Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-14T16:18:24.678Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

19 - Heterokontophyta, Xanthophyceae

Robert Edward Lee
Affiliation:
Colorado State University
Get access

Summary

XANTHOPHYCEAE

The Xanthophyceae contain primarily freshwater and terrestrial algae with a few marine representatives. The class is characterized by motile cells with a forwardly directed tinsel flagellum and a posteriorly directed whiplash flagellum (Figs. 19.1, 19.5(c)). The chloroplasts contain chlorophylls a and c (Sullivan et al., 1990), lack fucoxanthin, and are colored yellowish-green. The eyespot in motile cells is always in the chloroplast (Figs. 19.1, 19.5(c)), and the chloroplasts are surrounded by two membranes of chloroplast endoplasmic reticulum. The outer membrane of the chloroplast E.R. is usually continuous with the outer membrane of the nucleus. In most non-motile cells the wall is composed of two overlapping halves (Figs. 19.2 (d), (e), (f), 19.3, 19.4). Molecular data have shown the Xanthophyceae is most closely related to the Phaeophyceae (Ariztia et al., 1991; Potter et al., 1997). Although the class is commonly called the Xanthophyceae, the proper name is the Tribophyceae since there is no genus in the class that can lend its name to Xanthophyceae (Hibberd, 1981).

Cell structure

Cell wall

Cell wall The cell walls of two Xanthophyceae, Tribonema (Figs. 19.2, 19.3) (Cleare and Percival, 1973) and Vaucheria (Figs. 19.7, 19.8), are composed of cellulose (Parker et al., 1963). In Vaucheria cellulose comprises 90% of the wall, with the remaining portion being amorphous polysaccharides composed primarily of glucose and uronic acids.

Many of the algae in the class have walls composed of two overlapping halves that fit together as do the two parts of the bacteriologist's Petri dish (Figs. 19.2(d), (e), (f), 19.3, 19.4).

Type
Chapter
Information
Phycology , pp. 413 - 423
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×