Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-28T10:18:18.337Z Has data issue: false hasContentIssue false

13 - Semiconductor lasers and light-emitting diodes

Published online by Cambridge University Press:  18 January 2010

Jia-ming Liu
Affiliation:
University of California, Los Angeles
Get access

Summary

In this chapter, we discuss semiconductor lasers and light-emitting diodes (LEDs). Both semiconductor lasers and LEDs are semiconductor light sources based on electroluminescence, which results from the radiative recombination of electrons and holes in a semiconductor. A semiconductor laser emits coherent laser light with a relatively small divergence, whereas the emission of an LED is incoherent and divergent. These semiconductor devices have several unique properties. They are rugged devices that are reliable and have long operating lifetimes because of their very small, compact sizes with integrated solid-state structures. They have very high efficiencies and consume very little power in comparison with other light sources of similar brightness because they are cold light sources operating at temperatures that are much lower than the equilibrium temperatures of their emission spectra. They can be electrically pumped by current injection at relatively low current and voltage levels and can be directly current modulated with very fast response for high-speed applications, including broadband optical communications. Their compatibility with semiconductor fabrication and processing technologies allows them to take advantage of semiconductor electronics technology for easy integration into electronic systems. Furthermore, the mature nature of semiconductor electronics technology allows them to be mass produced at a low cost. These unique properties make semiconductor lasers and LEDs the light sources of choice in many practical applications.

Radiative recombination

The general characteristics of electron–hole recombination processes in a semiconductor are discussed in Section 12.3.

Type
Chapter
Information
Photonic Devices , pp. 816 - 925
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×