A., Hensler, G., and Hammer, F. 2014. Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 442, 23622380.Google Scholar
Peacock, J. A. 1999. Cosmological Physics. Cambridge University Press.Google Scholar
Peebles, P. J. E. 2015. Dark matter. Proceedings of the National Academy of Science, 112, 1224612248.Google Scholar
Peletier, R. F., and Willner, S. P. 1991. Infrared images, Virgo spirals, and the Tully–Fisher law. The Astrophysical Journal, 382, 382395.Google Scholar
Peñarrubia, J., Pontzen, A., Walker, M. G., and Koposov, S. E. 2012. The coupling between the core/cusp and missing satellite problems. The Astrophysical Journal, 759, L42.Google Scholar
Perrin, J. 1916. Atoms. Van Nostrand. trans. D. Ll. Hammick.Google Scholar
Peterson, R. C., and Carney, B. W. 1979. Abundance analyses of metal-poor stars. II. Yellow spectra of five dwarfs. The Astrophysical Journal, 231, 762780.Google Scholar
Pettini, M., and Bowen, D. V. 2001. A new measurement of the primordial abundance of deuterium: Toward convergence with the baryon density from the cosmic microwave background? The Astrophysical Journal, 560, 4148.Google Scholar
Pettini, M., and Cooke, R. 2012. A new, precise measurement of the primordial abundance of deuterium. Monthly Notices of the Royal Astronomical Society, 425, 24772486.Google Scholar
Piffl, T., Blimey, J., McMillan, P. J., Steinmetz, M., Helmi, A., Wyse, R. F. G., Bienaymé, O., Bland-Hawthorn, J., Freeman, K., Gibson, B., Gilmore, G., Grebel, E. K., Kordopatis, G., Navarro, J. F., Parker, Q., Reid, W. A., Seabroke, G., Siebert, A., Watson, F., and Zwitter, T. 2014. Constraining the Galaxy’s dark halo with RAVE stars. Monthly Notices of the Royal Astronomical Society, 445, 31333151.Google Scholar
Pizzone, R. G., Spartá, R., Bertulani, C. A., Spitaleri, C., La Cognata, M., Lalmansingh, J., Lamia, L., Mukhamedzhanov, A., and Tumino, A. 2014. Big bang nucleosynthesis revisited via Trojan horse method measurements. The Astrophysical Journal, 786, 112120.Google Scholar
Planck, M. 1922. The origin and development of the quantum theory. Nobel Prize in Physics Award Address, 1920. Clarendon Press. Trans. H. T. Clarke and L. Silberstein. Reprinted in The World of the Atom, eds. H. A. Boorse and L. Motz (New York: Basic Books, 1966), p. 496–500.Google Scholar
Planck Collaboration, XIII. 2016. Planck 2015 results. XIII. Cosmological parameters. Astronomy and Astrophysics, 594, A13.Google Scholar
Planck Collaboration, XLVI. 2016. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth. Astronomy and Astrophysics, 596, A107.Google Scholar
Planck Collaboration, XVI. 2014. Planck 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 571, A16.Google Scholar
Polido, P., Jablonski, F., and Lépine, J. R. D. 2013. A galaxy model from Two Micron All Sky Survey star counts in the whole sky, including the plane. The Astrophysical Journal, 778, 3249.Google Scholar
Ponomareva, A. A., Verheijen, M. A. W., Peletier, R. F., and Bosma, A. 2017. The multiwavelength Tully–Fisher relation with spatially resolved H I kinematics. Monthly Notices of the Royal Astronomical Society, 469, 23872400.Google Scholar
Popkin, R. H. 2003. The History of Scepticism: From Savonarola to Bayle. Oxford University Press.Google Scholar
Popper, K. 1945. The Open Society and Its Enemies. Vol. 2. The High Tide of Prophecy: Hegel, Marx, and the Aftermath. Routledge.Google Scholar
Popper, K. 1959. The Logic of Scientific Discovery. Basic Books.Google Scholar
Popper, K. 1963. Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge & Kegan Paul.Google Scholar
Popper, K. 1972. Objective Knowledge: An Evolutionary Approach. Oxford University Press.Google Scholar
Popper, K. 1974. Intellectual autobiography. Pages 3–181 of: Schilpp, P. A. (ed), The Philosophy of Karl Popper. Open Court.Google Scholar
Popper, K. 1983. Realism and the Aim of Science. Rowman and Littlefield.Google Scholar
Prout, William. 1815. On the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms. Annals of Philosophy, 6, 321330.Google Scholar
Read, J. I. 2014. The local dark matter density. Journal of Physics G Nuclear Physics, 41, 063101.Google Scholar
Read, J. I., Goerdt, T., Moore, B., Pontzen, A. P., Stadel, J., and Lake, G. 2006. Dynamical friction in constant density cores: A failure of the Chandrasekhar formula. Monthly Notices of the Royal Astronomical Society, 373, 14511460.Google Scholar
Reeves, H. 1994. On the origin of the light elements (Z < 6). Reviews of Modern Physics, 66, 193216.Google Scholar
Reno, M. H., and Seckel, D. 1988. Primordial nucleosynthesis: The effects of injecting hadrons. Physical Review D, 37, 34413462.Google Scholar
Rich, J. 2010. Fundamentals of Cosmology. 2nd edn. Springer-Verlag.Google Scholar
Richard, O., Michaud, G., and Richer, J. 2005. Implications of WMAP observations on Li abundance and stellar evolution models. The Astrophysical Journal, 619, 538548.Google Scholar
Riemer-Sørensen, S., Webb, J. K., Crighton, N., Dumont, V., Ali, K., Kotuš, S., Bainbridge, M., Murphy, M. T., and Carswell, R. 2015. A robust deuterium abundance; remeasurement of the z = 3.256 absorption system towards the quasar PKS 1937-101. Monthly Notices of the Royal Astronomical Society, 447, 29252936.Google Scholar
Riess, A. G., Macri, L. M., Hoffmann, S. L., Scolnic, D., Casertano, S., Filippenko, A. V., Tucker, B. E., Reid, M. J., Jones, D. O., Silverman, J. M., Chornock, R., Challis, P., Yuan, W., Brown, P. J., and Foley, R. J. 2016. A 2.4% determination of the local value of the Hubble constant. The Astrophysical Journal, 826, 56.Google Scholar
Robertson, B. E., Ellis, R S., Furlanetto, S. R., and Dunlop, J. S. 2015. Cosmic reionization and early star-forming galaxies: A joint analysis of new constraints from PLANCK and the Hubble Space Telescope. The Astrophysical Journal, 802, L19.Google Scholar
Romatka, R. 1992. Alternativen zur “dunklen Materie”. Ph.D. thesis, Max-Planck-Institut für Physik, Munich.Google Scholar
Rubin, V. C. 1983. Systematics of H II rotation curves. Pages 3–8 of: Athanassoula, E. (ed), Internal Kinematics and Dynamics of Galaxies. IAU Symposium, vol. 100.Google Scholar
Rubin, V. C., Ford, W. K. Jr., and Thonnard, N. 1980. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc). The Astrophysical Journal, 238, 471487.Google Scholar
Ryan, S. G., Beers, T. C., Olive, K. A., Fields, B. D., and Norris, J. E. 2000. Primordial lithium and big bang nucleosynthesis. The Astrophysical Journal Letters, 530, L57L60.Google Scholar
Ryle, G. 1954. Dilemmas. Cambridge University Press.Google Scholar
Sagi, E. 2009. Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization. Physical Review D, 80, 044032.Google Scholar
Sales, L. V., Navarro, J. F., Oman, K., Fattahi, A., Ferrero, I., Abadi, M., Bower, R., Crain, R. A., Frenk, C. S., Sawala, T., Schaller, M., Schaye, J., Theuns, T., and White, S. D. M. 2017. The low-mass end of the baryonic Tully–Fisher relation. Monthly Notices of the Royal Astronomical Society, 464, 24192428.Google Scholar
Salucci, P. 2001. The constant-density region of the dark haloes of spiral galaxies. Monthly Notices of the Royal Astronomical Society, 320, L1L5.Google Scholar
Sancisi, R. 2004. The visible matter–dark matter coupling. Page 233 of: Ryder, S., Pisano, D., Walker, M., and Freeman, K. (eds), Dark Matter in Galaxies. IAU Symposium, vol. 220.Google Scholar
Sanders, R. H. 1990. Mass discrepancies in galaxies: Dark matter and alternatives. Astronomy and Astrophysics Review, 2, 128.Google Scholar
Sanders, R. H. 1994. A Faber–Jackson relation for clusters of galaxies: Implications for modified dynamics. Astronomy and Astrophysics, 284, L31L34.Google Scholar
Sanders, R. H. 1997. A stratified framework for scalar-tensor theories of modified dynamics. The Astrophysical Journal, 480, 492502.Google Scholar
Sanders, R. H. 1998. Cosmology with modified Newtonian dynamics (MOND). Monthly Notices of the Royal Astronomical Society, 296, 10091018.Google Scholar
Sanders, R. H. 1999. The virial discrepancy in clusters of galaxies in the context of modified Newtonian dynamics. The Astrophysical Journal Letters, 512, L23L26.Google Scholar
Sanders, R. H. 2000. The fundamental plane of elliptical galaxies with modified Newtonian dynamics. Monthly Notices of the Royal Astronomical Society, 313, 767774.Google Scholar
Sanders, R. H. 2001. The formation of cosmic structure with modified Newtonian dynamics. The Astrophysical Journal, 560, 16.Google Scholar
Sanders, R. H. 2003. Clusters of galaxies with modified Newtonian dynamics. Monthly Notices of the Royal Astronomical Society, 342, 901908.Google Scholar
Sanders, R. H. 2007. Neutrinos as cluster dark matter. Monthly Notices of the Royal Astronomical Society, 380, 331338.Google Scholar
Sanders, R. H. 2008. Forming galaxies with MOND. Monthly Notices of the Royal Astronomical Society, 386, 15881596.Google Scholar
Sanders, R. H. 2010. The universal Faber–Jackson relation. Monthly Notices of the Royal Astronomical Society, 407, 11281134.Google Scholar
Sanders, R. H. 2015. A historical perspective on modified Newtonian dynamics. Canadian Journal of Physics, 93, 126138.Google Scholar
Sanders, R. H., and Land, D. D. 2008. MOND and the lensing fundamental plane: No need for dark matter on galaxy scales. Monthly Notices of the Royal Astronomical Society, 389, 701705.Google Scholar
Sanders, R. H., and McGaugh, S. S. 2002. Modified Newtonian dynamics as an alternative to dark matter. Annual Reviews of Astronomy and Astrophysics, 40, 263317.Google Scholar
Sanders, R. H., and Noordermeer, E. 2007. Confrontation of modified Newtonian dynamics with the rotation curves of early-type disc galaxies. Monthly Notices of the Royal Astronomical Society, 379, 702710.Google Scholar
Santos-Santos, I. M., Brook, C. B., Stinson, G., Di Cintio, A., Wadsley, J., Domínguez-Tenreiro, R., Gottlöber, S., and Yepes, G. 2016. The distribution of mass components in simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 455, 476483.Google Scholar
Sarazin, C. L. 1988. X-Ray Emission from Clusters of Galaxies. Cambridge Astrophysics Series. Cambridge University Press.Google Scholar
Sarkar, S. 1996. Big bang nucleosynthesis and physics beyond the standard model. Reports on Progress in Physics, 59, 14931609.Google Scholar
Savchenko, V., Ferrigno, C., Kuulkers, E., Bazzano, A., Bozzo, E., Brandt, S., Chenevez, J., Courvoisier, T. J.-L., Diehl, R., Domingo, A., Hanlon, L., Jourdain, E., von Kienlin, A., Laurent, P., Lebrun, F., Lutovinov, A., Martin-Carrillo, A., Mereghetti, S., Natalucci, L., Rodi, J., Roques, J.-P., Sunyaev, R., and Ubertini, P. 2017. INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. The Astrophysical Journal, 848, L15.Google Scholar
Sbordone, L., Bonifacio, P., Caffau, E., Ludwig, H.-G., Behara, N. T., González Hernández, J. I., Steffen, M., Cayrel, R., Freytag, B., van’t Veer, C., Molaro, P., Plez, B., Sivarani, T., Spite, M., Spite, F., Beers, T. C., Christlieb, N., François, P., and Hill, V. 2010. The metal-poor end of the Spite plateau. I. Stellar parameters, metallicities, and lithium abundances. Astronomy and Astrophysics, 522, A26A47.Google Scholar
Schaffner, K. 1969. Correspondence rules. Philosophy of Science, 36, 280290.Google Scholar
Schaye, J., Crain, R. A., Bower, R. G., Furlong, M., Schaller, M., Theuns, T., Dalla Vecchia, C., Frenk, C. S., McCarthy, I. G., Helly, J. C., Jenkins, A., Rosas-Guevara, Y. M., White, S. D. M., Baes, M., Booth, C. M., Camps, P., Navarro, J. F., Qu, Y., Rahmati, A., Sawala, T., Thomas, P. A., and Trayford, J. 2015. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Monthly Notices of the Royal Astronomical Society, 446, 521554.Google Scholar
Schilpp, P. A. 1974. The Philosophy of Karl Popper, Books 1 and 2. The Library of Living Philosophers. Open Court.Google Scholar
Schmalzing, J., Sommer-Larsen, J., and Goetz, M. 2000. Constraints on the redshift of reionization from CMB data. arXiv e-prints, astro–ph/0010063.Google Scholar
Schneider, P. 2015. Extragalactic Astronomy and Cosmology. 2nd edn. Springer.Google Scholar
Scholl, C., Fujita, Y., Adachi, T., von Brentano, P., Fujita, H., Górska, M., Hashimoto, H., Hatanaka, K., Matsubara, H., Nakanishi, K., Ohta, T., Sakemi, Y., Shimbara, Y., Shimizu, Y., Tameshige, Y., Tamii, A., Yosoi, M., and Zegers, R. G. T. 2011. High-resolution study of the 9Be(3He,t)9B reaction up to the 9B triton threshold. Physical Review C, 84, 014308.Google Scholar
Schombert, J. M., McGaugh, S. S., and Eder, J. A. 2001. Gas mass fractions and the evolution of low surface brightness dwarf galaxies. The Astronomical Journal, 121, 24202430.Google Scholar
Schramm, D. N. 1982. Constraints on the density of baryons in the universe. Philosophical Transactions of the Royal Society of London Series A, 307, 4353.Google Scholar
Schramm, D. N. 1991. Big bang nucleosynthesis: The standard model and alternatives. Physica Scripta Volume T, 36, 2229.Google Scholar
Schramm, D. N. 1998. Primordial nucleosynthesis. Proceedings of the National Academy of Science, 95, 4246.Google Scholar
Schramm, D. N., and Turner, M. S. 1998. Big-bang nucleosynthesis enters the precision era. Reviews of Modern Physics, 70, 303318.Google Scholar
Scully, S., Cassé, M., Olive, K. A., and Vangioni-Flam, E. 1997. The effects of an early galactic wind on the evolution of D, 3He, and Z. The Astrophysical Journal, 476, 521533.Google Scholar
Seljak, U., and Zaldarriaga, M. 1996. A line-of-sight integration approach to cosmic microwave background anisotropies. The Astrophysical Journal, 469, 437.Google Scholar
Sellwood, J. A., and McGaugh, Stacy S. 2005. The compression of dark matter halos by baryonic infall. The Astrophysical Journal, 634, 7076.Google Scholar
Serpico, P. D., Esposito, S., Iocco, F., Mangano, G., Miele, G., and Pisanti, O. 2004. Nuclear reaction network for primordial nucleosynthesis: A detailed analysis of rates, uncertainties and light nuclei yields. Journal of Cosmology and Astroparticle Physics, 12, 010.Google Scholar
Shaposhnikov, M. 2010. Sterile neutrinos. Page 228 of: Bertone, G. (ed), Particle Dark Matter: Observations, Models and Searches. Cambridge University Press.Google Scholar
Sherman, P. W., Jarvis, J. U. M., and Alexander, R. D. (eds). 1991. The Biology of the Naked Mole-Rat. Princeton University Press.Google Scholar
Shull, J. M., Smith, B. D., and Danforth, C. W. 2012. The baryon census in a multiphase intergalactic medium: 30% of the baryons may still be missing. The Astrophysical Journal, 759, 23.Google Scholar
Siebert, A., Bienaymé, O., and Soubiran, C. 2003. Vertical distribution of Galactic disk stars. II. The surface mass density in the Galactic plane. Astronomy and Astrophysics, 399, 531541.Google Scholar
Siebert, A., Bienaymé, O., Blimey, J., Bland-Hawthorn, J., Campbell, R., Freeman, K. C., Gibson, B. K., Gilmore, G., Grebel, E. K., Helmi, A., Munari, U., Navarro, J. F., Parker, Q. A., Seabroke, G., Siviero, A., Steinmetz, M., Williams, M., Wyse, R. F. G., and Zwitter, T. 2008. Estimation of the tilt of the stellar velocity ellipsoid from RAVE and implications for mass models. Monthly Notices of the Royal Astronomical Society, 391, 793801.Google Scholar
Siegel, M. H., Majewski, S. R., Reid, I. N., and Thompson, I. B. 2002. Star counts redivivus. IV. Density laws through photometric parallaxes. The Astrophysical Journal, 578, 151175.Google Scholar
Silk, J. 2004. Dark matter theory. Pages 67–77 of: Freeman, W. L. (ed), Measuring and Modeling the Universe. Carnegie Observatories Astrophysics Series, vol. 2.Google Scholar
Silk, J., and Mamon, G. A. 2012. The current status of galaxy formation. Research in Astronomy and Astrophysics, 12, 917946.Google Scholar
Skordis, C. 2008. Generalizing tensor-vector-scalar cosmology. Physical Review D, 77, 123502.Google Scholar
Skordis, C., and Zlosnik, T. 2012. Geometry of modified Newtonian dynamics. Physical Review D, 85, 044044.Google Scholar
Slater, C. T., Bell, E. F., and Martin, N. F. 2011. Andromeda XXVIII: A dwarf galaxy more than 350 kpc from Andromeda. The Astrophysical Journal, 742, L14.Google Scholar
Slater, J. C. 1960. Quantum Theory of Atomic Structure. Vol. 1. McGraw-Hill.Google Scholar
Smith, M. C., Whiteoak, S. H., and Evans, N. W. 2012. Slicing and dicing the Milky Way disk in the Sloan digital sky survey. The Astrophysical Journal, 746, 181.Google Scholar
Smith, M. S., Kawano, L. H., and Malaney, R. A. 1993. Experimental, computational, and observational analysis of primordial nucleosynthesis. The Astrophysical Journal Supplement Series, 85, 219247.Google Scholar
Son, D. T., and Wingate, M. 2006. General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas. Annals of Physics, 321, 197224.Google Scholar
Sorce, J. G., and Guo, Q. 2016. The baryonic Tully–Fisher relation cares about the galaxy sample. Monthly Notices of the Royal Astronomical Sociey, 458, 26672675.Google Scholar
Sorce, J. G., Courtois, H. M., Tully, R. B., Seibert, M., Scowcroft, V., Freedman, W. L., Madore, B. F., Persson, S. E., Monson, A., and Rigby, J. 2013. Calibration of the mid-infrared Tully–Fisher relation. The Astrophysical Journal, 765, 94.Google Scholar
Soussa, M. E., and Woodard, R. P. 2004. A generic problem with purely metric formulations of MOND. Physics Letters B, 578, 253258.Google Scholar
Spergel, D. N., Verde, L., Peiris, H. V., Komatsu, E., Nolta, M. R., Bennett, C. L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Page, L., Tucker, G. S., Weiland, J. L., Wollack, E., and Wright, E. L. 2003. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. The Astrophysical Journal Supplement, 148, 175194.Google Scholar
Spite, F. 1984. Intérêt cosmologique de l’étude du lithium dans l’univers. L’Astronomie, 98, 371380.Google Scholar
Spite, F., and Spite, M. 1982. Abundance of lithium in unevolved halo stars and old disk stars: Interpretation and consequences. Astronomy and Astrophysics, 115, 357366.Google Scholar
Spite, M., Maillard, J. P., and Spite, F. 1984. Abundance of lithium in another sample of halo dwarfs, and in the spectroscopic binary BD-0 deg 4234. Astronomy and Astrophysics, 141, 5660.Google Scholar
Spite, M., Spite, F., and Bonifacio, P. 2012. The cosmic lithium problem: An observer’s perspective. Memorie della Societa Astronomica Italiana Supplementi, 22, 9.Google Scholar
Srianand, R., Gupta, N., Petitjean, P., Noterdaeme, P., and Ledoux, C. 2010. Detection of 21-cm, H2 and deuterium absorption at z > 3 along the line of sight to J1337+3152. Monthly Notices of the Royal Astronomical Society, 405, 18881900.Google Scholar
Stachniewicz, S., and Kutschera, M. 2001. The first compact objects in the MOND model. Acta Physica Polonica B, 32, 3629.Google Scholar
Stachniewicz, S., and Kutschera, M. 2003. The first compact objects in the Λ-dominated universe. Monthly Notices of the Royal Astronomical Society, 339, 616622.Google Scholar
Stachniewicz, S., and Kutschera, M. 2005. The end of the dark ages in modified Newtonian dynamics. Monthly Notices of the Royal Astronomical Society, 362, 8994.Google Scholar
Stark, D. V., McGaugh, S. S., and Swaters, R. A. 2009. A first attempt to calibrate the baryonic Tully–Fisher relation with gas-dominated galaxies. The Astronomical Journal, 138, 392401.Google Scholar
Steigman, G. 2007. Primordial nucleosynthesis in the precision cosmology era. Annual Review of Nuclear and Particle Science, 57, 463491.Google Scholar
Suppes, P. 1967. What is a scientific theory? Pages 55–67 of: Morgenbesser, S. (ed), Philosophy of Science Today. Basic Books.Google Scholar
Tegmark, M., and Zaldarriaga, M. 2000. New microwave background constraints on the cosmic matter budget: Trouble for nucleosynthesis? Physical Review Letters, 85, 22402243.Google Scholar
Tenneti, A., Mao, Y.-Y., Croft, R. A. C., Di Matteo, T., Kosowsky, A., Zago, F., and Zentner, A. R. 2017. The radial acceleration relation in disc galaxies in the MassiveBlack-II simulation. ArXiv e-prints, 1703.05287.Google Scholar
Tollerud, E. J., Geha, M. C., Vargas, L. C., and Bullock, J. S. 2013. The outer limits of the M31 system: Kinematics of the dwarf galaxy satellites And XXVIII & And XXIX. The Astrophysical Journal, 768, 50.Google Scholar
Toomre, A. 1963. On the distribution of matter within highly flattened galaxies. The Astrophysical Journal, 138, 385.Google Scholar
Toomre, A. 1977. Mergers and some consequences. Page 401 of: Tinsley, B. M., and Larson, D. Campbell, R. B. G. (eds), Evolution of Galaxies and Stellar Populations.Google Scholar
Toomre, A. 1981. What amplifies the spirals? Pages 111–136 of: Fall, S. M., and Lynden-Bell, D. (eds), Structure and Evolution of Normal Galaxies.Google Scholar
Trachternach, C., de Blok, W. J. G., McGaugh, S. S., van der Hulst, J. M., and Dettmar, R.-J. 2009. The baryonic Tully–Fisher relation and its implication for dark matter halos. Astronomy and Astrophysics, 505, 577587.Google Scholar
Trimble, V. 1996. H0 : The incredible shrinking constant, 1925–1975. Publications of the Astronomical Society of the Pacific, 108, 10731082.Google Scholar
Trujillo-Gomez, S., Klypin, A., Primack, J., and Romanowsky, A. J. 2011. Galaxies in ΛCDM with halo abundance matching: luminosity–velocity relation, baryonic mass–velocity relation, velocity function, and clustering. The Astrophysical Journal, 742, 16.Google Scholar
Tully, R. B., and Courtois, H. M. 2012. Cosmicflows-2: I-band luminosity–H I linewidth calibration. The Astrophysical Journal, 749, 7894.Google Scholar
Tully, R. B., and Fisher, J. R. 1977. A new method of determining distances to galaxies. Astronomy and Astrophysics, 54, 661673.Google Scholar
Tully, R. B., and Pierce, M. J. 2000. Distances to galaxies from the correlation between luminosities and line widths. III. Cluster template and global measurement of H0. The Astrophysical Journal, 533, 744780.Google Scholar
Turner, M. S. 1999. Cosmology solved? Quite possibly! Publications of the Astronomical Society of the Pacific, 111, 264273.Google Scholar
Turner, M. S. 2000. The dark side of the universe: From Zwicky to accelerated expansion. Physics Reports, 333, 619635.Google Scholar
Urbach, P. 1978. The objective promise of a research programme. Pages 99–116 of: Radnitzky, G., and Andersson, G. (eds), Progress and Rationality in Science. Boston Studies in the Philosophy of Science, vol. 58. D. Reidel.Google Scholar
van den Bergh, S. 2011. The curious case of Lemaître’s equation no. 24. Journal of the Royal Astronomical Society of Canada, 105, 151.Google Scholar
van den Bosch, F. C., and Dalcanton, J. J. 2000. Semianalytical models for the formation of disk galaxies. II. Dark matter versus Modified Newtonian Dynamics. The Astrophysical Journal, 534, 146164.Google Scholar
van den Bosch, F. C., Mo, H. J., and Yang, X. 2003. Towards cosmological concordance on galactic scales. Monthly Notices of the Royal Astronomical Society, 345, 923938.Google Scholar
Vandervoort, P. O. 1970. The equilibria of a galaxy which is a superposition of subsystems. The Astrophysical Journal, 162, 453462.Google Scholar
Verheijen, M. A. W. 2001. The Ursa Major cluster of galaxies. V. H I rotation curve shapes and the Tully–Fisher relations. The Astrophysical Journal, 563, 694715.Google Scholar
Vikhlinin, A., Kravtsov, A., Forman, W., Jones, C., Markevitch, M., Murray, S. S., and Van Speybroeck, L. 2006. Chandra sample of nearby relaxed galaxy clusters: Mass, gas fraction, and mass–temperature relation. The Astrophysical Journal, 640, 691709.Google Scholar
Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder, G., Bird, S., Nelson, D., and Hernquist, L. 2014. Properties of galaxies reproduced by a hydrodynamic simulation. Nature, 509, 177182.Google Scholar
Walch, S., and Naab, T. 2015. The energy and momentum input of supernova explosions in structured and ionized molecular clouds. Monthly Notices of the Royal Astronomical Society, 451, 27572771.Google Scholar
Walker, M. A. 1999. Collisional baryonic dark matter haloes. Monthly Notices of the Royal Astronomical Society, 308, 551556.Google Scholar
Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A., and Kang, H.-S. 1991. Primordial nucleosynthesis redux. The Astrophysical Journal, 376, 5169.Google Scholar
Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A., and Kang, H.-S. 1996. Primordial nucleosynthesis redux. Pages 43–61 of: Schramm, D. N. (ed), The Big Bang and Other Explosions in Nuclear and Particle Astrophysics. World Scientific Publishing Co.Google Scholar
Wang, X., Tegmark, M., Jain, B., and Zaldarriaga, M. 2003. Last stand before WMAP: Cosmological parameters from lensing, CMB, and galaxy clustering. Physical Review D, 68, 123001.Google Scholar
Weinberg, S. 2008. Cosmology. Oxford University Press.Google Scholar
Weinzirl, T., Jogee, S., Khochfar, S., Burkert, A., and Kormendy, J. 2009. Bulge n and B/T in high-mass galaxies: Constraints on the origin of bulges in hierarchical models. The Astrophysical Journal, 696, 411447.Google Scholar
Whewell, W. 1847. The Philosophy of the Inductive Sciences: Founded Upon Their History. John W. Parker.Google Scholar
White, S. D. M., Navarro, J. F., Evrard, A. E., and Frenk, C. S. 1993. The baryon content of galaxy clusters: A challenge to cosmological orthodoxy. Nature, 366, 429433.Google Scholar
Willman, B., and Strader, J. 2012. “‘Galaxy,” defined. The Astrophysical Journal, 144, 76.Google Scholar
Wisdom, J. O. 1968. Refutation by observation and refutation by theory. Pages 65–67 of: Lakatos, I., and Musgrave, A. (eds), Problems in the Philosophy of Science. North-Holland.Google Scholar
Woolley, R., and Stewart, J. M. 1967. Motion of A stars perpendicular to the galactic plane-II. Monthly Notices of the Royal Astronomical Society, 136, 329.Google Scholar
Worrall, J. 1978a. Research programmes, empirical support, and the Duhem problem: Replies to criticism. Pages 321–338 of: Radnitzky, G., and Andersson, G. (eds), Progress and Rationality in Science. Boston Studies in the Philosophy of Science, vol. 58. D. Reidel.Google Scholar
Worrall, J. 1978b. The ways in which the methodology of scientific research programmes improves on Popper’s methodology. Pages 45–70 of: Radnitzky, G., and Andersson, G. (eds), Progress and Rationality in Science. Boston Studies in the Philosophy of Science, vol. 58. D. Reidel.Google Scholar
Worrall, J. 2007. Miracles and models: Why reports of the death of structural realism may be exaggerated. Pages 125–154 of: O’Hear, A. (ed), Philosophy of Science. Royal Institute of Philosophy Supplement Series, vol. 61. Cambridge University Press.Google Scholar
Wu, X., and Kroupa, P. 2015. Galactic rotation curves, the baryon-to-dark-halo-mass relation and space-time scale invariance. Monthly Notices of the Royal Astronomical Society, 446, 330344.Google Scholar
Yang, J., Turner, M. S., Steigman, G., Schramm, D. N., and Olive, K. A. 1984. Primordial nucleosynthesis: A critical comparison of theory and observation. The Astrophysical Journal, 281, 493511.Google Scholar
Zahar, E. 1973. Why did Einstein’s research programme supersede Lorentz’s? The British Journal for the Philosophy of Science, 24, 95123 and 223–262.Google Scholar
Zaritsky, D., Courtois, H., Muñoz-Mateos, J.-C., Sorce, J., Erroz-Ferrer, S., Comerón, S., Gadotti, D. A., Gil de Paz, A., Hinz, J. L., Laurikainen, E., Kim, T., Laine, J., Menéndez-Delmestre, K., Mizusawa, T., Regan, M. W., Salo, H., Seibert, M., Sheth, K., Athanassoula, E., Bosma, A., Cisternas, M., Ho, L. C., and Holwerda, B. 2014. The baryonic Tully–Fisher relationship for S4G galaxies and the “condensed” baryon fraction of galaxies. The Astronomical Journal, 147, 134.Google Scholar
Zavala, J., Avila-Reese, V., Hernández-Toledo, H., and Firmani, C. 2003. The luminous and dark matter content of disk galaxies. Astronomy and Astrophysics, 412, 633650.Google Scholar
Zhang, L., Rix, H.-W., van de Ven, G., Bovy, J., Liu, C., and Zhao, G. 2013. The gravitational potential near the Sun from SEGUE K-dwarf kinematics. The Astrophysical Journal, 772, 108121.Google Scholar
Zhao, H. 2008. Reinterpreting MOND: Coupling of Einsteinian gravity and spin of cosmic neutrinos? ArXiv e-prints, 0805.4046.Google Scholar
Zlosnik, T. G., Ferreira, P. G., and Starkman, G. D. 2007. Modifying gravity with the aether: An alternative to dark matter. Physical Review D, 75, 044017.Google Scholar
Zwicky, F. 1937. On the masses of nebulae and of clusters of nebulae. The Astrophysical Journal, 86, 217245.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×