Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-07T13:02:52.852Z Has data issue: false hasContentIssue false

6 - Microphysical Processes in Ice and Mixed-Phase Clouds

Published online by Cambridge University Press:  22 August 2018

Alexander P. Khain
Affiliation:
Hebrew University of Jerusalem
Mark Pinsky
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Chapter 6 describes microphysical processes in mixed-phase and ice clouds. We analyze theories relevant to ice formation, ice-liquid-water vapor transformations, cloud glaciation, dry and wet growth of hail, the dynamics of ice particles and time-dependent melting and freezing. Basing on these theories, we explain the methods for deriving equations for accurate calculation of major parameters such as supersaturation and diffusional growth of drops and ice particles in mixed-phase clouds, for calculation of ice particles fall velocity and of collision efficiencies between water drops and ice particles and between ice particles, as well as the stochastic collection equations for mixed-phase clouds. Comparison is made between methods for calculating ice particles settling in bin microphysical vs. bulk parameterization schemes. We analyze conditions of hydrometeor types conversions. Special focus is put on novel methods for calculating the coalescence efficiency. Alongside with the methods, we describe and illustrate their application in cloud models. The Chapter ends with discussing the theories of ice multiplication and their representation in cloud models.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, F.F., 1970: Functional dependence of drag coefficient of a sphere on Reynolds number. Phys. Fluids, 13, 21942195.Google Scholar
Abraham, F.F., 1974: Homogeneous Nucleation Theory. Academic Press, New York, p. 263.Google Scholar
Al-Naimi, R., and Saunders, C.P.R., 1985a: Ice nucleus measurements: Effect of site location and weather. Tellus, 37B, 296303.Google Scholar
Al-Naimi, R., and Saunders, C.P.R., 1985b: Measurements of natural deposition and condensation–freezing ice nuclei with a continuous flow chamber. Atmos. Environ., 19, 18711882.Google Scholar
Alheit, R. R., Flossmann, A. I., and Pruppacher, H. R., 1990: A theoretical study of the wet removal of atmospheric pollutants. Part 4: The uptake and redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops and ice particles. J. Atmos. Sci., 47, 870887.Google Scholar
Andreae, M.O., Rosenfeld, D., Artaxo, P., Costa, A.A., Frank, G.P., Longo, K.M., and Silva-Dias, M.A.F., 2004. Smoking rain clouds over the Amazon. Science, 303, 13371342.CrossRefGoogle ScholarPubMed
Aufdermaur, A. N., and Joss, J., 1967: A wind tunnel investigation on the local heat transfer from a sphere, including the influence of turbulence and roughness. Z. Angew. Math. Phys., 18 , 852866.Google Scholar
Barahona, D., 2012: On the ice nucleation spectrum. Atmos. Chem. Phys., 12, 37333752.Google Scholar
Barahona, D., and Nenes, A., 2008: Parameterization of cirrus formation in large scale models: Homogenous nucleation. J. Geophys. Res., 113, doi:10.1029/2007JD009355.Google Scholar
Barahona, D., and Nenes, A., 2009: Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation–monodisperse ice nuclei. Atmos. Chem. Phys., 9, 369381.CrossRefGoogle Scholar
Barth, M.C., and Parsons, D.B., 1996: Microphysical processes associated with intense frontal rainbands and the effect of evaporation and melting on frontal dynamics. J. Atmos. Sci., 53 , 15691586.Google Scholar
Batchelor, G.K., 1967: An Introduction to Fluid Dynamics. Cambrige University Press, p. 615.Google Scholar
Battan, L.J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, p. 324.Google Scholar
Bauer, P., Khain, A., Pokrovsky, A., Meneghini, R., Kummerow, C., Marzano, F., and Poiares Baptista, J.P.V., 2000: Combined cloud-microwave radiative transfer modeling of stratiform rainfall. J. Atmos. Sci., 57 , 10821104.2.0.CO;2>CrossRefGoogle Scholar
Beard, K.V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864.2.0.CO;2>CrossRefGoogle Scholar
Beard, K.V., 1980: The effects of altitude and electrical force on the terminal velocity of hydrometeors. J. Atmos. Sci., 37, 13631374.Google Scholar
Beard, K.V., 1992: Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms. Atmos. Res., 28, 125152.Google Scholar
Beheng, K., 1978: Numerical simulation of graupel development. J. Atmos. Sci., 35, 683689.2.0.CO;2>CrossRefGoogle Scholar
Benmoshe, N., Khain, A., Pinsky, M., and Pokrovsky, A., 2012: Turbulent effects on cloud microstructure and precipitation of deep convective clouds as seen from simulations with a 2-D spectral microphysics cloud model. J. Geophys Res., 117, D06220.Google Scholar
Bergeron, T., 1935: On the physics of clouds and precipitation. Proc. Ve Assemblée Générale de l’Union Géodésique et Geophysique Internationale, Lisbon, Portugal, International Union of Geodesy and Geophysics, 156180.Google Scholar
Berry, E.X., and Reinhardt, R.J., 1974: An analysis of cloud drop growth by collection: Part 1. Double distributions. J. Atmos. Sci., 31, 18141824.Google Scholar
Bigg, E.K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Q. J. Royal Meteorol. Soc., 79, 510519.Google Scholar
Blahak, U., 2008: Towards a better representation of high density ice particles in a state-of-the-art two-moment bulk microphysical scheme. Extended Abstract, 15th International Conference on Clouds and Precipitation, Cancun, Mexico, July 7–11.Google Scholar
Blanchard, D.C., 1957: The Supercooling, Freezing, and Melting of Giant Waterdrops at Terminal Velocity in Air. Artificial Stimulation of Rain. Pergamon, NY, pp. 233249.Google Scholar
Böhm, H.P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46 , 24192427.Google Scholar
Böhm, J.P., 1992a: A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speed of hydrometeors. Atmos. Res., 27, 253274.CrossRefGoogle Scholar
Böhm, J.P., 1992b: A general hydrodynamic theory for mixed-phase microphysics. Part II: Collision kernels for coalescence. Atmos. Res., 27, 275290.CrossRefGoogle Scholar
Böhm, J.P., 1992c: A general hydrodynamic theory for mixed-phase microphysics. Part III: Riming and aggregation. Atmos. Res., 28, 103123.Google Scholar
Böhm, J.P., 1999: Revision and clarification of ‘‘A general hydrodynamic theory for mixed-phase microphysics.” Atmos. Res., 52, 167176.Google Scholar
Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293.Google Scholar
Broadley, S.L., Murray, B.J., Herbert, R.J., Atkinson, J.D., Dobbie, S., Malkin, T.L., Condliffe, E., and Neve, L., 2012: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys., 12, 287307.Google Scholar
Broday, D., Fichman, M., Shapiro, M., and Gutfinger, C., 1998 : Motion of spheroidal particles in vertical shear flows. Phys. Fluids, 10 , 86100.Google Scholar
Brown, P.R.A., and Francis, P.N., 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414.Google Scholar
Brownscombe, J.L., and Thorndyke, N.S.C., 1968: Freezing and shattering of water droplets in free fall. Nature, 220, 687689.Google Scholar
Bruning, E.C., Rust, W.D., Schuur, T.J., MacGorman, D.R., Krehbiel, P.R., and Rison, W., 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 25252544.Google Scholar
Buikov, M.B., and Kuzmenko, A.G., 1978: Hail growth in supercell hail clouds. Meteorology and Hydrology, N11, 6069.Google Scholar
Cantrell, W., and Heymsfield, A., 2005: Production of ice in tropospheric clouds. A review. Bull. Amer. Met. Soc., 795–807, DOI:10.1175/BAMS-86-6-795.Google Scholar
Carrió, G.G., and Cotton, W.R., 2010: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys. Discuss., 10, 22,43722,467.Google Scholar
Carrió, G.G., van den Heever, S.C., and Cotton, W.R., 2007: Impacts of nucleating aerosol on anvil-cirrus clouds: A modeling study. Atmos. Res., 84, 111131.Google Scholar
Carstens, J.C., and Martin, J.J., 1982: In-cloud scavenging by thermophoresis, diffusiophoresis, and Brownian diffusion. J. Atmos.Sci., 39 , 11241129.Google Scholar
Chisnell, R.F., and Latham, J., 1976: Ice particle multiplication in cumulus clouds. Q. J. Royal Meteorol. Soc., 102, 133156.Google Scholar
Clift, R., Grace, J.R., and Weber, M.E., 1978: Babbles, Drops and Particles. Akademic Press, p. 380.Google Scholar
Connolly, P.J., Emersic, C., and Field, P.R., 2012: A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 20552076.CrossRefGoogle Scholar
Connolly, P.J., Saunders, C.P.R., Gallagher, M.W., Bower, K.N., Flynn, M.J., Choularton, T.W., Whiteway, J., and Lawson, R.P., 2005: Aircraft observations of the influence of electric fields on the aggregation of ice crystals. Q. J. Royal Meteorol. Soc., 131, 16951712.Google Scholar
Cooper, W.A., 1980: A method of detecting contact ice nuclei using filter samples. 8th Int. Conf. Cloud. Phys. Clermont-Ferrand, France. pp. 665–668.Google Scholar
Cooper, W.A., 1986: Ice initiation in natural clouds. Precipitation enhancement. A scientific challenge. Meteorol. Mon., 21, 28.Google Scholar
Cotton, W.R. et al., 2003: RAMS 2001: Current status and future directions. Meteorol. Atmos. Phys., 82, 529.Google Scholar
Cotton, W.R., Stephens, M.A., Nehrkorn, T., and Tripoli, G.J., 1982: The Colorado State University three-dimensional cloud mesoscale model – 1982. Part II: An ice-phase parameterization. J. Rech. Atmos., 16, 295320.Google Scholar
Cotton, W.R., Tripoli, G., Rauber, R.M, and Mulvihill, E.A., 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteorol., 25, 16581680.Google Scholar
Curry, J.A., and Khvorostyanov, V.I., 2010: Assessment of parameterizations of ice nucleation. Atmos. Chem. Phys. Discuss., 10, 26692710.Google Scholar
Curry, J.A., and Khvorostyanov, V.I., 2012: Assessment of some parameterizations of heterogeneous ice nucleation in cloud and climate models. Atmos. Chem. Phys., 12, 11511172.CrossRefGoogle Scholar
Danielsen, E.F., 1975: A review of hail growth by stochastic collection in a cumulonimbus model. Pageoph, 113, 10191034.Google Scholar
Danielsen, E.F., Bleck, R., and Morris, D.A., 1972: Hail growth in a cumulus model. J. Atmos. Sci., 29, 135155.Google Scholar
DeMott, P.J., Cziczo, D.J., Prenni, A.J., Murphy, D.M., Kreidenweis, S.M., Thomson, D.S., Borys, R., and Rogers, D.C., 2003a: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. U.S.A., 100 (25), 14,65514,660.Google Scholar
DeMott, P.J., Meyers, M.P., and Cotton, W.R., 1994: Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci., 51, 7790.Google Scholar
DeMott, P.J., Möhler, O., Stetzer, O., Vali, G., Levin, Z., Petters, M., Murakami, M., Leisner, T., Bundke, U., Klein, H., Kanji, Z., Cotton, R., Jones, H., Benz, S., Brinkmann, M., Rzesanke, D., Saathoff, H., Nicolet, M., Saito, A., Nillius, B., Bingemer, H., Abbatt, J., Ardon, K., Ganor, E., Georgakopoulos, D.G., and Saunders, C., 2011: Resurgence in ice nucleation research. Bull. Amer. Meteorol. Soc., 92, 16231635.Google Scholar
DeMott, P.J., Prenni, A.J., Liu, X., Kreidenweis, S.M., Petters, M.D., Twohy, C.H., Richardson, M.S., Eidhammer, T., and Rogers, D.C.,.2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci., 107, 11,21711,222.Google Scholar
DeMott, P.J., and Rogers, D.C., 1990: Freezing nucleation rates of dilute solution droplets measured between -30° and -40°C in laboratory simulations of natural clouds. J. Atmos. Sci., 47, 10561064.2.0.CO;2>CrossRefGoogle Scholar
DeMott, P.J., Sassen, K., Poellot, M.R., Baumgardner, D., Rogers, D.C., Brooks, S.D., Prenni, A.J., and Kreidenweis, S.M., 2003b: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30(14), 1732.Google Scholar
Dennis, A.S., and Musil, D.J., 1973: Calculations of hailstone growth and trajectories in a simple cloud model. J. Atmos. Sci., 30, 278288.2.0.CO;2>CrossRefGoogle Scholar
Deshler, T., 1982: Contact ice nucleation by submicron atmospheric aerosols. PhD Dissertation Dept. Phys. Astron, Univ. Wyoming, Laramie, p. 197.Google Scholar
Deshler, T., and Vali, G., 1992: Atmospheric concentrations of submicron contact-freezing nuclei. J. Atmos. Sci., 49, 773784.Google Scholar
Diehl, K., Matthias-Maser, S., Mitra, S.K., and Jaenicke, R., 2001: Wind tunnel studies of the ice nucleating ability of leaf litter and pollen in the immersion and contact mode. Proc. EGS XXVI General Assembly, Nice, France, European Geophysical Society, Geophysical Research Abstracts, Vol. 3, 5512.Google Scholar
Diehl, K., Matthias-Maser, S., Mitra, S.K., and Jaenicke, R., 2002: The ice nucleating ability of pollen. Part II: Laboratory studies in immersion and contact freezing modes. Atmos. Res., 61, 125133.Google Scholar
Diehl, K., and Mitra, S., 1998: A laboratory study of the effects of a kerosene-burner exhaust on ice nucleation and the evaporation rate of ice crystals. Atmos. Environ., 32, 31453151.Google Scholar
Diehl, K., and Wurzler, S., 2004: Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops. J. Atmos. Sci., 61, 20632072.Google Scholar
Duft, D., and Leisner, T., 2004: Laboratory evidence for volume-dominated nucleation of ice in supercooled water microdroplets. Atmos. Chem. Phys. Discuss., 4, 30773088.Google Scholar
Durant, A.J., and Shaw, R.A., 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, L20814.Google Scholar
Eidhammer, T., DeMott, P.J., and Kreidenweis, S.M., 2009: A comparison of heterogeneous ice nucleation parameterization using a parcel model framework. J. Geophys. Res., 114, D06202.Google Scholar
Fabry, F., and Szyrmer, W., 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56, 35933600.Google Scholar
Fan, J., Leung, L.R., Li, Z., Morrison, H., Chen, H., Zhou, Y., Qian, Y., and Wang, Y., 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, doi: 10.1029/2011JD016537.CrossRefGoogle Scholar
Fan, J., Leunga, L.R., Rosenfeld, D., Chena, Q., Lid, Z., Zhang, J., and Yan, H., 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds, PNAS, E4581–E4590.Google Scholar
Feingold, G., Walko, R.L., Stevens, B., and Cotton, W.R., 1998: Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmos. Res., 47–48, 505528.Google Scholar
Ferrier, B.S., 1994: A two-moment multiple phase four-class bulk ice scheme. Part 1: Description. J. Atmos. Sci., 51, 249280.2.0.CO;2>CrossRefGoogle Scholar
Ferrier, B.S., Tao, W.-K., and Simpson, J., 1995: A two-moment multiple phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52, 10011033.Google Scholar
Findeisen, W., 1938: Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung. Meteorol. Z., 55, 121133.Google Scholar
Findeisen, W., 1940: The formation of the 0°C-isothermal layer and fractocumulus under nimbostratus. Meteorol. Z., 6, 882888.Google Scholar
Flatau, P., Tripoli, G.J., Verlinde, J., and Cotton, W.R., 1989: The CSU_RAMS Cloud Microphysics Module: General Theory and Code Documentation. Colorado State University, Department of Atmospheric Science, paper 451, p. 88.Google Scholar
Flatau, P.J., Walko, R.L., and Cotton, W.R., 1992: Polynomial fits to saturation vapor pressure. J. Appl. Meteorol., 31, 15071513.Google Scholar
Fletcher, N.H., 1962: The Physics of Rainclouds, Cambridge University Press, p. 390.Google Scholar
Fletcher, N.H., 1969: Active sites and ice crystal nucleation. J. Atmos. Sci., 26, 12661271.Google Scholar
Flossmann, A.I., and Pruppacher, H.R., 1988: A theoretical study of the wet removal of atmospheric pollutants. Part III: The uptake, redistribution, and deposition of (NH4)2SO4 particles by a convective cloud using a two-dimensional cloud dynamics model. J. Atmos. Sci., 45, 18571871.Google Scholar
Gagin, A., 1972: The effect of supersaturation on the ice crystal production by natural aerosols. J. Rech. Atmos, 6, 175185.Google Scholar
Garcia-Garcia, F., and List, R., 1992: Laboratory measurements and parameterizations of supercoled water skin temperatures and bulk properties of gyrating hailstones. J. Atmos. Sci., 49, 20582072.2.0.CO;2>CrossRefGoogle Scholar
Gavze, E., Pinsky, M., and Khain, A., 2012: The orientations of prolate ellipsoids in linear shear flows. J. Fluid Mech., 690, 5193.Google Scholar
Gavze, E., Pinsky, M., and Khain, A., 2016: The orientation dynamics of small prolate and oblate spheroids in linear shear flows. Int. J. Mult. Flow, 83, 103114.Google Scholar
Gierens, K., 2003: On the transition between heterogeneous and homogeneous freezing. Atmos. Chem. Phys., 3, 437446.Google Scholar
Grabowski, W.W., 2015: Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos. Sci., 72, 24462464.CrossRefGoogle Scholar
Hagen, D., Anderson, R., and Kassner, J. Jr., 1981: Homogeneous condensation-freezing nucleation rate measurements for small water droplets in an expansion cloud chamber. J. Atmos. Sci., 38, 12361243.Google Scholar
Hall, W.D., 1980: A detailed microphysical model within a two dimensional framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507.2.0.CO;2>CrossRefGoogle Scholar
Hall, W.D., and Pruppacher, H.R., 1976: The survival of ice crystals falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 19952006.Google Scholar
Hallett, J., 1964: Experimental studies of the crystallization of supercooled water. J. Atmos. Sci., 21, 671682.Google Scholar
Hallett, J., and Mossop, S.C., 1974: Production of secondary ice crystals during the riming process. Nature, 249, 2628.CrossRefGoogle Scholar
Hallgren, R.E., and Hosler, C.L., 1960: Preliminary results on the aggregation of ice crystals. Geophys. Monogr. Am. Geophys. Union, 5, 267263.Google Scholar
Happel, J., and Brenner, H., 1983: Low Reynolds Number Hydrodynamics. Noordhoff International Publishing.Google Scholar
Harrington, J.Y., Meyers, M.P., Walko, R.L., and Cotton, W.R., 1995: Parameterization of ice crystal conversion processes in cirrus clouds using double-moment basis functions. Part I: Basic formulation and one-dimensional tests. J. Atmos. Sci., 52, 43444366.Google Scholar
Harrington, J.Y., and Sulia, K., 2013: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376.CrossRefGoogle Scholar
Harrington, J.Y., Sulia, K., and Morisson, H., 2013: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364.Google Scholar
Hashino, T., 2007: Explicit simulation of ice particle habits in a numerical weather prediction model. University Wisconsin-Madison. Dissertation.Google Scholar
Heymsfield, A., 1972: Ice crystal terminal velocities. J. Atmos. Sci., 29, 13481357.Google Scholar
Heymsfield, A., 1975: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part 111: Numerical computations of the growth of the ice phase. J. Atmos. Sci., 32, 820830.Google Scholar
Heymsfield, A.J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34, L23812, doi:10.1029/2007GL030951.Google Scholar
Heymsfield, A.J., Bansemer, A., Heymsfield, G., and Fierro, A.O., 2009: Microphysics of maritime tropical convective updrafts at temperatures from to . J. Atmos. Sci., 66, 35303565.Google Scholar
Heymsfield, A.J., Bansemer, A., and Twohy, C.H., 2007a: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64, 10471067.Google Scholar
Heymsfield, A.J., Kajikawa, M., 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44, 10881099.Google Scholar
Heymsfield, A.J., Lewis, S., Bansemer, A., Iaquinta, J., Miloshevich, L.M., Kajikawa, M., Twohy, C., and Poellot, M.R., 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud properties. J. Atmos. Sci., 59, 329.Google Scholar
Heymsfield, A.J., and Milosevich, L.M., 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos.Sci, 50, 23352353.Google Scholar
Heymsfield, A.J., and Milosevich, L.M., 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE-II. J. Atmos. Sci., 52, 43024303.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A.J., and Miloshevich, L.M., 2003: Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 60, 936956.Google Scholar
Heymsfield, A.J., and Pflaum, J.C., 1985: A quantativ assessment of the accuracy of techniques for calculating graupel growth. J. Atmos. Sci., 42, 22642274.Google Scholar
Heymsfield, A.J., and Sabin, R.M., 1989: Cirrus crystal nucleation by homogeneous freezing of solution droplets. J. Atmos. Sci., 46, 22522264.Google Scholar
Heymsfield, A.J., Schmitt, C., Bansemer, A., and Twohy, C.H., 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318.Google Scholar
Heymsfield, A.J., Van Zadelhoff, G.-J., Donovan, D.P., Fabry, F., Hogan, R.J., and Illingworth, A.J., 2007b: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part II: Evaluation and parameterizations of ensemble ice particle sedimentation velocities. J. Atmos. Sci., 64, 10681088.Google Scholar
Heymsfield, A.J., and Westbrook, C.D., 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482.Google Scholar
Heymsfield, A., and Willis, P., 2014: Cloud conditions favoring secondary ice particle production in tropical maritime convection. J. Atmos. Sci., 71, 45004526.Google Scholar
Hobbs, P.V., 1969: Ice multiplication in clouds. J. Atmos. Sci., 26, 315318.Google Scholar
Hobbs, P.V., and Alkezweeny, A.J., 1968: The fragmentation of freezing water droplets in free fall. J. Atmos. Sci., 25, 881888.Google Scholar
Hobbs, P.V., and Rangno, A.L., 1990: Rapid development of high ice particle concentrations in small polarmaritime cumuliformclouds. J. Atmos. Sci., 47, 27102722.Google Scholar
Hoffer, T.E., 1961: A laboratory investigation of droplet freezing. J. Meteorol., 18, 766778.Google Scholar
Hoose, C., and Mohler, O., 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. Discuss., 12, 12,53112,621.Google Scholar
Hosler, C.L., Jensen, D.C., and Goldshlak, L., 1957: On the aggregation of ice crystals to form snow. J. Meteorol., 14, 415420.Google Scholar
Huffman, P.J., 1973: Supersaturation spectra of AgI and natural ice nuclei. J. Appl. Meteorol., 12, 10801082.Google Scholar
Huffman, P.J., and Vali, G., 1973: The effect of vapor depletion on ice nucleus measurements with membrane filters. J. Appl. Meteorol., 12, 10181024.Google Scholar
Ilotoviz, E., Benmoshe, N., Khain, A.P., Phillips, V.T.J., and Ryzhkov, A.V., 2016: Effect of aerosols on freezing drops, hail and precipitation in a mid-latitude storm. J. Atmos. Sci., 73, 109144.Google Scholar
Jeffery, C., and Austin, P., 1997: Homogeneous nucleation of supercooled water: Results from a new equation of state. J. Geophys. Res., 102, 25 269–25 279.Google Scholar
Johnson, D., and Rasmussen, R.M., 1992: Hail growth hysteresis. J. Atmos. Sci., 49, 25252532.Google Scholar
Johnson, D.A., and Hallett, J., 1968: Freezing and shattering of supercooled water drops. Q. J. Royal Meteorol. Soc., 94, 468482.Google Scholar
Johnson, D.B., 1987: On the relative efficiency of coalescence and riming. J. Atmos. Sci., 44, 16711680.Google Scholar
Kachurin, L.G. 1962: To the theory of aircraft icing. Izv. Akad. Nauk SSSR, Ser. Geofiz. N 6, 3846.Google Scholar
Kajikawa, M., 1972: Measurements of falling velocity of individual snow crystals. J. Meteorol. Soc. Japan, 50, 577583.Google Scholar
Kajikawa, M., 1982: Observation of the falling motion of early snow flakes. Part I: Relationship between the free-fall pattern and the number and shape of component snow crystals. J. Meteorol. Soc. Japan, 60, 797803.Google Scholar
Kajikawa, M., and Heymsfield, A.J., 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46, 31083121.Google Scholar
Karcher, B., and Lohmann, U., 2003: A parameterization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res., 108 (D14), 4402.Google Scholar
Kato, T., 1995: A box-Lagrangian rain-drop scheme. J. Meteorol. Soc. Japan, 73, 241245.Google Scholar
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations. Meteorol. Monogr. 32. Boston: American Meteorological Society.Google Scholar
Khain, A.P., 2009: Effects of aerosols on precipitation: A critical review. Environ. Res. Lett., 4, 015004.Google Scholar
Khain, A.P., Beheng, K.D., Heymsfield, A., Korolev, A., Krichak, S.O., Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., van den Heever, S.C., and Yano, J.-I., 2015: Representation of microphysical processes in cloud resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322.Google Scholar
Khain, A.P., BenMoshe, N., and Pokrovsky, A., 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt of classification. J. Atmos. Sci., 65, 17211748.Google Scholar
Khain, A.P., Lynn, B., and Dudhia, J., 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with WRF model with spectral bin microphysics. J. Atmos. Sci., 67, 365384.Google Scholar
Khain, A.P., Ovchinnikov, M., Pinsky, M., Pokrovsky, A., and Krugliak, H., 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224.Google Scholar
Khain, A.P., Phillips, V., Benmoshe, N., and Pokrovsky, A., 2012: The role of small soluble aerosols in the microphysics of deep maritime clouds. J. Atmos. Sci., 69, 27872807.Google Scholar
Khain, A., Pinsky, M., Shapiro, M., and Pokrovsky, A., 2001a: Collision rate of small graupel and water drops. J. Atmos. Sci., 58, 25712595.Google Scholar
Khain, A.P., Pokrovsky, A., Pinsky, M., Seifert, A., and Phillips, V., 2004: Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model. Part 1: Model description. J. Atmos. Sci., 61, 29632982.Google Scholar
Khain, A.P., Pokrovsky, A., and Sednev, I., 1999: Some effects of cloud–aerosol interaction on cloud microphysics structure and precipitation formation: Numerical experiments with a spectral microphysics cloud ensemble model. Atmos. Res., 52 , 195220.Google Scholar
Khain, A.P., Rosenfeld, D., and Pokrovsky, A., 2001b: Simulation of deep convective clouds with sustained supercooled liquid water down to –37.5 C using a spectral microphysics model. Geoph. Res. Let., 28, 38873890.Google Scholar
Khain, A., Rosenfeld, D., and Pokrovsky, A., 2005: Aerosol impact on the dynamics and microphysics of convective clouds. Q. J. Royal Meteorol. Soc., 131, 26392663.Google Scholar
Khain, A.P., Rosenfeld, D., Pokrovsky, A., Blahak, U., and Ryzhkov, A., 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146.Google Scholar
Khain, A.P., and Sednev, I., 1995: Simulation of hydrometeor size spectra evolution by water-water, ice-water and ice-ice interactions. Atmos. Res., 36, 107138.Google Scholar
Khain, A.P., and Sednev, I., 1996: Simulation of precipitation formation in the Eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77110.Google Scholar
Khvorostyanov, V.I., and Curry, J.A., 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59, 18721884.Google Scholar
Khvorostyanov, V.I., and Curry, J.A., 2004: The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part 1: Critical radius, energy and nucleation rate. J. Atmos. Sci., 61, 26762691.Google Scholar
Khvorostyanov, V.I., and Curry, J.A., 2005a: The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part 2: Parcel model simulation. J. Atmos. Sci., 62, 261285.Google Scholar
Khvorostyanov, V.I., and Curry, J.A., 2005b: Fall velocities of hydrometeors in the atmosphere: Refinements to a continuous analytical power law. J. Atmos. Sci., 62, 43434357.Google Scholar
Khvorostyanov, V.I., Khain, A.P., and Kogteva, E.A., 1989: Two dimensional nonstationary microphysical model of a three-phase convective cloud and evaluation of the effects of seeding by a crystallizing agent. Sov. Meteorol. Hydrol., 5, 3345.Google Scholar
Khvorostyanov, V., and Sassen, K., 1998: Towards the theory of homogeneous nucleation and its parameterization for cloud models. Geophys. Res. Lett., 25, 31553158.Google Scholar
Kidder, R.E., and Carte, A.E., 1964: Structures of artificial hailstones. J. Rech. Atmos., 1, 169181.Google Scholar
Klaassen, W., 1988: Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45, 37413753.Google Scholar
Klett, J., 1995: Orientation model for particles in turbulence. J. Atmos. Sci., 52, 22762285.Google Scholar
Knight, C.A., 1979: Ice nucleation in the atmosphere. Adv. Coll. Int. Sci., 10, 369395.Google Scholar
Knight, N.C., and Heymsfield, A.J., 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516.Google Scholar
Knight, N.C., 1986: Hailstone shape factor and its relation to radar interpretation of hail. J. Clim. Appl. Met., 25, 19561958.Google Scholar
Koenig, L.R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 2947.Google Scholar
Koenig, L.R., 1965: Drop freezing through drop breakup. J. Atmos. Sci., 22, 448451.Google Scholar
Koenig, L.R., 1966: Numerical test of the validity of the drop-freezing /splintering hypothesis of cloud glaciation. J. Atmos. Sci., 23, 726740.Google Scholar
Kolomeychuk, R.J., McKay, D.C., and Iribarne, J.V., 1975: The fragmentation and electrification of freezing drops. J. Atmos. Sci., 32, 974979.Google Scholar
Korolev, A.V., 2007a: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376389.Google Scholar
Korolev, A.V., 2007b: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375.Google Scholar
Korolev, A.V., and Field, P.R., 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 6686.Google Scholar
Korolev, A.V., and Isaac, G.A., 2003: Phase transformation of mixed-phase clouds. Q. J. Royal Meteorol. Soc., 129, 1938.Google Scholar
Korolev, A.V., and Isaac, G.A., 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow Particles. J. Atmos. Ocean Tech., 22, 528542.Google Scholar
Korolev, A.V., and Mazin, I., 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974.Google Scholar
Kovetz, A.V., and Olund, B., 1969: The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci., 26, 10601065.Google Scholar
Kramer, B., Hubner, O., Vortisch, H., Woste, L., Leisner, T., Schwell, M., Ruhl, E., and Baumgartel, H., 1999: Homogeneous nucleation rates of supercooled water measured in single levitated microdroplets. J. Chem. Phys., 111, 65216527.Google Scholar
Kumjian, M.R., Ganson, S.M., and Ryzhkov, A.V., 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490.Google Scholar
Lang, S.E., Tao, W.-K., Chern, J.D., Wu, D., and Li, X., 2014: Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J. Atmos. Sci., 71, 35833611.Google Scholar
Lang, T.J. et al., 2004: The severe thunderstorm electrification and precipitation study. Bull. Am. Meteorol. Soc., 85, 11071125.Google Scholar
Lawson, R.P., Woods, S., and Morrison, H., 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445.Google Scholar
Leisner, T., Pander, T., Handmann, P., and Kiselev, A., 2014: Secondary ice processes upon heterogeneous freezing of cloud droplets. 14th Conf. on Cloud Physics and Atmospheric Radiation, Boston, MA, Amer. Meteorol. Soc., 2.3.Google Scholar
Lesins, G.B., and List, R., 1986: Sponginess and drop shedding of gyrating hailstones in a pressure-controlled icing wind tunnel. J. Atmos. Sci., 43, 28132825.Google Scholar
Levi, L., and Lubart, L., 1998: Modelled spongy growth and shedding process for spheroidal hailstones. Atmos. Res., 47–48, 5968.Google Scholar
Lew, J.K., Kingsmill, D.E., and Montague, D.C., 1985: A theoretical study of the collision efficiency of small planar ice crystals colliding with large supercooled drops. J. Atmos. Sci., 42, 857862.Google Scholar
Lew, J.K., and Pruppacher, H.R., 1983: A theoretical determination of the capture efficiency of small columnar ice crystals by large cloud drops. J. Atmos. Sci., 40, 139145.Google Scholar
Li, G., Wang, Y., and Zhang, R., 2008: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction. J. Geophys. Res., 113, D15211.Google Scholar
Lin, R.-F., Starr, D. O’C., DeMott, P.J., Cotton, R., Sassen, K., Jensen, E., Kärcher, B., and Liu, X., 2002: Cirrus parcel model comparison project. Phase 1: The critical components to simulate cirrus initiation explicitly. J. Atmos. Sci., 59, 23052329.Google Scholar
Lin, Y.-L., Farley, R.D., and Orville, H.D., 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteorol., 22, 10651092.Google Scholar
List, R., 1959: Wachstrum von Eis-Wassergemischen im Hagel-versuchskanal. Helv. Phys. Acta., 32, 293296.Google Scholar
List, R., 1990: Physics of supercooling of thin water skins covering gyrating hailstones. J. Atmos. Sci., 47, 19191925.Google Scholar
List, R., 2014a: New hailstone physics. Part I: Heat and mass transfer (HMT) and growth. J. Atmos. Sci., 71, 15081520.Google Scholar
List, R., 2014b: New hailstone physics. Part II: Results. J. Atmos. Sci., 71 (6), 21142129.Google Scholar
List, R., Greenan, B.J.W., and Garca-Garca, F., 1995: Surface temperature variations of gyrating hailstones and effects of pressure-temperature coupling on growth. Atmos. Res., 38, 161175.Google Scholar
Litvinov, I.V., 1974: The Structure of Atmospheric Precipitation. Gidrometizdat, p. 154 (in Russian).Google Scholar
Liu, C., Moncrieff, M.W., and Zipser, E.J., 1997: Dynamical influence of microphysics in tropical squall lines: A numerical study. Mon. Wea. Rev., 125, 21932210.Google Scholar
Liu, X., and Penner, J., 2005: Ice nucleation parameterization for global models. Meteorol. Z., 14, 499514.Google Scholar
Locatelli, J.D., and Hobbs, P.V., 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197.Google Scholar
Loftus, A.M., Cotton, W.R., and Carrió, G.G., 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmos. Res., 148, 3557.Google Scholar
Lozowski, E.P., 1991: Comments on “Physics of supercooling of thin water skins covering gyrating hailstones.” J. Atmos. Sci., 48, 16061608.Google Scholar
Ludlam, F.H., 1958: The hail problem. Nubila, 1, 13.Google Scholar
Lynn, B. and Khain, A.P., 2007: Utilization of spectral bin microphysics and bulk parameterization schemes to simulate the cloud structure and precipitation in a mesoscale rain event. J. Geophys. Res., 112, D22205.Google Scholar
Macklin, W.C., 1961: Accretion in mixed clouds. Q. J. Royal Meteorol. Soc., 87, 413424.Google Scholar
Magono, C., and Lee, C.W., 1966: Meteorological classification of natural snow crystals. J. Fac. Sci., Hokkaido Univ., Ser. 2, 7, 321335.Google Scholar
Mamouri, R.E., and Ansmann, A., 2015: Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters. Atmos. Chem. Phys. Discuss., 15, 34,14934,204.Google Scholar
Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B., 2007: Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7, 50815091.Google Scholar
Marwitz, J.D., 1983: The kinematics of orographic airflow during Sierra storms. J. Atmos. Sci., 40, 12181227.Google Scholar
Mason, B.J., and Maybank, J., 1960: The fragmentation and electrification of freezing water drops. Quarterly Journal of the Royal Meteorological Society, 86 (368), 176185.Google Scholar
Mason, N.J., 1956: On the melting of hailstones. Q. J. Royal Meteorol. Soc., 82, 209216.Google Scholar
Meyers, M.P., DeMott, P.J., Cotton, W.R., 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteorol., 31, 708721.Google Scholar
Meyers, M.P., Walko, R.L., Harrington, J.Y., and Cotton, W.R., 1997: New Rams cloud microphyisics parameterization: Part II. The two-moment scheme. Atmos. Res., 45, 339.Google Scholar
Milbrandt, J.A., and McTaggart-Cowan, R., 2010: Sedimentation-induced errors in bulk microphysics schemes. J. Atmos. Sci., 67, 39313948.Google Scholar
Milbrandt, J.A., and Morrison, H., 2013: Prediction of graupel density in a bulk microphysics scheme. J. Atmos. Sci., 70, 410429.Google Scholar
Milbrandt, J.A., and Yau, M.K., 2005a: A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter. J. Atmos. Sci., 62, 30513064.Google Scholar
Milbrandt, J.A., and Yau, M.K., 2005b: A multimoment bulk microphysics parameterization. Part 2: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081.Google Scholar
Milbrandt, J.A., and Yau, M.K., 2006: A multimoment bulk microphysics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63, 31143136.Google Scholar
Mitchell, D.L., 1988: Evolution of snow-size spectra in cyclonic storms. Part 1: Snow growth by vapor deposition and aggregation. J. Atmos. Sci., 45, 34313451.Google Scholar
Mitchell, D.L., 1991: Evolution of snow-size spectra in cyclonic storms. Part II: Deviations from the exponential form. J. Atmos. Sci., 48, 18851899.Google Scholar
Mitchell, D.L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723.Google Scholar
Mitchell, D.L., and Heymsfield, A.J., 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644.Google Scholar
Mitchell, D.L., Zhang, R., and Pitter, R.L., 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteorol., 29, 153163.Google Scholar
Mitra, S.K., Vohl, O., Ahr, M., and Pruppacher, H.R., 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584591.Google Scholar
Mizuno, H., 1990: Parameterization of the accretion process between different precipitation elements. J. Meteorol. Soc. Japan, 68, 395398.Google Scholar
Moore, G.W., and Stewart, R.E., 1985: The coupling between melting and convective air motions in stratiform clouds. J. Geophys. Res., 90, 10,65910,666.Google Scholar
Morrison, H., 2012: On the numerical treatment of hydrometeor sedimentation in bulk and hybrid bulk–bin microphysics schemes. Mon. Wea. Rev., 140, 15721588.Google Scholar
Morrison, H., Curry, J.A., and Khvorostyanov, V.I., 2005: A New double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677.CrossRefGoogle Scholar
Morrison, H., and Grabowski, W.W., 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 15281548.Google Scholar
Morrison, H., and Grabowski, W.W., 2010: An improved representation of rimed snow and conversion to graupel in a multicomponent bin microphysics scheme. J. Atmos. Sci., 67, 13371360.Google Scholar
Morrison, H., and Milbrandt, J.A., 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311.Google Scholar
Morrison, H., Milbrandt, J.A., Bryan, G., Ikeda, K., Tessendorf, S.A., and Thompson, G., 2015: A new approach for parameterizing microphysics based on prediction of multiple ice particle properties. Part 2: Case study comparison with observations and other schemes. J. Atmos. Sci., 72, 311339.Google Scholar
Mossop, S.C., and Kidder, R.E., 1962: Artificial hailstones. Bull. Obs. Puy. De Dom., 2, 6579.Google Scholar
Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud – The 19 July 1981 CCOPE cloud. J. Meteorol. Soc. Japan, 68, 107128.Google Scholar
Musil, D.J., 1970: Computer modeling of hailstone growth in feeder clouds. J. Atmos. Sci., 27, 474482.Google Scholar
Noppel, H., Pokrovsky, A., Lynn, B., Khain, A.P., and Beheng, K.D., 2010: On precipitation enhancement due to a spatial shift of precipitation caused by introducing small aerosols: Numerical modeling. J. Geophys. Res., 115, D18212.Google Scholar
Ovtchinnikov, M., 1998: An investigation of ice production mechanisms using a 3-D cloud model with explicit microphysics. Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma 73019, Report 107, p. 128.Google Scholar
Ovchinnikov, M., and Kogan, Y., 2000: An investigation of ice production mechanisms in small cumuliform clouds using a 3D model with explicit microphysics. Part I: Model description. J. Atmos. Sci., 57, 29893003.Google Scholar
Passarelli, R.E., 1978: Theoretical and observational study of snow-size spectra and snowflake aggregation efficiencies. J. Atmos. Sci., 35, 882889.Google Scholar
Passarelli, R.E., and Srivastava, R.C., 1978: A new aspect of snowflake aggregation theory. J. Atmos. Sci., 36, 484493.Google Scholar
Pflaum, J.C., 1980: Hail formation via microphysical recycling. J. Atmos. Sci., 37, 160173.Google Scholar
Phillips, V.T.J., Blyth, A.M., Brown, P.R.A., Choularton, T.W., and Latham, J., 2001: The glaciation of a cumulus cloud over New Mexico. Q. J. Royal Meteorol. Soc., 127, 15131534.Google Scholar
Philips, V.T.J., DeMott, P.J., and Andronache, C., 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783.Google Scholar
Phillips, V.T.J., DeMott, P.J., Andronache, C., Pratt, K.A., Prather, K.A., Sabramanian, R., and Twohy, C., 2013: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci., 70, 378409.Google Scholar
Phillips, V.T.J., Khain, A., Benmoshe, N., and Ilotovich, E., 2014: Theory of time-dependent freezing. Part I: Description of scheme for wet growth of hail. J. Atmos. Sci., 71 (12), 133163.Google Scholar
Phillips, V., Khain, A.P., Benmoshe, N., Ilotoviz, E., and Ryzhkov, A., 2015: Theory of time-dependent freezing. Part II: Scheme for freezing raindrops and simulations by a cloud model with spectral bin microphysics. J. Atmos. Sci., 72, 262286.Google Scholar
Phillips, V., Khain, A.P., and Pokrovsky, A., 2007: The influence of melting on the dynamics and precipitation production in maritime and continental storm clouds. J. Atmos. Sci., 64, 338359.Google Scholar
Phillips, V.T.J., Sherwood, S.C., Andronache, C., Bansemer, A., Conant, W.C., DeMott, P.J., Flagan, R.C., Heymsfield, A., Jonsson, H., Poellot, M., Rissman, T.A., Seinfeld, J.H., Vanreken, T., Varutbangkul, V., and Wilson, J.C., 2005: Anvil glaciation in a deep cumulus updraft over Florida simulated with an explicit microphysics model. I: The impact of various nucleation processes. Q. J. Royal Meteorol. Soc., 131, 20192046.Google Scholar
Phillips, V.T.J., Yano, J.-I., and Khain, A., 2017a: Ice Multiplication by Break-up in Ice-Ice Collisions. Part 1: Theoretical Formulation. J. Atmos. Sci., 74, 17051719.Google Scholar
Phillips, V.T.J., Yano, J.-I., Formenton, M., Ilotoviz, E., Kanawade, V., Kudzotsa, I., Sun, J., Bansemer, A., Detwiler, A.G., Khain, A., and Tessendorf, S., 2017b: Ice Multiplication by Breakup in Ice-Ice Collisions. Part 2: Numerical simulations. J. Atmos. Sci., 74, 27892811.Google Scholar
Pinsky, M., Khain, A., and Korolev, A., 2014: Analytical investigation of glaciating time in mixed-phase adiabatic cloud volumes. J. Atmos. Sci., 71, 41434157.Google Scholar
Pinsky, M., Khain, A., and Korolev, A., 2015: Phase transformations in an ascending adiabatic mixed-phase cloud volume. J. Geophys. Res., Atmos., 120, 13291353.Google Scholar
Pinsky, M., Khain, A., and Shapiro, M., 2000: Stochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow. Atmos. Res., 53, 131169.Google Scholar
Pinsky, M., Shapiro, M., Khain, A., and Wirzberger, H., 2004: A statistical model of strains in homogeneous and isotropic turbulence. Physica D., 191, 297313.Google Scholar
Pitter, R.L., and Pruppacher, H.R., 1973: A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Q. J. Royal Meteorol. Soc., 99, 540550.Google Scholar
Pitter, R.L., Pruppacher, H.R., and Hamielec, A.E., 1974: A numerical study of the effect of forced convection on mass transport from a thin oblate spheroid of ice in air. J. Atmos. Sci., 31, 10581066.Google Scholar
Polycarpou, A.A., and Etsion, I., 1999: Analytical approximations in modeling contacting rough surfaces. ASME J. Tribol., 121, 234239.Google Scholar
Prenni, A.J., DeMott, P.J., Twohy, C., Poellot, M.R., Kreidenweis, S.M., Rogers, D.C., Brooks, S.D., Richardson, M.S., and Heymsfield, A.J., 2007a: Examinations of ice formation processes in Florida cumuli using ice nuclei measurements of anvil ice crystal particle residues. J. Geophys. Res., 112, D10221, doi:10.1029/2006JD007549.Google Scholar
Prenni, A.J., Harrington, J.Y., Tjernstrom, M., DeMott, P.J., Avramov, A., Long, C.N., Kreidenweis, S.M., Olsson, P.Q., and Verlinde, J., 2007b: Can ice-nucleating aerosols affect arctic seasonal climate? Bull. Am. Meteorol. Soc., 88 (4), 541550.Google Scholar
Pruppacher, H.R., and Klett, J.D., 1997: Microphysics of Clouds and Precipitation, 2nd edition. Oxford University Press, p. 963.Google Scholar
Pruppacher, H.R., and Schlamp, R.J., 1975: A wind tunnel investigation on ice multiplication by freezing of waterdrops falling at terminal velocity in air. J. Geophys. Res., 80, 380386.Google Scholar
Pumir, A., Wilkinson, M., 2011: Orientation statistics of small particles in turbulence. New J. Phys., 13, 093030.Google Scholar
Rangno, A.L. 2008: Fragmentation of freezing drops in shallow maritime frontal clouds. J. Atmos. Sci., 65, 14551466.Google Scholar
Rasmussen, D.H., 1982: Thermodynamic and nucleation phenomena. A set of experimental observations. J. Crystal Growth, 56, 5646.Google Scholar
Rasmussen, R.M., Geresdi, I., Thompson, G., Manning, K., and Karplus, E., 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59, 837860.Google Scholar
Rasumussen, R.M., and Heymsfield, A.J., 1985: A generalized form for impact velocities used to determine graupel accretional densities. J. Atmos. Sci., 42 (21), 22752279.Google Scholar
Rasmussen, R.M., and Heymsfield, A.J., 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763.Google Scholar
Rasmussen, R.M., Levizzani, V., and Pruppacher, H.R., 1984a: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part II: A theoretical study for frozen drops of radius < 500 μm. J. Atmos. Sci., 41, 374380.Google Scholar
Rasmussen, R.M., Levizzani, V., and Pruppacher, H.R., 1984b: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part III: Experiment and theory for spherical ice particles of radius > 500 μm. J. Atmos. Sci., 41, 381.Google Scholar
Rasmussen, R.M., and Pruppacher, H.R., 1982: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius < 500 μm. J. Atmos. Sci., 39, 152158.Google Scholar
Rauber, R.M., Olthoff, L.S., Ramamurthy, M.K., and Kunkel, K.E., 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteorol., 39, 11851195.Google Scholar
Reisin, T., Levin, Z., and Tzivion, S., 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 54, 497519.Google Scholar
Reisner, J., Rasmussen, R.M., and Bruintjes, R.T., 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q. J. Royal Meteorol. Soc., 124, 10711107.Google Scholar
Respondek, P.S., Flossman, A.I., Alheit, R.R., and Pruppacher, H.R., 1995: A theoretical study of the wet removal of atmospheric pollutants. Part V: The uptake, redistribution, and deposition of (NH4)2SO4 by a convective cloud containing ice. J. Atmos. Sci., 52, 21212132.Google Scholar
Richardson, M.S., DeMott, P.J., Kreidenweis, S.M., Cziczo, D.J., Dunlea, E.J., Jimenez, J.L., Thomson, D.S., Ashbaugh, L.L., Borys, R.D., Westphal, D.L., Casuccio, G.S., and Lersch, T.L., 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112, D02209.Google Scholar
Rogers, D.C., 1973: The aggregation of natural ice crystals. MS thesis, Dept. Atmos. Res., University of Wyoming, p. 86.Google Scholar
Rogers, D.C., 1982: Field and Laboratory Studies of Ice Nucleation in Winter Orographic Clouds, PhD Dissertation. Dept. Phys. Astron, Univ. Wyoming, p. 161.Google Scholar
Rosenfeld, D., Chemke, R., DeMott, P., Sullivan, R.C., Rasmussen, R., McDonough, F., Comstock, J., Schmid, B., Tomlinson, J., Jonsson, H., Suski, K., Cazorla, A., and Prather, K., 2013: The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States. J. Geophys. Res. Atmos., 118, 115.Google Scholar
Rosenfeld, D., Chemke, R., Prather, K., Suski, K., Comstock, J.M., Schmid, B., Tomlinson, J., and Jonsson, H., 2014: Polluting of winter convective clouds upon transition from ocean inland over central California: Contrasting case studies. Atmos. Res., 135–136, 112127.Google Scholar
Rosenfeld, D., and Woodley, W.L., 2000: Deep convective clouds with sustained highly supercooled liquid water until −37.5°C. Nature, 405, 440442.Google Scholar
Rutledge, S.A., and Hobbs, P.V., 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Viii: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.Google Scholar
Rutledge, S.A., and Hobbs, P.V., 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972.Google Scholar
Ryzhkov, A., Pinsky, M., Pokrovsky, A., and Khain, A., 2011: Polarimetric Radar Observation Operator for a Cloud Model with Spectral Microphysics. J. Appl. Meteorol. Climatol., 50, 873894.Google Scholar
Sassen, K., and Benson, S., 2000: Ice nucleation in cirrus clouds. A model study of the homogeneous and heterogeneous nucleation modes. Geophys. Res. Lett., 27, 521524.Google Scholar
Sassen, K., and Dodd, G.C., 1988: Homogeneous nucleation rate for highly supercooled cirrus cloud droplets. J. Atmos. Sci., 45, 13571369.Google Scholar
Sassen, K., and Dodd, G.C., 1989: Haze particle nucleation simulation in cirrus clouds, and application for numerical and lidar studies. J. Atmos. Sci., 46, 30053014.Google Scholar
Sastry, S., 2005: Water: Ins and outs of ice nucleation. Nature, 438, 746747.Google Scholar
Saunders, C.P.R., and Hosseini, A.S., 2001: A laboratory study of the effect of velocity on Hallett-Mossop ice crystal multiplication. Atmos. Res., 59–60, 314.Google Scholar
Schuepp, P.H., and List, R., 1969a: Mass transfer of rough hailstone models in flows of various turbulence levels. J. Appl. Meteorol., 8, 254263.Google Scholar
Schuepp, P.H., and List, R., 1969b: Influence of molecular properties of the fluid on simulation of the total heat and mass transfer of solid precipitation particles. J. Appl. Meteorol., 8, 743746.Google Scholar
Schumann, T.E.W., 1938: The theory of hailstone formation. Q. J. Royal Meteorol. Soc., 64, 321.Google Scholar
Schwarzenboeck, A., Shcherbakov, V., Lefevre, R., Gayet, J.-F., Pointin, Y., and Duroure, C., 2009: Indications for stellar-crystal fragmentation in Arctic clouds. Atmos. Res., 92, 220228.Google Scholar
Seifert, A., and Beheng, K.D., 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol. Atmos. Phys., 92, 4566.Google Scholar
Shaw, R.A., Durant, A.J., and Mi, Y., 2005: Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem. B., 109, 98659868.Google Scholar
Shaw, R., and Lamb, D., 1999: Homogeneous freezing of evaporating cloud droplets. Geophys. Res. Lett., 26, 11811184.Google Scholar
Siewert, C., Kunnen, R.P.J., Meinke, M., and Schroder, W., 2014: Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res., 142, 4556.Google Scholar
Slinn, W.G.N., and Hales, J.M., “Phoretics Effects in Scavenging,” Precipitation Scavenging, AEC Symposium Series 22, Washington, DC, 1970.Google Scholar
Stith, J.L., Ramanathan, V., Cooper, W.A., Roberts, G.C., DeMott, P.J., Carmichael, G., Hatch, C.D., Adhikary, B., Twohy, C.H., Rogers, D.C., Baumgardner, D., Prenni, A.J., Campos, T., Gao, R., Anderson, J., and Feng, Y., 2009: An overview of aircraft observations from the Pacific Dust Experiment campaign. J. Geophys. Res., 114, D05207, doi:10.1029/2008JD010924.Google Scholar
Stockel, P., 2001: Homogene Nukleation in levitierten Tropfchen aus stark unterkhltem H2O und D2O. PhD thesis. Free University of Berlin, p. 197.Google Scholar
Straka, J.M., 2009: Cloud and Precipitation Microphysics. Cambridge University Press, p. 392.Google Scholar
Sulia, K.J., and Harrington, J.Y., 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geop. Res., 116, D21309.Google Scholar
Szeto, K.K., and Stewart, R.E., 1997: Effects of melting on frontogenesis. J. Atmos. Sci., 54, 689702.Google Scholar
Szeto, K.K., Stewart, R.E., and Lin, C.A., 1988: Mesoscale circulations forced by the melting of snow in the atmosphere. Part II: Application to meteorological features. J. Atmos. Sci., 45, 16421650.Google Scholar
Takahashi, C., and Yamashita, A., 1969: Deformation and fragmentation of freezing water drops in free fall. J. Meteorol. Soc. Japan, 47, 431434.Google Scholar
Takahashi, C., and Yamashita, A., 1970: Shattering of frozen water drops in a supercooled cloud. J. Meteorol. Soc. Japan, 48, 373376.Google Scholar
Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J Atmos. Sci., 35, 15361548.Google Scholar
Takahashi, T., and Wakahama, G., 1991: Vapor diffusional growth of free-falling snow crystals between −3 and −23 oC. J. Meteorol. Soc. Japan, 69, 1530.Google Scholar
Takahashi, T., and Fukuta, N., 1988: Supercooled cloud tunnel studies on the growth of snow crystals between −4 and −20 oC. J. Meteorol. Soc. Japan, 66, 841855.Google Scholar
Takahashi, T., Nagao, Y., and Kushiyama, Y., 1995: Possible high ice particle production during graupel–graupel collisions. J. Atmos. Sci., 52, 45234527.Google Scholar
Tao, W.-K., Simpson, J., and Soong, S.-T., 1991: Numerical simulation of a subtropical squall line over the Taiwan Strait. Mon. Wea. Rev., 119, 26992723.Google Scholar
Tao, W.-K., Wu, D., Lang, S., Chern, J.-D., Peters-Lidard, C., Fridlind, A., and Matsui, T., 2015: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos., 121, 12781305, doi:10.1002/2015JD023986.Google Scholar
Thompson, G., Rasmussen, R.M., and Manning, K., 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Weather Rev., 132, 519542.Google Scholar
Tinsley, B.A., 2004: Contact ice nucleation near cloud tops due to electroscavenging, Ice Initiation Workshop, NCAR June 7–9.Google Scholar
Tinsley, B.A., Rohrbauch, R.P., and Hei, M., 2001: Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmos. Res., 59–60, 115135.Google Scholar
Tomotika, S., 1935: The laminar boundary layer on the surface of a sphere in a uniform stream. Rep. and memo., Great Britain Aeronautical Research Commettee, 1678, H.M.S.O., London, UK, p. 14.Google Scholar
Vali, G., 1975: Remarks on the mechanism of atmospheric ice nucleation. Proc. 8th Int. Conf. on Nucleation, Leningrad, Sept. 23–29, I.I. Gaivoronsky ed., Gidrometeoizdat, pp. 265–269.Google Scholar
Vali, G., 1976: Contact freezing nucleation measured by the DFC instrument. Preprints Third Internat. Workshop on Ice Nucleous Measurements, Laramie, Univ. of Wyoming, pp. 159–178.Google Scholar
Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51, 18431856.Google Scholar
Vali, G., 1999: ICE NUCLEATION THEORY. A TUTORIAL FOR PRESENTATION AT THE NCAR/ASP 1999 SUMMER COLLOQUIUM, <vali@uwyo.edu>; www-das.uwyo.edu/~vali, p. 22.;+www-das.uwyo.edu/~vali,+p.+22.>Google Scholar
Vardiman, L., 1978: The generation of secondary ice particles in clouds by crystal–crystal collision. J. Atmos. Sci., 35, 21682180.Google Scholar
Vohl, O., Mitra, S.K., Diehl, K., Huber, H., Wurzler, S.C., Kratz, K.l., and Pruppacher, H.R., 2001: A wind tunnel study of turbulence effects on the scavenging of aerosol particles by water drops. J. Atmos. Sci., 58, 30643072.Google Scholar
Wacker, U., and Lupkes, C., 2009: On the selection of prognostic moments in parameterization schemes for drop sedimentation. Tellus, 61A, 498511.Google Scholar
Walko, R., Cotton, W.R., Meyers, M.P., and Harrington, J.Y., 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962.Google Scholar
Wall, S., John, W., Wang, H., and Goren, S.L., 1990: Measurements of kinetic energy loss for particles impacting surfaces. Aerosol Sci. Technol., 12, 926946.Google Scholar
Wang, P.K., and Ji, W., 1992: Numerical simulation of three-dimensional unsteady flow past ice crystals. J. Atmos. Sci., 54, 22612274.Google Scholar
Wang, P.K., 2002: Ice Microdynamics. Academic Press, p. 273.Google Scholar
Wang, Y., Fan, J., Zhang, R., Leung, L., and Franklin, C., 2013: Improving bulk microphysics parameterizations in simulations of aerosol effects. J. Geophys. Res. Atm., 118, 119.Google Scholar
Wegener, A., 1911: Thermodynamik der Atmosphäre. J. A. Barth (in German), p. 331.Google Scholar
Weil, J.C., Lawson, R.P., and Rodi, A.R., 1993: Relative dispersion of ice crystals in seeded cumuli. J. Appl. Meteorol., 32, 10551073.Google Scholar
Willis, P.T., and Heymsfield, A.J., 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 20082025.Google Scholar
Wisner, C., Orville, H.D., and Myers, C., 1972: A numerical model of a hail-bearing cloud. J. Atmos. Sci., 29, 11601181.Google Scholar
Wood, S., Baker, M., and Swanson, B., 2002: Instrument for studies of homogeneous and heterogeneous ice nucleation in free-falling supercooled water droplets. Rev. Sci. Instrum., 73, 39883996.Google Scholar
Wurzler, S., and Bott, A., 2000: Numerical simulations of cloud microphysics and drop freezing as function drop contamination. J. Aerosol Sci., 31, S152S153.Google Scholar
Yano, J.-I., and Phillips, V.T.J., 2011: Ice–ice collisions: An ice multiplication process in atmospheric clouds. J. Atmos. Sci., 68, 322333.Google Scholar
Yin, Y., Levin, Z., Reisin, T., and Tzivion, S., 2000: The effects of giant cloud condensational nuclei on the development of precipitation in convective clouds: A numerical study. Atmos. Res., 53, 91116.Google Scholar
Young, K.C., 1974: The role of contact nucleation in ice phase initiation in clouds. J. Atmos. Sci., 31, 768776.Google Scholar
Zakinyan, R.G., 2008: On the theory of hailstone growth. Atmospheric and Oceanic Physics, 44, (2), 207212.Google Scholar
Zhekamukhov, M.K., 1982: Some Problems of Formation of Hailstone Structure. Gidrometeoizdat, Moscow (in Russian), p. 256.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×